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Nyquist is an advanced functional language for sound synthesis and 

composition. One of the goals of Nyquist is to achieve efficiency comparable to 
more conventional Music N synthesis languages such as Csound (Vercoe 1986). 
Efficiency can be measured in space and time, and both are important: digital 
audio takes enormous amounts of memory, and sound synthesis programs are 
computationally intensive. The efficiency requirement interacts with various 
language features, leading to a rather elaborate representation for signals. I will 
show how this representation supports Nyquist semantics in a space and time-
efficient manner. Among the features of the representation are incremental 
computation, dynamic storage allocation and reclamation, dynamic instantiation 
of new signals, representation of infinite sounds, and support for multi-channel, 
multi-sample-rate signals. 

Introduction 
Nyquist is based on an evolving series of languages and implementations that 

include Arctic (Dannenberg, McAvinney, and Rubine 1986), Canon (Dannenberg 
1989), and Fugue (Dannenberg, Fraley, and Velikonja 1991). These languages are 
all based on powerful functional programming mechanisms for describing 
temporal behavior. From these general mechanisms, composers can create a 
variety of temporal structures, such as notes, chords, phrases, and trills, as well 
as a variety of synthesis elements, such as granular synthesis, envelopes, and 
vibrato functions. Unfortunately, previous implementations have had too many 
limitations for practical use. For example, Canon did not handle sampled audio, 
and Fugue used vast amounts of memory and was hard to extend. 

Nyquist solves these practical problems using new implementation 
techniques. Declarative programs are automatically transformed into an efficient 
incremental form taking approximately the same space (within a constant factor) 
as Music V (Mathews 1969) or Csound (Vercoe 1986). This transformation takes 
place dynamically, so Nyquist has no need to preprocess an orchestra or “patch.” 
This allows Lisp-based Nyquist programs to construct new synthesis patches on-
the-fly and allows users to execute synthesis commands interactively. 

                                                
1 Published as: , Roger B. Dannenberg, “The Implementation of Nyquist, a Sound 

Synthesis Language,” Computer Music Journal, 21(3) (Fall 1997), pp. 71-82. 
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Furthermore, sounds and scores can be written and evaluated even if their 
durations are infinite. 

This paper will focus on the run-time representation of sound in Nyquist, so 
Nyquist will be described only as needed to motivate the representation issues. 
To get a more complete picture, see the companion articles (Dannenberg, 1997a, 
and Dannenberg, 1997b). A final article in this series (Dannenberg and 
Thompson, 1997) will discuss the problem of organizing and optimizing inner 
loops for software synthesis. That article will include more measurements of 
Nyquist and other systems. 

The implementation is presented as a set of solutions to various issues and 
problems, mostly arising from the need to support Nyquist semantics. The 
following section describes the representation of sounds and lazy evaluation, 
which work together to achieve space efficiency. Next, the optimized sound 
addition operation is described. Then, signal transformation and infinite sounds 
are discussed. The next section discusses how sounds can be ordered 
sequentially and how logical stop times are used. Following sections describe the 
implementation of multiple sample rates and multiple channel signals. Next 
software engineering issues are discussed, including the use of automatic code 
generation. Finally, performance is evaluated and the overall system is 
discussed. 

Incremental (Lazy) Evaluation 
Nyquist uses a declarative and functional style, in which expressions are 

evaluated to create and modify sounds. For example, to form the sum of two 
sinusoids, write: 

(sum (osc c4) (osc c5)), 
where each (osc pitch) expression evaluates to a signal, and sum sums the 
two signals. In Fugue, an earlier implementation, the addition of signals took 
place as follows: space was allocated for the entire result, then signals were 
added one-at-a-time. This was workable for small sounds, but practical music 
synthesis required too much space. The solution in Nyquist is to perform the 
synthesis and addition incrementally so that at any one time there are only a few 
blocks of samples in memory (Dannenberg and Mercer, 1992). 

This is similar to the approach taken in Music N languages such as Csound, 
cmusic, and Cmix (Pope 1993), and, in fact, there is a close correspondence 
between unit generators of Music N and functions in Nyquist. The main 
difference is that in Music N, the order of execution is explicit, whereas in 
Nyquist, evaluation order is deduced from data dependencies. Also, Nyquist 
sounds are first-class values that may be assigned to variables or passed as 
parameters. 

Figure 1 illustrates an expression and the resulting computation structure 
consisting of a graph of synthesis objects. This graph is, in effect, a “suspended 
computation,” that is, a structure that represents a computation waiting to 
happen. This graph is an efficient way to represent the sound. When actual 
samples are needed, the sum suspension is asked to deliver a block of samples. 
This suspension recognizes that it needs samples from each osc suspension, so it 
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recursively asks each of them to produce a block of samples. These are added to 
produce a result block. The suspensions keep track of their state (e.g., current 
phase and frequency of oscillation) so that computation can be resumed when 
the next block is requested. 

(sum (osc) (osc))

sum

osc

osc
 

Figure 1. A Nyquist sound expression and resulting 
representation. 

With this evaluation strategy, each block of samples is typically used 
immediately after it is computed, and the space requirements are similar to those 
of Music N. Furthermore, whenever a block is needed, it is computed on 
demand, so the order of evaluation is determined automatically. There is no need 
to order unit generators by hand as in Music N. Since the order is determined at 
the time of evaluation, the computation graph may change dynamically. In 
particular, when a new “note” is played, the graph is expanded accordingly. This 
is in contrast to the static graphs used by Max on the ISPW (Puckette 1991), 
where all resources must be pre-allocated. 

Samples are computed in blocks so that the overhead of managing data 
structures and invoking sample computations is amortized over many samples. 
This same strategy is used in most sound synthesis implementations. Nyquist 
uses fixed-sized blocks to simplify storage management, but there is a length 
count to allow partially filled blocks. 
Shared Values 

As is often the case, things are not really so simple. In Nyquist, sounds are 
values that can be assigned to variables and reused any number of times. It 
would be conceivable (and semantically correct) to simply copy a sound 
structure whenever it is needed in the same way that most languages copy 
integer values when they are passed as parameters or read from variables. 
Unfortunately, sounds can be large structures that are expensive to copy. 
Furthermore, if a sound is copied, each copy will eventually be called upon to 
perform identical computations to deliver identical sample streams. Clearly, we 
need a way to share sounds that eliminates redundant computation. 

Nyquist allows great flexibility in dealing with sounds. For example, it is 
possible to compute the maximum value of a sound or to reverse the sound, both 
of which require a full representation of the sound. What happens if a maximum 
value suspension asks a sound to compute and return all of its blocks, and then a 
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signal addition suspension begins asking for blocks (starting with the first)? If the 
sound samples are to be shared, it is necessary to save sample blocks for as long 
as there are potential readers. Note that this problem does not occur in Music N 
because signals are special data types that can only be accessed “now” at a global 
current time. In Cmix (Lansky 1987, 1990), sounds can be accessed randomly 
only after writing them to sound files. 

The need for sharing leads to a new representation (see Figure 2) in which 
samples are stored in a linked list of sample blocks. Sound sample blocks are 
accessed sequentially by following list pointers. Each reader of a sound uses a 
sound header object to remember the current position in the list and other state 
information. In the figure, the sound is shared by two readers, each with a sound 
header. One reader is a block ahead of the other. Incremental evaluation is still 
used, placing the suspension at the end of the list. When a reader needs to read 
beyond the last block on the list, the suspension is asked to compute a new block 
which is inserted between the end of the list and the suspension. The list is 
organized so that all readers see and share the same samples, regardless of when 
the samples are produced or which reader reads first. 

Sound
Header

Sound
Header

Sample
Block

Suspension

Sound
Header

Sound
Header

... ...

Sound
List Node

 
Figure 2. Sound representation in Nyquist. 

Storage Reclamation 
Now a new problem arises. Since blocks are attached to a list as they are 

generated, what prevents lists from exhausting the available storage? The 
solution uses a combination of reference counting and garbage collection (Schorr 
and Waite, 1967) to move blocks from the head of the list to a free list from which 
they can be allocated for reuse. 

Reference counts (Pratt 1975) record the number of outstanding references 
(pointers) to list nodes and sample blocks. When the count goes to zero, the node 
or sample block is freed. Reference counting is used so that blocks are freed as 
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early as possible. In Figure 2, the dotted lines illustrate the previous head of the 
sound list, which was freed when no more sound headers referenced it. 

The Lisp interpreter upon which Nyquist is based (XLisp) does not reference 
count ordinary Lisp objects, which may in turn reference sounds. A problem that 
arises from this scheme is that a Lisp object can refer to a Nyquist sound, keeping 
its reference count at 1. When the Lisp object is freed, nothing happens because 
freed Lisp objects are not detected until the garbage collector runs2. This might 
delay the freeing of a sound reader, causing many sound blocks to be retained in 
memory unnecessarily. 

This is a real problem because whenever a sound is passed as a parameter, 
the parameter binding is a Lisp object with a reference to the sound. The sound 
blocks will not be freed until the next garbage collection. The solution is to 
invoke the garbage collector whenever the list of sample blocks becomes empty. 
If this fails to free up any sample blocks, 50 new blocks are allocated. Usually, if 
there are no free sample blocks, it is because there is a Lisp reference to a sound 
which is growing and allocating blocks from the free list. Running the garbage 
collector when the free list is empty frees all of those blocks. 

In retrospect, it might have been wise to avoid reference counting altogether 
and simply use the garbage collector. This would have required more 
modifications to the collector to handle all the sound representation structures. 
Also, garbage collection would run very frequently if reference counts were not 
used to free sound sample blocks. 

In summary, the linked list representation of sounds allows sounds to be 
incrementally evaluated, linking sound blocks onto the tail of the list. As reader 
objects traverse the list, blocks are freed from the head of the list. In normal use, 
only one block is ever allocated to store samples (as in Music N), but if a sound is 
assigned to a Lisp variable or data structure, the sound is retained for as long as 
the reference remains. By manipulating blocks rather than single samples, the 
space and time overhead of the linked lists is amortized over many samples, 
making the relative overhead quite small. 
Efficient Transformations 

Nyquist allows various transformations on sounds, such as shifting or 
stretching them in time or scaling their amplitudes. These need to be efficient 
since they are common operations and there is no static structure or code to be 
compiled and optimized. The sound headers mentioned earlier contain 
transformation information, whereas sample block lists simply contain samples. 

                                                
2 The garbage collector in XLisp is a mark-sweep collector (Schorr and Waite 1967): pointers 

are followed from the stack and from global variables, and every reachable Lisp object is marked. 
At this point, any object that is unmarked is unreachable and therefore useless to the 
computation. The entire Lisp memory is scanned. Any unmarked object is linked onto a free list, 
and any marked object is unmarked in preparation for the next garbage collection. 
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To scale a sound, the header is copied and the copy's scale-factor field is 
modified3. 

A drawback of storing transformations in the header is that all operators 
must apply the transformations to the raw samples. Time-shifted signals are 
handled simply by reading them at the appropriate time. If a sound is delayed, 
the list of sample blocks to be read automatically implements a delay buffer. In 
the case of scale factors, there are several approaches: 

1. Within a suspension, multiply each input sample by the scale factor, 
costing one multiply per reader. 

2. Use special-case code if the scale factor is 1.0 so that a penalty is paid only 
for non-unity scale factors. 

3. Implement non-unity scaling using a separate operator, costing one 
multiply per sample plus the overhead of another operator. 

4. The scale factor can be commuted to the result, e.g., the multiply operator 
returns a sound whose scale factor is the product of the scale factors of the 
operand sounds. This costs nothing locally, but “passes the buck” to other 
operators. 

5. The scale factor can be factored into other operations, for example, pre-
scaling filter coefficients, to avoid any per-sample cost. 

The Nyquist implementation uses one of methods 5, 4, and 3, in that order of 
preference, and methods 2 and 1 can be selectively applied to any operator (unit 
generator) when Nyquist is compiled. 

Addition 
Nyquist can add sounds with different start times, so signal addition must be 

efficient in the frequent case where one signal is zero. Figure 3 illustrates a case 
where two sounds at widely spaced times must be added. One solution that was 
rejected is to “coerce” the signal that starts late to supply leading zeros to align 
the sounds. Because this generates extra work adding blocks of zeros, it was 
decided instead to handle the misalignment of starting times as a special case. 

When one addend is zero, it is sufficient to simply copy the other addend 
from input to output. Unfortunately, even copying takes time. A better solution 
is to copy pointers to sample blocks rather than copy the blocks themselves. To 
enable this optimization, a sample block list is made up of list nodes that point to 
sample blocks, as shown in Figure 2. Sample blocks can be shared by lists, and 
both list nodes and sample blocks have reference counts. 

Addition is optimized to handle the case of Figure 3 with maximum 
efficiency. The addition suspension is implemented as a finite-state machine, 
where the state indicates which operands are non-zero, and transitions occur at 
the start and stop times of the operands. When one operand is zero, the sound 
block from the other operand can simply be linked into the sound list 
representing the sum. No samples are added or even copied! 
                                                

3The copy is necessary because the sound might be shared. Remember that sounds are 
immutable values, so all operators and transformations generate new sounds (with shared 
samples) rather than modify old ones. 
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(sum (at 5  (osc c4))
     (at 10 (osc d4)))

time
 

Figure 3. Sounds may have leading zeros, trailing zeros, and 
internal gaps. 

Testing for zero is as expensive as adding, so a unique “block of zeros” is 
used to indicate large gaps of zero. A simple pointer comparison can determine if 
the block in question is zero or not. (Of course, if a block of computed samples 
turns out to be all zeros, they will escape detection and no optimization will be 
applied.) 

Some of these optimizations require block alignment. List nodes have a 
length field, allowing suspensions to generate partially filled blocks. Since blocks 
can vary in size and sample rate, suspensions are written to compute samples up 
to the next operand block boundary, fetch a new block, and resume until an 
output block is filled. 

Signal Termination 
Although lazy evaluation allows Nyquist sounds to be infinite, efficiency 

concerns dictate that sound computation should terminate as soon as possible. 
Most signal generators in Nyquist produce a signal only over some time interval, 
and Nyquist semantics say that the sound is zero outside of this interval. The 
point at which a signal goes to zero is represented by a list node that points to 
itself (see Figure 4), creating a virtually infinite list of zero sound blocks. When a 
suspension detects that all its future output will be zero, it links the tail of its 
sound list to the special terminal list node. The suspension then deletes itself. 
Other suspensions can check for the terminal list node to discover when their 
operands have gone to zero. 

The possibility of infinite signals enables some very interesting sound 
expressions. Consider the following recursive drum roll: 

(defun drum-roll () 
   (seq (stroke) (drum-roll))) 

which says roughly: “a drum roll is defined to be a sequence consisting of a 
stroke followed by a drum roll.” Playing such a behavior will result in an infinite 
number of samples, but a finite space in primary memory. Now consider the 
following expression: 
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Figure 4. Representation for sound termination. Two sounds are 
shown, each with one more block to read before termination. 

(defun short-roll () 
   (mult (drum-roll) (drum-envelope))) 

This just multiplies a drum roll by a finite-length envelope. When the envelope 
goes to zero, the multiplication suspension will notice that one operand (the 
envelope) is zero. Therefore, the product is zero, and the suspension can link its 
output to the terminal (zero) list node. The suspension frees itself and reference 
counting and garbage collection dispose of the remaining drum roll. 

This kind of recursive infinite structure might also be used in granular 
synthesis (Roads 1991). A granular synthesis instrument can generate potentially 
infinite sounds that need only to be multiplied by an envelope to obtain the 
desired amplitude and duration. 

Logical Stop Time and Sequences 
Another feature of Nyquist is that sounds have intrinsic ending times called 

the logical stop time (LST). A seq operator allows sounds to be added together, 
aligning the start time of one sound with the LST of the previous sound. The LST 
may be earlier or later than the termination time. For example, the LST may 
correspond to a note release time, after which the note may decay until the 
termination time. 

In the example, (seq (note1) (note2)), the start time of the (note2) 
expression depends upon the LST of (note1). We reserve a flag in each list 
node to mark the logical stop location. When the flag is set, it indicates the LST is 
the time of the first sample of the block pointed to by the list node. Since block 
lengths are variable, a block can be split at any point to position the LST at any 
sample. The LST flag serves to communicate the default LST from the creator of 
the sound to the readers of the sound, but it is also possible to explicitly set the 
LST using the set-logical-stop transformation. This transformation sets an 
LST field in the sound reader object, and the field takes precedence over a list 
node’s LST flag. 
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Evaluation of each item in a sequence (seq) must be deferred until the LST of 
the previous item. This is accomplished by capturing the Lisp environment 
(including local variable bindings and the Nyquist transformation environment) 
in a closure and saving the closure in a special seq suspension. The closure is 
evaluated when the LST is reached. At this point, the seq suspension is 
converted to an addition suspension, and the signals are added. Addition retains 
any overlapping tail from the first sound. 

Since seq suspensions are converted to additions, there is the danger that a 
long sequence will degenerate to a deeply nested structure of additions. The 
addition suspension is optimized to link its output list to its operand list when 
only one operand remains. (See Figure 5.) In effect, this simplifies computations 
of the form “0 + x” to “x” by eliminating one addition. This is only possible, 
however, when the operand's scale factor is one, and the sample rate matches 
that of the sum. 

BEFORE
Sound
Header

Sample
Block

Add
Suspension

zero

Sound
Header

Sample
Block

Add
Suspension

... ...

Sound
Header

Sample
Block

Sample
Block

Add
Suspension

... ...

AFTER

 
Figure 5. Optimization of add when one operand terminates 
and one remains. 

Multiple Sample Rates 
Sample rate is specified in the header of each sound, and Nyquist allows 

arbitrarily mixed sample rates. It is the responsibility of the operations to apply 
rate conversion when it is required. Rate conversion is handled in one of three 
ways. 

In the first method, the operator  implements linear interpolation in its inner 
loop. Automatic code generation (described below) is used to create three 
versions of interpolation: two-point interpolation finds the two nearest samples to 
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the desired time and performs a standard linear interpolation. This is expensive, 
but is the best approach when the interpolated sample rate is near the original 
rate. Ramp interpolation is used when up-sampling by a large factor and there 
are many interpolated samples between each pair of original samples. Between 
original samples, an increment is computed. Each interpolated point is computed 
by adding the increment to the previous point. This is just another algorithm for 
linear interpolation. Finally, there is the case of no interpolation when the sample 
rates match. To handle interpolation in the inner loop, a compiler generates code 
for all three versions and the appropriate one is selected at run time. 

In the second method, interpolation is performed by a separate operator (unit 
generator). For example, the function prod performs various tests on its 
arguments, interpolating them if necessary before calling snd-prod, the low-
level signal processing function. 

In the third method, rate conversion is implicit in the operator. For example, 
the frequency modulation of an oscillator is integrated to produce phase. Since 
integration smooths the frequency modulation signal, no further interpolation is 
performed. With variable filters, the computation of coefficients is expensive and 
is therefore performed at the sample rate of the filter parameter control signals 
without any interpolation. Of course, explicit interpolation or higher-order 
interpolation can always be applied explicitly if desired. 

 In the current implementation, this third method is used when it is 
appropriate. Otherwise, linear interpolation is performed in a separate operator 
(method 2). Method 1 is not used because it results in a larger program and the 
performance increase is limited. 

Multi-channel Signals 
Multi-channel signals are represented by Lisp arrays where each element of 

the array is a single channel sound. Nyquist operators are generalized in the 
expected way. For example, when a stereo signal is multiplied by an envelope, 
the left and right channels are each multiplied by the envelope signal, yielding a 
stereo signal. If the envelope is also stereo, then the corresponding channels are 
multiplied. 

Lisp versus C 
Nyquist is implemented in both Lisp and C. The XLisp interpreter (Betz 1988) 

was chosen as a base language for several reasons. First, XLisp itself is written in 
C, making it possible to port Nyquist to any machine with a C compiler. Second, I 
had both the prior experience and the tools to extend XLisp with new functions and data types. 
Most Lisp implementations have some way to handle external or “foreign” 
functions, but with XLisp, I was also able to add a new SOUND data type and 
extend the garbage collector appropriately. Finally, XLisp is compact. The entire 
Nyquist system is smaller than most Common Lisp systems. 

A potential drawback of XLisp is that it is an interpreter. This makes it many 
times slower than C or compiled Lisp. For this reason, all signal processing and 
generation routines are written in C. Typically, all but a few percent of the 
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computation time takes place in inner loops, so the overhead of the interpreter, 
garbage collection, and sound data structures is negligible. 

Compiling Inner Loops 
Most synthesis systems have relatively simple data structures with fixed 

block sizes, fixed sample rates, and other simplifications. Unit generators 
typically require only 10 to 100 lines of code apiece. In contrast, Nyquist uses 
very elaborate structures, and the resulting “unit generators” such as oscillators, 
filters, and multiplication, are complex. The sources of code complexity include 
these factors: 

1. Suspensions must allocate sound sample blocks and linked list nodes to 
build sound structures, 

2. Reference counts must be maintained, 
3. Input and output sample blocks are not necessarily time-aligned, 
4. Input and output sample blocks may have differing sample rates, 
5. Operands may start at different times, 
6. The suspension must watch for termination times and logical stop times, 

and 
7. Sound headers may include an extra scale factor. 

Taking all of these factors into consideration while writing a signal processing 
function would require extraordinary effort, and in fact none of these functions 
have been written entirely by hand. Instead, a compiler (written in XLisp) 
generates C code that is then compiled and linked into Nyquist to create a new 
operator. Thus, C is truly a “portable assembly code.” 

The compiler is based on the premise that almost all signal processing code in 
Nyquist is formulaic. The same sorts of tests and control structures occur 
repeatedly, but there are enough differences that implementation with macros or 
code templates is not practical. The advantage of the compiler is that whenever a 
bug is found, the compiler can be modified to systematically eliminate the bug 
from all operators. The compiler has made Nyquist much more reliable than 
Fugue (the previous implementation): even though Fugue operations were fewer 
and simpler, they were implemented by hand. 

To give some idea of the function of the compiler, Figure 6 shows the 
specification of the function prod that takes the product of two signals. The 
specification is an unordered list of attributes and their values. The overall 
concept is that there is an inner loop that runs once per output sample. The inner 
loop makes one reference to each input signal. The job of the compiler is to 
construct all the code surrounding the inner loop so that the inner loop accesses 
or stores the proper values at the proper times. 
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(PROD-ALG
  (NAME "prod")
  (ARGUMENTS ("sound_type" "s1") ("sound_type" "s2"))
  (START (MAX s1 s2))
  (COMMUTATIVE (s1 s2))
  (INNER-LOOP "output = s1 * s2")
  (LINEAR s1 s2)
  (TERMINATE (MIN s1 s2))
  (LOGICAL-STOP (MIN s1 s2))
)  

Figure 6. The declarative specification of the operator prod. 

The NAME attribute specifies the name of the function, and ARGUMENTS lists 
the argument types and names. START specifies that the start time of the 
resulting signal is the maximum of the starting times of the two arguments, s1 
and s2. The COMMUTATIVE attribute indicates that s1 and s2 can be swapped, 
which is sometimes useful to eliminate code duplication. The INNER-LOOP 
attribute is C code, except that output is a pseudo-variable that will be replaced 
with an appropriate sample address calculation. Also, note that sounds s1 and 
s2 are simply referenced by name. The compiler will replace these references by 
expressions that reference the current values of s1 and s2. The LINEAR attribute 
means that the function is linear with respect to scale factors on s1 and s2. 
Rather that multiply each sample of s1 by a scale factor (provided in the header 
of s1), the compiler will propagate the factor to the header of the result. (This is 
sometimes, but not always an optimization.) TERMINATE says that the 
computation goes to zero when either s1 or s2 goes to zero, and LOGICAL-
STOP says the logical stop time of the result is the minimum of that of s1 and s2. 

The resulting inner loop, including machine-generated comments,  is shown 
in Figure 7. The complete implementation, which includes additional functions 
to handle initialization, unaligned sounds, garbage collection, debugging, and 
structure declaration is 237 lines. The inner loop compiles to extremely fast code 
on the IBM RS/6000 computer running IBM’s AIX Operating System. Note the 
somewhat odd combination of if and while. This was determined to generate 
faster code than a for loop, and it was relatively easy to modify the compiler to 
create the if/while combination. Other optimizations have been systematically 
applied in this fashion. 

if (n) do { /* the inner sample computation loop */
    *out_ptr_reg++ = *s1_ptr_reg++ * *s2_ptr_reg++;
} while (--n); /* inner loop */  
Figure 7. The inner loop generated from the specification in 
Figure 6. 

Many more attributes exist, and the reader is referred to the implementation 
and the manual for more detail and further examples. This approach to 
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specification is an excellent way to develop synthesis systems. It leads to reliable 
code and supports systematic design changes, optimizations, and ports. 

Performance Evaluation 
To evaluate Nyquist performance, I compared Nyquist performance to that of 

Csound, a popular software synthesis program. I used a 30MHz IBM RS/6000 
Model 530 running AIX; all code was written in C and compiled with 
optimization. The benchmark is the generation of a sequence of 40 tones, each of 
which has 12 partials of constant frequency and piece-wise linear amplitude 
envelopes. The tones are sampled at 44100Hz and the total sound duration is 14.4 
seconds. The sound samples are discarded as they are computed to avoid I/O, 
and I measure total real computation time. 

Nyquist is surprisingly efficient. With a block size of 1024, Nyquist spends 
about 92% of its time in inner loops. Nyquist has nearly the performance of 
Csound as long as block sizes are large. 

However, large block sizes in Csound produce audible distortion when 
control rate signals are used. Even when audio rate signals are used throughout, 
notes must always start on block boundaries. Thus, with a block size of 100, 
Csound at 44.1KHz quantizes times to about 2ms. Nyquist, on the other hand, 
uses length counts to allow partially filled blocks. Nyquist times are quantized to 
the audio sample rate, i.e. about 23µs, corresponding to a Csound block size of 1. 
If quantization is to be avoided, Nyquist is about 6 times faster than Csound. 
Figure 8 shows the performance of Csound on this one benchmark as a function of 
block size. 

Instead of looking at extremes, let us consider typical parameters. A typical 
use of Csound might be to run with a control rate that is one tenth (0.1) of the 
audio rate in order to limit distortion. Nyquist can perform the same benchmark 
computation entirely at the audio rate and still be 20% faster. One might argue 
that the benchmark penalizes Csound by having only a few simple control-rate 
envelopes: with enough control rate signals, Csound would probably win out, 
but if Nyquist is also allowed to compute at control rates (a feature of Nyquist), 
Nyquist's advantage will actually widen because even Nyquist's control-rate 
signals are processed in blocks. A forthcoming article studies these sorts of trade-
offs in detail (Dannenberg and Thompson, 1997). 
Comparison with DSP’s 

Comparison with DSP's is difficult due to the difference in program structure 
and functionality, but after adjusting for clock rate differences, the hand-
microcoded Kyma system (Scaletti 1989, Scaletti and Hebel 1991) and NeXT 
sound kit (Jaffe and Boynton 1989) run our particular benchmark on a single 
Motorola DSP56001 at most 3 times faster than Nyquist running on an RS/6000.  
Since these measurements were made, the RS/6000 has been superceded by the 
PowerPC, available at 5 times the clock rate and one fifth the cost. Meanwhile, 
the M56001 has seen only moderate increases in clock rate; now, only 
multiprocessor configurations are faster than Nyquist. Other DSPs offer faster 
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clock rates and floating point, but because DSP code is not very portable, the 
advantage of these newer DSPs is currently hypothetical. 
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Figure 8. Benchmark execution times of Csound and Nyquist as 
a function of timing accuracy (in samples). Timing accuracy is 
equal to the block size in Csound, so performance improvement 
comes at the cost of timing accuracy. Nyquist always exhibits 1-
sample timing accuracy, so performance is shown as a 
horizontal line. 

CMJ Benchmarks 
To evaluate Nyquist performance in a broader context, I ran Pope’s (1993) 

benchmarks on a NeXT 68040 Cube. Since Csound was generally the fastest of 
the three systems originally benchmarked, I chose to normalize Nyquist 
performance to that of Csound. For each benchmark, Csound performance is 
represented by 1.0, and Nyquist performance is determined by dividing Csound 
run time by that of Nyquist.  For example, in Benchmark 1, the Nyquist 
performance of 1.26 indicates that Nyquist was 1.26 times as fast as Csound. 
Figure 9 shows that overall, Nyquist performance is quite good. In Benchmark 7, 
the Csound envelope functions are non-interpolated functions sampled at 441 
Hz, whereas Nyquist envelope functions are linearly interpolated up to 44.1 kHz. 
(Benchmark 8 is omitted because Nyquist does not have a non-interpolating FM 
oscillator.) 



Dannenberg, The Implementation of Nyquist, A Sound Synthesis Language 

15 

Benchmark Number

N
or

m
al

iz
ed

 
Pe

rf
or

m
an

ce

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7

 
Figure 9. Nyquist performance (black) relative to that of Csound 
(gray). Higher bars mean faster execution.  Y-axis units are 
normalized to the performance of Csound on each benchmark. 

Discussion 
What started out as a fairly simple idea (linked sound blocks with sharing 

and lazy evaluation) has become quite complex. The complexity is a direct result 
of supporting a set of powerful language features. For example, the linked list of 
blocks occurs because Nyquist sound values must be easy to copy and share. 

The order of invoking suspensions is dynamically determined because sound 
graphs in Nyquist are dynamic. However, it should be possible for a compiler to 
find static schedules for subgraphs; e.g., the patch for a single note. Static graphs 
allow other optimizations that might not be possible with Nyquist. 

An interesting feature of Nyquist is the seq operator, which instantiates a 
new signal computation when another reaches its logical stop time. This can take 
place on any sample boundary, and the location can be computed at the signal 
processing level. This is in contrast to most systems, where the stop time (logical 
or otherwise) is considered control information to be passed “down” to the 
signal processing objects rather than passed “up” from signals to the control 
level. 

Nyquist, with its support for multiple sample rates and dynamic computation 
ordering, has a very distributed style of control. Compare this to Music N, where 
there is a global sample rate and global block size, and all unit generators are 
kept in lock step. For large blocks, Nyquist overhead is small, but there could be 
a problem in real-time systems with smaller block sizes. We need experience 
with a multi-sample-rate language with sample-accurate controls (like Nyquist) 
to judge which of these features justify the overhead and complexity. 
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In the future, I plan to modify Nyquist to provide better support for spectral 
analysis and synthesis and MIDI. The problem with spectral analysis is that it 
typically results in many channels at low sample rates. This would logically be 
implemented in Nyquist as a multi-channel sound, but each channel would have 
at least one block of samples. Since Nyquist operators try to use large blocks, 
these multi-channel sounds would take up a large amount of storage. Wasinee 
Rungsarityotin and I have started developing an alternate approach using 
sequences of Lisp arrays to represent analysis frames. 

A MIDI sequence data type has been added to XLisp, and a new control 
construct based on seq has been added so that sequences can be synthesized 
using information from standard MIDI files. We are implementing operations 
that extract MIDI continuous controls from MIDI files and convert them to 
Nyquist signals for use as envelopes and gestural control. 
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