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ABSTRACT 
Much of the difficulty in Music Information Retrieval can be 
traced to problems of good music representations, understanding 
music structure, and adequate models of music perception. In 
short, the central problem of Music Information Retrieval is 
Music Understanding, a topic that also forms the basis for much 
of the work in the fields of Computer Music and Music 
Perception. It is important for all of these fields to communicate 
and share results. With this goal in mind, the author’s work on 
Music Understanding in interactive systems, including computer 
accompaniment and style recognition, is discussed. 

1. INTRODUCTION 
One of the most interesting aspects of Music Information 
Retrieval (MIR) research is that it challenges researchers to form a 
deep understanding of music at many levels. While early efforts in 
MIR were able to make impressive first steps even with simple 
models of music, it is becoming clear that further progress 
depends upon better representations, better understanding of 
music structure, and better models of music perception. 

As MIR research progresses, the community will undoubtedly 
find more and closer ties to other music research communities, 
including “Computer Music,” probably best represented by the 
International Computer Music Association and its annual 
conference [22], and “Music Perception” as represented by the 
Society for Music Perception and Cognition [25]. While MIR is 
not the main focus of either of these communities, there is 
considerable overlap in terms of music processing, understanding, 
perception, and representation. 

The goal of this presentation is to survey some work (mostly my 
own) in Music Understanding and to describe work that is 
particularly relevant to MIR. Most of my work has focused on 
interactive music systems. Included in this work is extensive 
research on computer accompaniment systems, in which melodic 
search and comparison are essential components. Other efforts 
include beat-tracking, listening to and accompanying traditional 
jazz performances, and style classification of free improvisations. 

Along with the preparation of this presentation, I am placing 
many of the cited papers on-line so they will be more accessible to 
the MIR community. 

My thesis is that a key problem in many fields is the 
understanding and application of human musical thought and 
processing; this drives much of the research in all fields related to 
music, science, and technology. This is not to say that these fields 
are equivalent, but it is important to understand how and why they 
are related. The work that I describe here shares many underlying 
problems with MIR. I hope this overview and the citations will be 
of some benefit to the MIR community. 

2. COMPUTER ACCOMPANIMENT 
The general task of computer accompaniment is to synchronize a 
machine performance of music to that of a human. I introduced 
the term computer accompaniment in 1984, but others terms have 
been used including synthetic performer [26], artificially 
intelligent performer [2] and intelligent accompanist [5]. In 
computer accompaniment, it is assumed that the human performer 
follows a composed score of notes and that both human and 
computer follow a fully notated score. In any performance, there 
will be mistakes and tempo variation, so the computer must listen 
to and follow the live performance, matching it to the score. 

Computer accompaniment involves the coordination of signal 
processing, score matching and following, and accompaniment 
generation. Because of the obvious similarity of score matching to 
music search, I will focus on just this aspect of computer 
accompaniment. See the references for more detail [9, 12]. 

2.1 Monophonic Score Following 
My first computer accompaniment systems worked with acoustic 
input from monophonic instruments. The system is note-based: 
the sequence of performed pitches is compared to the sequence of 
pitches in the score. Times and durations are ignored for the 
purposes of matching and comparison, although timestamps must 
be retained for tempo estimation and synchronization. 

Originally, I tried to apply the algorithm from the Unix diff 
command, which, viewed from the outside, seems to be perfect 
for comparing note sequences. Unfortunately, diff does not work 
here because it assumes that lines of text are mostly unique. This 
led to the exploration and application of dynamic programming, 
inspired by longest common substring (LCS) and dynamic 
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timewarp algorithms [24]. To my knowledge, this is the first use 
dynamic programming for melodic comparison. 

Recall that LCS computes a matrix of size m·n for strings of 
length m and n. An important refinement for real-time music 
recognition is the introduction of a sliding window centered 
around the current score position. This reduces the computation 
cost per note to a constant. 

This windowing idea could be used in music search applications, 
especially to compare long query strings to stored strings. The 
window only affects the result in cases where the match is poor, 
but presumably these cases are not of interest anyway. 

Dynamic programming algorithms typically look at the final m·n 
matrix to determine the result, but this is not possible in real time. 
As a heuristic, my score follower reports a match when a “match 
score” is computed that is higher than any previous value 
computed so far. The “match score” is essentially the number of 
notes matched so far minus the number of notes skipped in the 
score. This formulation compensates for the tendency to skip over 
notes in order to find a match. 

It is perhaps worth noting that matching the performance (a prefix 
of the score) to the score is a bit like matching a query, which may 
be a melodic fragment, to a complete melody. Since a fragment 
may start and end anywhere in a complete melody, we want to 
compute the least distance from any contiguous fragment of the 
melody, ignoring a certain (but unknown) prefix and suffix of the 
melody. Dynamic programming, as formulated for score 
following, can find this best match with a cost of m·n, where m 
and n are the lengths of the melody and query. (Unfortunately, the 
windowing idea does not seem to apply here because we do not 
know where the best match will start in the melody.) 

Monophonic score following works very well. The original 
implementation ran on a 1MHz 8-bit processor that performed 
pitch estimation, score following, accompaniment, and 
synthesizer control in real time, and fit under an airline seat in 
1984! As a historical note, I suggested in a talk given in 1985 [7] 
that these matching algorithms could be used to quickly search a 
database of songs. Unfortunately, I missed the opportunity to 
mention this in my patent [8] or create the first such 
implementation. 

2.2 Polyphonic Score Following 
The logical next step in this research was to consider 
accompanying keyboard performances, and two algorithms were 
developed for polyphonic score following [3]. Rather than repeat 
their full descriptions here, I will simply try to give the main ideas 
and properties of the algorithms. One approach, developed by 
Josh Bloch, generalizes the idea of “note” to “compound event.” 
A compound event is set of simultaneous note onsets, i.e. a chord. 
The score and performance are regarded as sequences of 
compound events, and we are essentially looking for the best 
match. The quality of the match is determined by the number of 
pitches that match within corresponding compound events minus 
the number of pitches that are skipped. This is easily solved using 
dynamic programming, where rows and columns correspond to 
compound events. 

One problem with the preceding algorithm is that it relies upon 
some process to group events into compound events. We form 
compound events by grouping notes whose onsets are separated 
by less than 50 to 100ms. Another algorithm for polyphonic score 

following was created that forms compound events dynamically. 
In this algorithm, score events are initially grouped into 
compound events, but performed events are processed one-at-a-
time. What amounts to a greedy algorithm is used to associate 
performed notes with compound events. Unfortunately, this 
algorithm does not always find the optimal match because of the 
heuristic nature of its grouping. 

In practice, both algorithms work very well, failing only in 
(different) contrived pathological cases. Both use the same 
windowing technique introduced in the monophonic matcher and 
therefore run in constant time per performed note. The precision 
of a MIDI keyboard compared to acoustic input, combined with 
the additional information content of a polyphonic score, makes 
computer accompaniment of keyboard performances very robust. 

These algorithms could be used for music search, but they rely on 
matching notes as opposed to something more abstract such as 
harmony. If an improviser plays correct harmonies but in different 
rhythms or voicings, the match rating might be low. On the other 
hand, the algorithm can be used as a sort of diff on MIDI files, for 
example to compare different performances [21, 23] or editions. 
Another interesting application of this technology is in intelligent 
piano tutoring systems [4, 6, 13]. 

2.3 Ensemble Accompaniment 
With keyboard performance, the right and left hands are generally 
synchronized, but this is not so true of ensembles.  Following and 
accompanying an ensemble can be accomplished by following 
each musician separately and then integrating the results [10, 15, 
16]. One of the interesting problems encountered here is that 
different performers may have more or less relevance at any given 
time. Usually, performers that have performed a note more 
recently and that are synchronized with other performers are 
better sources of timing information. The situation changes 
constantly in a performance as one part assumes prominence and 
another plays a background role or rests. 

In MIR research, it is common to assume music is a totally 
ordered sequence of notes or features. It might be useful to 
consider that, in performance, individuals are not always 
synchronized. Instead, each performer has a separate notion of 
time and has a strong goal to produce coherent musical gestures. 
The synchronization of all these independent lines and gestures is 
a quasi-independent task performed as each performer listens to 
the others. 

2.4 Vocal Accompaniment 
In spite of the success of monophonic and polyphonic matchers 
for score following, these techniques do not work well for vocal 
soloists. The main problem is that vocal melodies are difficult to 
segment into discrete notes, so the data seen by the matcher has a 
high error rate. Similar problems occur in MIR systems, and a 
more detailed analysis can be found in Lorin Grubb’s thesis [19]. 

Given that discrete string matching methods cannot be applied to 
vocal music, Grubb’s solution [18, 20] is based on the idea of 
using probability theory to form a consistent view based on a 
large number of observations that, taken individually, are 
unreliable. The probabilistic framework allows the system to be 
trained on actual performance data; thus, typical performance 
errors and signal processing errors are all integrated into the 
framework and accounted for. 
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The system effectively matches pitch as a function of time to the 
score, but rather than use dynamic time warping, Grubb’s system 
represents score position as a probability density function. This 
density function is updated using a model of tempo variation, 
accounting for natural variations in performed tempo, and a model 
of pitch observations, accounting for the natural distribution of 
pitch around the one notated in the score. In addition, phonetic 
information and note onset information can be integrated within 
the probabilistic framework [17]. This work forms an interesting 
basis for MIR using vocal queries. 

3. Listening to Jazz  
It would be wrong to assume every MIR query can be formulated 
as a melodic fragment. Similarly, it is restrictive to assume 
accompanists can only follow fully notated music. What about 
jazz, where soloists may follow chord progressions, but have no 
predetermined melody? Working with Bernard Mont-Reynaud, I 
developed a real-time blues accompaniment system that analyzed 
a 12-bar blues solo using supervised learning to characterize 
typical pitch distributions and a simple correlation strategy to 
identify location [11]. This work also included some early beat 
induction techniques [1]. It seems unlikely that these techniques 
will be directly applicable to MIR systems, but the general idea 
that improvised solos (or even stylized interpretations of 
melodies) can be understood in terms of harmonic and rhythmic 
structure is important for future MIR research. 

4. Style Classification 
An underlying structure of beats, measures, harmony and choruses 
supports traditional jazz solos. I am interested in interactive 
improvisations with computers where this structure is absent. 
Instead, I want the computer to recognize different 
improvisational styles, such as “lyrical,” “syncopated,” and 
“frantic” so that the improviser can communicate expressive 
intentions to the computer directly through the music, much as 
human musicians communicate in collective improvisations. This 
goal led to work in style classification using supervised machine 
learning [14]. This work has obvious applications to music search 
where the object is to retrieve music of a certain genre or style. 
We were able to obtain good classification rates on personal styles 
using quite generic features obtained from a real-time pitch 
analyzer. Recognition was based on only 5 seconds of music to 
minimize latency in a real-time performance. 

5. Conclusions 
Music Understanding is a critical part of Music Information 
Retrieval research as well as a central topic of Computer Music 
and Music Perception. The similarities between score following 
and style classification to problems in MIR are striking. I hope 
that this paper will introduce some pioneering work in Music 
Understanding to a broader audience including especially MIR 
researchers.  
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