
Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

1

The Implementation of Nyquist, A Sound
Synthesis Language1

Roger B. Dannenberg

School of Computer Science
Carnegie Mellon University Pittsburgh, PA 15213 USA
dannenberg@cs.cmu.edu

Nyquist is an advanced functional language for sound synthesis and

composition. One of the goals of Nyquist is to achieve efficiency comparable to
more conventional Music N synthesis languages such as Csound (Vercoe 1986).
Efficiency can be measured in space and time, and both are important: digital
audio takes enormous amounts of memory, and sound synthesis programs are
computationally intensive. The efficiency requirement interacts with various
language features, leading to a rather elaborate representation for signals. I will
show how this representation supports Nyquist semantics in a space and time-
efficient manner. Among the features of the representation are incremental
computation, dynamic storage allocation and reclamation, dynamic instantiation
of new signals, representation of infinite sounds, and support for multi-channel,
multi-sample-rate signals.

Introduction
Nyquist is based on an evolving series of languages and implementations that

include Arctic (Dannenberg, McAvinney, and Rubine 1986), Canon (Dannenberg
1989), and Fugue (Dannenberg, Fraley, and Velikonja 1991). These languages are
all based on powerful functional programming mechanisms for describing
temporal behavior. From these general mechanisms, composers can create a
variety of temporal structures, such as notes, chords, phrases, and trills, as well
as a variety of synthesis elements, such as granular synthesis, envelopes, and
vibrato functions. Unfortunately, previous implementations have had too many
limitations for practical use. For example, Canon did not handle sampled audio,
and Fugue used vast amounts of memory and was hard to extend.

Nyquist solves these practical problems using new implementation
techniques. Declarative programs are automatically transformed into an efficient
incremental form taking approximately the same space (within a constant factor)
as Music V (Mathews 1969) or Csound (Vercoe 1986). This transformation takes
place dynamically, so Nyquist has no need to preprocess an orchestra or “patch.”
This allows Lisp-based Nyquist programs to construct new synthesis patches on-
the-fly and allows users to execute synthesis commands interactively.

1 Published as: , Roger B. Dannenberg, “The Implementation of Nyquist, a Sound

Synthesis Language,” Computer Music Journal, 21(3) (Fall 1997), pp. 71-82.

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

2

Furthermore, sounds and scores can be written and evaluated even if their
durations are infinite.

This paper will focus on the run-time representation of sound in Nyquist, so
Nyquist will be described only as needed to motivate the representation issues.
To get a more complete picture, see the companion articles (Dannenberg, 1997a,
and Dannenberg, 1997b). A final article in this series (Dannenberg and
Thompson, 1997) will discuss the problem of organizing and optimizing inner
loops for software synthesis. That article will include more measurements of
Nyquist and other systems.

The implementation is presented as a set of solutions to various issues and
problems, mostly arising from the need to support Nyquist semantics. The
following section describes the representation of sounds and lazy evaluation,
which work together to achieve space efficiency. Next, the optimized sound
addition operation is described. Then, signal transformation and infinite sounds
are discussed. The next section discusses how sounds can be ordered
sequentially and how logical stop times are used. Following sections describe the
implementation of multiple sample rates and multiple channel signals. Next
software engineering issues are discussed, including the use of automatic code
generation. Finally, performance is evaluated and the overall system is
discussed.

Incremental (Lazy) Evaluation
Nyquist uses a declarative and functional style, in which expressions are

evaluated to create and modify sounds. For example, to form the sum of two
sinusoids, write:

(sum (osc c4) (osc c5)),
where each (osc pitch) expression evaluates to a signal, and sum sums the
two signals. In Fugue, an earlier implementation, the addition of signals took
place as follows: space was allocated for the entire result, then signals were
added one-at-a-time. This was workable for small sounds, but practical music
synthesis required too much space. The solution in Nyquist is to perform the
synthesis and addition incrementally so that at any one time there are only a few
blocks of samples in memory (Dannenberg and Mercer, 1992).

This is similar to the approach taken in Music N languages such as Csound,
cmusic, and Cmix (Pope 1993), and, in fact, there is a close correspondence
between unit generators of Music N and functions in Nyquist. The main
difference is that in Music N, the order of execution is explicit, whereas in
Nyquist, evaluation order is deduced from data dependencies. Also, Nyquist
sounds are first-class values that may be assigned to variables or passed as
parameters.

Figure 1 illustrates an expression and the resulting computation structure
consisting of a graph of synthesis objects. This graph is, in effect, a “suspended
computation,” that is, a structure that represents a computation waiting to
happen. This graph is an efficient way to represent the sound. When actual
samples are needed, the sum suspension is asked to deliver a block of samples.
This suspension recognizes that it needs samples from each osc suspension, so it

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

3

recursively asks each of them to produce a block of samples. These are added to
produce a result block. The suspensions keep track of their state (e.g., current
phase and frequency of oscillation) so that computation can be resumed when
the next block is requested.

(sum (osc) (osc))

sum

osc

osc

Figure 1. A Nyquist sound expression and resulting
representation.

With this evaluation strategy, each block of samples is typically used
immediately after it is computed, and the space requirements are similar to those
of Music N. Furthermore, whenever a block is needed, it is computed on
demand, so the order of evaluation is determined automatically. There is no need
to order unit generators by hand as in Music N. Since the order is determined at
the time of evaluation, the computation graph may change dynamically. In
particular, when a new “note” is played, the graph is expanded accordingly. This
is in contrast to the static graphs used by Max on the ISPW (Puckette 1991),
where all resources must be pre-allocated.

Samples are computed in blocks so that the overhead of managing data
structures and invoking sample computations is amortized over many samples.
This same strategy is used in most sound synthesis implementations. Nyquist
uses fixed-sized blocks to simplify storage management, but there is a length
count to allow partially filled blocks.
Shared Values

As is often the case, things are not really so simple. In Nyquist, sounds are
values that can be assigned to variables and reused any number of times. It
would be conceivable (and semantically correct) to simply copy a sound
structure whenever it is needed in the same way that most languages copy
integer values when they are passed as parameters or read from variables.
Unfortunately, sounds can be large structures that are expensive to copy.
Furthermore, if a sound is copied, each copy will eventually be called upon to
perform identical computations to deliver identical sample streams. Clearly, we
need a way to share sounds that eliminates redundant computation.

Nyquist allows great flexibility in dealing with sounds. For example, it is
possible to compute the maximum value of a sound or to reverse the sound, both
of which require a full representation of the sound. What happens if a maximum
value suspension asks a sound to compute and return all of its blocks, and then a

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

4

signal addition suspension begins asking for blocks (starting with the first)? If the
sound samples are to be shared, it is necessary to save sample blocks for as long
as there are potential readers. Note that this problem does not occur in Music N
because signals are special data types that can only be accessed “now” at a global
current time. In Cmix (Lansky 1987, 1990), sounds can be accessed randomly
only after writing them to sound files.

The need for sharing leads to a new representation (see Figure 2) in which
samples are stored in a linked list of sample blocks. Sound sample blocks are
accessed sequentially by following list pointers. Each reader of a sound uses a
sound header object to remember the current position in the list and other state
information. In the figure, the sound is shared by two readers, each with a sound
header. One reader is a block ahead of the other. Incremental evaluation is still
used, placing the suspension at the end of the list. When a reader needs to read
beyond the last block on the list, the suspension is asked to compute a new block
which is inserted between the end of the list and the suspension. The list is
organized so that all readers see and share the same samples, regardless of when
the samples are produced or which reader reads first.

Sound
Header

Sound
Header

Sample
Block

Suspension

Sound
Header

Sound
Header

... ...

Sound
List Node

Figure 2. Sound representation in Nyquist.

Storage Reclamation
Now a new problem arises. Since blocks are attached to a list as they are

generated, what prevents lists from exhausting the available storage? The
solution uses a combination of reference counting and garbage collection (Schorr
and Waite, 1967) to move blocks from the head of the list to a free list from which
they can be allocated for reuse.

Reference counts (Pratt 1975) record the number of outstanding references
(pointers) to list nodes and sample blocks. When the count goes to zero, the node
or sample block is freed. Reference counting is used so that blocks are freed as

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

5

early as possible. In Figure 2, the dotted lines illustrate the previous head of the
sound list, which was freed when no more sound headers referenced it.

The Lisp interpreter upon which Nyquist is based (XLisp) does not reference
count ordinary Lisp objects, which may in turn reference sounds. A problem that
arises from this scheme is that a Lisp object can refer to a Nyquist sound, keeping
its reference count at 1. When the Lisp object is freed, nothing happens because
freed Lisp objects are not detected until the garbage collector runs2. This might
delay the freeing of a sound reader, causing many sound blocks to be retained in
memory unnecessarily.

This is a real problem because whenever a sound is passed as a parameter,
the parameter binding is a Lisp object with a reference to the sound. The sound
blocks will not be freed until the next garbage collection. The solution is to
invoke the garbage collector whenever the list of sample blocks becomes empty.
If this fails to free up any sample blocks, 50 new blocks are allocated. Usually, if
there are no free sample blocks, it is because there is a Lisp reference to a sound
which is growing and allocating blocks from the free list. Running the garbage
collector when the free list is empty frees all of those blocks.

In retrospect, it might have been wise to avoid reference counting altogether
and simply use the garbage collector. This would have required more
modifications to the collector to handle all the sound representation structures.
Also, garbage collection would run very frequently if reference counts were not
used to free sound sample blocks.

In summary, the linked list representation of sounds allows sounds to be
incrementally evaluated, linking sound blocks onto the tail of the list. As reader
objects traverse the list, blocks are freed from the head of the list. In normal use,
only one block is ever allocated to store samples (as in Music N), but if a sound is
assigned to a Lisp variable or data structure, the sound is retained for as long as
the reference remains. By manipulating blocks rather than single samples, the
space and time overhead of the linked lists is amortized over many samples,
making the relative overhead quite small.
Efficient Transformations

Nyquist allows various transformations on sounds, such as shifting or
stretching them in time or scaling their amplitudes. These need to be efficient
since they are common operations and there is no static structure or code to be
compiled and optimized. The sound headers mentioned earlier contain
transformation information, whereas sample block lists simply contain samples.

2 The garbage collector in XLisp is a mark-sweep collector (Schorr and Waite 1967): pointers

are followed from the stack and from global variables, and every reachable Lisp object is marked.
At this point, any object that is unmarked is unreachable and therefore useless to the
computation. The entire Lisp memory is scanned. Any unmarked object is linked onto a free list,
and any marked object is unmarked in preparation for the next garbage collection.

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

6

To scale a sound, the header is copied and the copy's scale-factor field is
modified3.

A drawback of storing transformations in the header is that all operators
must apply the transformations to the raw samples. Time-shifted signals are
handled simply by reading them at the appropriate time. If a sound is delayed,
the list of sample blocks to be read automatically implements a delay buffer. In
the case of scale factors, there are several approaches:

1. Within a suspension, multiply each input sample by the scale factor,
costing one multiply per reader.

2. Use special-case code if the scale factor is 1.0 so that a penalty is paid only
for non-unity scale factors.

3. Implement non-unity scaling using a separate operator, costing one
multiply per sample plus the overhead of another operator.

4. The scale factor can be commuted to the result, e.g., the multiply operator
returns a sound whose scale factor is the product of the scale factors of the
operand sounds. This costs nothing locally, but “passes the buck” to other
operators.

5. The scale factor can be factored into other operations, for example, pre-
scaling filter coefficients, to avoid any per-sample cost.

The Nyquist implementation uses one of methods 5, 4, and 3, in that order of
preference, and methods 2 and 1 can be selectively applied to any operator (unit
generator) when Nyquist is compiled.

Addition
Nyquist can add sounds with different start times, so signal addition must be

efficient in the frequent case where one signal is zero. Figure 3 illustrates a case
where two sounds at widely spaced times must be added. One solution that was
rejected is to “coerce” the signal that starts late to supply leading zeros to align
the sounds. Because this generates extra work adding blocks of zeros, it was
decided instead to handle the misalignment of starting times as a special case.

When one addend is zero, it is sufficient to simply copy the other addend
from input to output. Unfortunately, even copying takes time. A better solution
is to copy pointers to sample blocks rather than copy the blocks themselves. To
enable this optimization, a sample block list is made up of list nodes that point to
sample blocks, as shown in Figure 2. Sample blocks can be shared by lists, and
both list nodes and sample blocks have reference counts.

Addition is optimized to handle the case of Figure 3 with maximum
efficiency. The addition suspension is implemented as a finite-state machine,
where the state indicates which operands are non-zero, and transitions occur at
the start and stop times of the operands. When one operand is zero, the sound
block from the other operand can simply be linked into the sound list
representing the sum. No samples are added or even copied!

3The copy is necessary because the sound might be shared. Remember that sounds are
immutable values, so all operators and transformations generate new sounds (with shared
samples) rather than modify old ones.

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

7

(sum (at 5 (osc c4))
 (at 10 (osc d4)))

time

Figure 3. Sounds may have leading zeros, trailing zeros, and
internal gaps.

Testing for zero is as expensive as adding, so a unique “block of zeros” is
used to indicate large gaps of zero. A simple pointer comparison can determine if
the block in question is zero or not. (Of course, if a block of computed samples
turns out to be all zeros, they will escape detection and no optimization will be
applied.)

Some of these optimizations require block alignment. List nodes have a
length field, allowing suspensions to generate partially filled blocks. Since blocks
can vary in size and sample rate, suspensions are written to compute samples up
to the next operand block boundary, fetch a new block, and resume until an
output block is filled.

Signal Termination
Although lazy evaluation allows Nyquist sounds to be infinite, efficiency

concerns dictate that sound computation should terminate as soon as possible.
Most signal generators in Nyquist produce a signal only over some time interval,
and Nyquist semantics say that the sound is zero outside of this interval. The
point at which a signal goes to zero is represented by a list node that points to
itself (see Figure 4), creating a virtually infinite list of zero sound blocks. When a
suspension detects that all its future output will be zero, it links the tail of its
sound list to the special terminal list node. The suspension then deletes itself.
Other suspensions can check for the terminal list node to discover when their
operands have gone to zero.

The possibility of infinite signals enables some very interesting sound
expressions. Consider the following recursive drum roll:

(defun drum-roll ()
 (seq (stroke) (drum-roll)))

which says roughly: “a drum roll is defined to be a sequence consisting of a
stroke followed by a drum roll.” Playing such a behavior will result in an infinite
number of samples, but a finite space in primary memory. Now consider the
following expression:

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

8

Sound
Header

Sample
Block

Sound
Header

Sample
Block

Zeros

Figure 4. Representation for sound termination. Two sounds are
shown, each with one more block to read before termination.

(defun short-roll ()
 (mult (drum-roll) (drum-envelope)))

This just multiplies a drum roll by a finite-length envelope. When the envelope
goes to zero, the multiplication suspension will notice that one operand (the
envelope) is zero. Therefore, the product is zero, and the suspension can link its
output to the terminal (zero) list node. The suspension frees itself and reference
counting and garbage collection dispose of the remaining drum roll.

This kind of recursive infinite structure might also be used in granular
synthesis (Roads 1991). A granular synthesis instrument can generate potentially
infinite sounds that need only to be multiplied by an envelope to obtain the
desired amplitude and duration.

Logical Stop Time and Sequences
Another feature of Nyquist is that sounds have intrinsic ending times called

the logical stop time (LST). A seq operator allows sounds to be added together,
aligning the start time of one sound with the LST of the previous sound. The LST
may be earlier or later than the termination time. For example, the LST may
correspond to a note release time, after which the note may decay until the
termination time.

In the example, (seq (note1) (note2)), the start time of the (note2)
expression depends upon the LST of (note1). We reserve a flag in each list
node to mark the logical stop location. When the flag is set, it indicates the LST is
the time of the first sample of the block pointed to by the list node. Since block
lengths are variable, a block can be split at any point to position the LST at any
sample. The LST flag serves to communicate the default LST from the creator of
the sound to the readers of the sound, but it is also possible to explicitly set the
LST using the set-logical-stop transformation. This transformation sets an
LST field in the sound reader object, and the field takes precedence over a list
node’s LST flag.

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

9

Evaluation of each item in a sequence (seq) must be deferred until the LST of
the previous item. This is accomplished by capturing the Lisp environment
(including local variable bindings and the Nyquist transformation environment)
in a closure and saving the closure in a special seq suspension. The closure is
evaluated when the LST is reached. At this point, the seq suspension is
converted to an addition suspension, and the signals are added. Addition retains
any overlapping tail from the first sound.

Since seq suspensions are converted to additions, there is the danger that a
long sequence will degenerate to a deeply nested structure of additions. The
addition suspension is optimized to link its output list to its operand list when
only one operand remains. (See Figure 5.) In effect, this simplifies computations
of the form “0 + x” to “x” by eliminating one addition. This is only possible,
however, when the operand's scale factor is one, and the sample rate matches
that of the sum.

BEFORE
Sound
Header

Sample
Block

Add
Suspension

zero

Sound
Header

Sample
Block

Add
Suspension

... ...

Sound
Header

Sample
Block

Sample
Block

Add
Suspension

... ...

AFTER

Figure 5. Optimization of add when one operand terminates
and one remains.

Multiple Sample Rates
Sample rate is specified in the header of each sound, and Nyquist allows

arbitrarily mixed sample rates. It is the responsibility of the operations to apply
rate conversion when it is required. Rate conversion is handled in one of three
ways.

In the first method, the operator implements linear interpolation in its inner
loop. Automatic code generation (described below) is used to create three
versions of interpolation: two-point interpolation finds the two nearest samples to

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

10

the desired time and performs a standard linear interpolation. This is expensive,
but is the best approach when the interpolated sample rate is near the original
rate. Ramp interpolation is used when up-sampling by a large factor and there
are many interpolated samples between each pair of original samples. Between
original samples, an increment is computed. Each interpolated point is computed
by adding the increment to the previous point. This is just another algorithm for
linear interpolation. Finally, there is the case of no interpolation when the sample
rates match. To handle interpolation in the inner loop, a compiler generates code
for all three versions and the appropriate one is selected at run time.

In the second method, interpolation is performed by a separate operator (unit
generator). For example, the function prod performs various tests on its
arguments, interpolating them if necessary before calling snd-prod, the low-
level signal processing function.

In the third method, rate conversion is implicit in the operator. For example,
the frequency modulation of an oscillator is integrated to produce phase. Since
integration smooths the frequency modulation signal, no further interpolation is
performed. With variable filters, the computation of coefficients is expensive and
is therefore performed at the sample rate of the filter parameter control signals
without any interpolation. Of course, explicit interpolation or higher-order
interpolation can always be applied explicitly if desired.

 In the current implementation, this third method is used when it is
appropriate. Otherwise, linear interpolation is performed in a separate operator
(method 2). Method 1 is not used because it results in a larger program and the
performance increase is limited.

Multi-channel Signals
Multi-channel signals are represented by Lisp arrays where each element of

the array is a single channel sound. Nyquist operators are generalized in the
expected way. For example, when a stereo signal is multiplied by an envelope,
the left and right channels are each multiplied by the envelope signal, yielding a
stereo signal. If the envelope is also stereo, then the corresponding channels are
multiplied.

Lisp versus C
Nyquist is implemented in both Lisp and C. The XLisp interpreter (Betz 1988)

was chosen as a base language for several reasons. First, XLisp itself is written in
C, making it possible to port Nyquist to any machine with a C compiler. Second, I
had both the prior experience and the tools to extend XLisp with new functions and data types.
Most Lisp implementations have some way to handle external or “foreign”
functions, but with XLisp, I was also able to add a new SOUND data type and
extend the garbage collector appropriately. Finally, XLisp is compact. The entire
Nyquist system is smaller than most Common Lisp systems.

A potential drawback of XLisp is that it is an interpreter. This makes it many
times slower than C or compiled Lisp. For this reason, all signal processing and
generation routines are written in C. Typically, all but a few percent of the

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

11

computation time takes place in inner loops, so the overhead of the interpreter,
garbage collection, and sound data structures is negligible.

Compiling Inner Loops
Most synthesis systems have relatively simple data structures with fixed

block sizes, fixed sample rates, and other simplifications. Unit generators
typically require only 10 to 100 lines of code apiece. In contrast, Nyquist uses
very elaborate structures, and the resulting “unit generators” such as oscillators,
filters, and multiplication, are complex. The sources of code complexity include
these factors:

1. Suspensions must allocate sound sample blocks and linked list nodes to
build sound structures,

2. Reference counts must be maintained,
3. Input and output sample blocks are not necessarily time-aligned,
4. Input and output sample blocks may have differing sample rates,
5. Operands may start at different times,
6. The suspension must watch for termination times and logical stop times,

and
7. Sound headers may include an extra scale factor.

Taking all of these factors into consideration while writing a signal processing
function would require extraordinary effort, and in fact none of these functions
have been written entirely by hand. Instead, a compiler (written in XLisp)
generates C code that is then compiled and linked into Nyquist to create a new
operator. Thus, C is truly a “portable assembly code.”

The compiler is based on the premise that almost all signal processing code in
Nyquist is formulaic. The same sorts of tests and control structures occur
repeatedly, but there are enough differences that implementation with macros or
code templates is not practical. The advantage of the compiler is that whenever a
bug is found, the compiler can be modified to systematically eliminate the bug
from all operators. The compiler has made Nyquist much more reliable than
Fugue (the previous implementation): even though Fugue operations were fewer
and simpler, they were implemented by hand.

To give some idea of the function of the compiler, Figure 6 shows the
specification of the function prod that takes the product of two signals. The
specification is an unordered list of attributes and their values. The overall
concept is that there is an inner loop that runs once per output sample. The inner
loop makes one reference to each input signal. The job of the compiler is to
construct all the code surrounding the inner loop so that the inner loop accesses
or stores the proper values at the proper times.

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

12

(PROD-ALG
 (NAME "prod")
 (ARGUMENTS ("sound_type" "s1") ("sound_type" "s2"))
 (START (MAX s1 s2))
 (COMMUTATIVE (s1 s2))
 (INNER-LOOP "output = s1 * s2")
 (LINEAR s1 s2)
 (TERMINATE (MIN s1 s2))
 (LOGICAL-STOP (MIN s1 s2))
)

Figure 6. The declarative specification of the operator prod.

The NAME attribute specifies the name of the function, and ARGUMENTS lists
the argument types and names. START specifies that the start time of the
resulting signal is the maximum of the starting times of the two arguments, s1
and s2. The COMMUTATIVE attribute indicates that s1 and s2 can be swapped,
which is sometimes useful to eliminate code duplication. The INNER-LOOP
attribute is C code, except that output is a pseudo-variable that will be replaced
with an appropriate sample address calculation. Also, note that sounds s1 and
s2 are simply referenced by name. The compiler will replace these references by
expressions that reference the current values of s1 and s2. The LINEAR attribute
means that the function is linear with respect to scale factors on s1 and s2.
Rather that multiply each sample of s1 by a scale factor (provided in the header
of s1), the compiler will propagate the factor to the header of the result. (This is
sometimes, but not always an optimization.) TERMINATE says that the
computation goes to zero when either s1 or s2 goes to zero, and LOGICAL-
STOP says the logical stop time of the result is the minimum of that of s1 and s2.

The resulting inner loop, including machine-generated comments, is shown
in Figure 7. The complete implementation, which includes additional functions
to handle initialization, unaligned sounds, garbage collection, debugging, and
structure declaration is 237 lines. The inner loop compiles to extremely fast code
on the IBM RS/6000 computer running IBM’s AIX Operating System. Note the
somewhat odd combination of if and while. This was determined to generate
faster code than a for loop, and it was relatively easy to modify the compiler to
create the if/while combination. Other optimizations have been systematically
applied in this fashion.

if (n) do { /* the inner sample computation loop */
 *out_ptr_reg++ = *s1_ptr_reg++ * *s2_ptr_reg++;
} while (--n); /* inner loop */
Figure 7. The inner loop generated from the specification in
Figure 6.

Many more attributes exist, and the reader is referred to the implementation
and the manual for more detail and further examples. This approach to

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

13

specification is an excellent way to develop synthesis systems. It leads to reliable
code and supports systematic design changes, optimizations, and ports.

Performance Evaluation
To evaluate Nyquist performance, I compared Nyquist performance to that of

Csound, a popular software synthesis program. I used a 30MHz IBM RS/6000
Model 530 running AIX; all code was written in C and compiled with
optimization. The benchmark is the generation of a sequence of 40 tones, each of
which has 12 partials of constant frequency and piece-wise linear amplitude
envelopes. The tones are sampled at 44100Hz and the total sound duration is 14.4
seconds. The sound samples are discarded as they are computed to avoid I/O,
and I measure total real computation time.

Nyquist is surprisingly efficient. With a block size of 1024, Nyquist spends
about 92% of its time in inner loops. Nyquist has nearly the performance of
Csound as long as block sizes are large.

However, large block sizes in Csound produce audible distortion when
control rate signals are used. Even when audio rate signals are used throughout,
notes must always start on block boundaries. Thus, with a block size of 100,
Csound at 44.1KHz quantizes times to about 2ms. Nyquist, on the other hand,
uses length counts to allow partially filled blocks. Nyquist times are quantized to
the audio sample rate, i.e. about 23µs, corresponding to a Csound block size of 1.
If quantization is to be avoided, Nyquist is about 6 times faster than Csound.
Figure 8 shows the performance of Csound on this one benchmark as a function of
block size.

Instead of looking at extremes, let us consider typical parameters. A typical
use of Csound might be to run with a control rate that is one tenth (0.1) of the
audio rate in order to limit distortion. Nyquist can perform the same benchmark
computation entirely at the audio rate and still be 20% faster. One might argue
that the benchmark penalizes Csound by having only a few simple control-rate
envelopes: with enough control rate signals, Csound would probably win out,
but if Nyquist is also allowed to compute at control rates (a feature of Nyquist),
Nyquist's advantage will actually widen because even Nyquist's control-rate
signals are processed in blocks. A forthcoming article studies these sorts of trade-
offs in detail (Dannenberg and Thompson, 1997).
Comparison with DSP’s

Comparison with DSP's is difficult due to the difference in program structure
and functionality, but after adjusting for clock rate differences, the hand-
microcoded Kyma system (Scaletti 1989, Scaletti and Hebel 1991) and NeXT
sound kit (Jaffe and Boynton 1989) run our particular benchmark on a single
Motorola DSP56001 at most 3 times faster than Nyquist running on an RS/6000.
Since these measurements were made, the RS/6000 has been superceded by the
PowerPC, available at 5 times the clock rate and one fifth the cost. Meanwhile,
the M56001 has seen only moderate increases in clock rate; now, only
multiprocessor configurations are faster than Nyquist. Other DSPs offer faster

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

14

clock rates and floating point, but because DSP code is not very portable, the
advantage of these newer DSPs is currently hypothetical.

Time Resolution (samples)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

1

10

100

1 10 100 1000 10000

Nyquist,
Audio Rate

Csound,
Audio Rate

Csound,
Control Rate

Figure 8. Benchmark execution times of Csound and Nyquist as
a function of timing accuracy (in samples). Timing accuracy is
equal to the block size in Csound, so performance improvement
comes at the cost of timing accuracy. Nyquist always exhibits 1-
sample timing accuracy, so performance is shown as a
horizontal line.

CMJ Benchmarks
To evaluate Nyquist performance in a broader context, I ran Pope’s (1993)

benchmarks on a NeXT 68040 Cube. Since Csound was generally the fastest of
the three systems originally benchmarked, I chose to normalize Nyquist
performance to that of Csound. For each benchmark, Csound performance is
represented by 1.0, and Nyquist performance is determined by dividing Csound
run time by that of Nyquist. For example, in Benchmark 1, the Nyquist
performance of 1.26 indicates that Nyquist was 1.26 times as fast as Csound.
Figure 9 shows that overall, Nyquist performance is quite good. In Benchmark 7,
the Csound envelope functions are non-interpolated functions sampled at 441
Hz, whereas Nyquist envelope functions are linearly interpolated up to 44.1 kHz.
(Benchmark 8 is omitted because Nyquist does not have a non-interpolating FM
oscillator.)

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

15

Benchmark Number

N
or

m
al

iz
ed

Pe

rf
or

m
an

ce

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7

Figure 9. Nyquist performance (black) relative to that of Csound
(gray). Higher bars mean faster execution. Y-axis units are
normalized to the performance of Csound on each benchmark.

Discussion
What started out as a fairly simple idea (linked sound blocks with sharing

and lazy evaluation) has become quite complex. The complexity is a direct result
of supporting a set of powerful language features. For example, the linked list of
blocks occurs because Nyquist sound values must be easy to copy and share.

The order of invoking suspensions is dynamically determined because sound
graphs in Nyquist are dynamic. However, it should be possible for a compiler to
find static schedules for subgraphs; e.g., the patch for a single note. Static graphs
allow other optimizations that might not be possible with Nyquist.

An interesting feature of Nyquist is the seq operator, which instantiates a
new signal computation when another reaches its logical stop time. This can take
place on any sample boundary, and the location can be computed at the signal
processing level. This is in contrast to most systems, where the stop time (logical
or otherwise) is considered control information to be passed “down” to the
signal processing objects rather than passed “up” from signals to the control
level.

Nyquist, with its support for multiple sample rates and dynamic computation
ordering, has a very distributed style of control. Compare this to Music N, where
there is a global sample rate and global block size, and all unit generators are
kept in lock step. For large blocks, Nyquist overhead is small, but there could be
a problem in real-time systems with smaller block sizes. We need experience
with a multi-sample-rate language with sample-accurate controls (like Nyquist)
to judge which of these features justify the overhead and complexity.

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

16

In the future, I plan to modify Nyquist to provide better support for spectral
analysis and synthesis and MIDI. The problem with spectral analysis is that it
typically results in many channels at low sample rates. This would logically be
implemented in Nyquist as a multi-channel sound, but each channel would have
at least one block of samples. Since Nyquist operators try to use large blocks,
these multi-channel sounds would take up a large amount of storage. Wasinee
Rungsarityotin and I have started developing an alternate approach using
sequences of Lisp arrays to represent analysis frames.

A MIDI sequence data type has been added to XLisp, and a new control
construct based on seq has been added so that sequences can be synthesized
using information from standard MIDI files. We are implementing operations
that extract MIDI continuous controls from MIDI files and convert them to
Nyquist signals for use as envelopes and gestural control.

Acknowledgements
Cliff Mercer worked on the design and implementation of the addition

operator for Nyquist and Joe Newcomer assisted with the design and
implementation of the Nyquist inner loop code generator. The author would like
to thank the IBM Corporation for supporting some of the development of
Nyquist through the Information Technology Center at Carnegie Mellon.

References
Betz, D. 1988. XLISP: An Object-oriented Lisp, Version 2.0. (program

documentation).
Dannenberg, R. B. 1989. “The Canon Score Language.” Computer Music Journal

13(1): 47-56.
Dannenberg, R. B. 1997a. “Machine Tongues XIX: Nyquist, a Language for

Composition and Sound Synthesis,” Computer Music Journal, 21(3):50-60.
Dannenberg, R. B. 1997b. “Abstract Time Warping of Compound Events and

Signals,” Computer Music Journal, 21(3):61-70.
Dannenberg, R. B., C. L. Fraley, and P. Velikonja. 1991. “Fugue: A Functional

Language for Sound Synthesis.” Computer 24(7): 36-42.
Dannenberg, R. B., P. McAvinney, and D. Rubine. 1986. “Arctic: A Functional

Language for Real-Time Systems.” Computer Music Journal 10(4): 67-78.
Dannenberg, R. B., and C. W. Mercer. 1992. “Real-Time Software Synthesis on

Superscalar Architectures.” In Proceedings of the 1992 International Computer
Music Conference. International Computer Music Association. pp. 174-177.

Dannenberg, R. B., and N. Thompson. 1997. “Real-Time Software Synthesis on
Superscalar Architectures,” Computer Music Journal, 21(3):83-94

Jaffe, D., and L. Boynton. 1989. “An Overview of the Sound and Music Kit for the
NeXT Computer.” Computer Music Journal 13(2): 48-55.

Lansky, Paul. 1987. CMIX. Princeton, New Jersey: Princeton University.
Lansky, Paul. 1990. “The Architecture and Musical Logic of Cmix.” In S. Arnold

and G. Hair (editors): ICMC Glasgow 1990 Proceedings. San Francisco:
International Computer Music Association. pp. 91-94.

Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language

17

Mathews, M. V. 1969. The Technology of Computer Music.. Cambridge,
Massachusetts: MIT Press.

Pope, S. T. 1993. “Machine Tongues XV: Three Packages for Software Sound
Synthesis.” Computer Music Journal 17(2) (summer): 23-54.

Pratt, T. 1975. Programming Languages: design and implementation. Englewood
Cliffs: Prentice Hall.

Puckette, M. 1991 “Combining Event and Signal Processing in the MAX
Graphical Programming Environment.” Computer Music Journal 15(3): 68-77.

Roads, C. 1991. “Asynchronous Granular Synthesis,” in De Poli, Piccialli, and
Roads, eds.,Representations of Musical Signals. Massachusetts: MIT Press, pp.
143-186.

Scaletti, C. 1989. “The Kyma/Platypus Computer Music Workstation.” Computer
Music Journal 13(2):23-38.

Scaletti, C. and Hebel, K. 1991. An Object-based Representation for Digital Audio
Signals. In G. DePoli, A. Picialli, and C. Roads (Eds.): Representations of
Musical Signals, Cambridge MA: M.I.T. Press, pp. 371-389.

Schorr, H. and W. Waite. 1967. “An Efficient and Machine Independent
Procedure for Garbage Collection in Various List Structures.” Communications
of the ACM 10(8):501-506.

Vercoe, B. 1986. Csound: A Manual for the Audio Processing System and
Supporting Programs. MIT Media Lab. Cambridge, Massachusetts: MIT.

