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Nyquist is an interactive language for music composition and sound synthesis. 

Features of Nyquist include: (1) a full interactive environment based on Lisp, (2) no 
distinction between the “score” and the “orchestra,” (3) support for behavioral 
abstraction, (4) the ability to work both in terms of actual and perceptual start and 
stop times, and (5) a time- and memory-efficient implementation. 

Introduction 
Signal processing, including synthesis, is an important component of any digital 

audio system. Often, however, signal processing is offered with little or no 
additional support. the goal of Nyquist is to provide an open-ended programing 
langauge that supports high-level compositional tasks in addition to low-level signal 
processing. One of the key advantages of Nyquist is the integration of signal 
processing, control, and temporal structure within a general purpose programming 
language. 

The programming language Lisp provides an interactive interface, flexibility in 
manipulating sounds, and a base for performing other related symbolic processing. 
Sounds are first-class types in Nyquist, hence they can be assigned to variables, 
passed as parameters, and stored in data structures. Storage for sounds is 
dynamically allocated as needed and reclaimed by automatic garbage collection 
(Schorr and Waite 1967). This feature allows “instruments” to be implemented as 
ordinary Lisp functions and eliminates the orchestra/score dichotomy found in 
other systems. 

Nyquist semantics include behavioral abstraction as introduced by Arctic 
(Dannenberg 1984, Dannenberg, McAvinney, and Rubine 1986) and Canon 
(Dannenberg 1989). The motivation for behavioral abstraction is the idea that one 
should be able to describe behaviors that respond appropriately to their 
environment. For example, stretching a sound may mean one thing in the context of 
granular synthesis and another in the context of sampling. It almost never means to 
compute a short sound and then resample it to make it longer. Nyquist allows the 
programmer to describe abstract behaviors that “know” how to stretch, transpose, 
change loudness, and shift in time. Transformation operators are provided to 
operate on these abstractions. 
                                                

i Published as: Roger B. Dannenberg. 1997. “Machine Tongues XIX: Nyquist, a Language for 
Composition and Sound Synthesis,” Computer Music Journal, 21(3):50-60. 



 
 

Roger B. Dannenberg, Nyquist: A Language for Composition and Sound Synthesis 

2 
 
 

Composition requires that sounds be placed simultaneously, in sequence, and at 
arbitrary offsets. Because musical sounds often have attack and release portions, we 
make a distinction between the absolute first and last samples of a sound and the 
perceptual start and end to which other sounds should be aligned. 

Functions that combine sounds include: 
(at t s)   shifts sound s by t seconds in time. 
(seq s1 s2 s3 ...) arranges each sound sequentially in 
time. 
(sim s1 s2 s3 ...) arranges each sound simultaneously in 
time. 

By making sounds an integral part of the language and including time-based 
control constructs, a remarkably powerful notation is obtained. In this article, I hope 
to show that the Nyquist approach leads to a versatile, expressive language for 
sound analysis, manipulation, and composition. This overview describes the general 
approach, main features, and applications of the language. Following articles will 
cover specific aspects in greater detail, including time warps and continuous 
transformations (Dannenberg, to appear A), the implementation (Dannenberg, to 
appear B), and techniques for efficient signal processing (Dannenberg and 
Thompson, to appear). 

Related Work 
Many software synthesis and compositional systems have been created, each 

encountering and addressing a slightly different set of problems. To understand 
Nyquist, it is beneficial to first review some other systems. 

Music N, which refers to Music V (Mathews 1969) and it descendants (Music-11, 
Csound, cmusic, etc.) (Vercoe 1981, 1986, and Moore 1982) takes a programming 
language approach to sound generation  in that unit generators can be combined as 
functions applied to sample streams. The resulting instruments can be applied to 
parameter lists in the score. However, instruments cannot be applied to other 
instruments, nor can scores be constructed hierarchically. Furthermore, even though 
these languages are conceptually quite similar to the functional style of Nyquist, 
they adopt a Fortran or assembly language syntax and even require the composer to 
properly order unit generators and allocate buffers so that samples are generated 
into buffers before they are read by other unit generators. The division between 
sound manipulators (or generators) and parameter lists (note statements) results in a 
corresponding separation between the orchestra and the score. Other consequences 
include a non-interactive environment. An interesting aspect of Music V is the idea 
that an instance  of an instrument is created for each note specified in the score. 

Kyma (Scaletti and Johnson 1988, Scaletti 1989) and the Sun/Mercury 
Workstation (Rodet and Eckel 1988) take a different approach, treating sound 
manipulators and sound generators as objects that can be “patched” together. This 
results in an intuitive system for synthesis, but there are problems. A level of 
indirection is required to manipulate graphs of unit generators which in turn 
manipulate sounds rather than to manipulate sounds directly. Various extensions 
have become necessary in order to handle graphs that change over time, but this 
also adds complexity to programs. Symbol processing and working with data 
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structures are also difficult with these graph-oriented program representations. Both 
systems run all objects in synchrony, thereby assuming a global sample rate. 

SRL (Kopec 1985) is a signal processing language that represents signals as 
parameterized computations. SRL signals are immutable objects that can be reused. 
SRL supports lazy evaluation and function caching by retaining a symbolic 
representation of all signals. SRL lacks many musically useful concepts, such as 
behavioral abstraction and the starting time and duration of signals. Also the user 
must explicitly free buffers when they are no longer needed. 

Groove (Mathews and Moore 1970) was an early system for creating and 
manipulating control functions. Its idea that any time-varying input or output can 
be represented and manipulated as a function is also very important in Nyquist. 

Formes (Cointe and Rodet 1984, Rodet and Cointe 1984) takes an object-oriented 
approach to the computation of functions of time, but Formes was not designed to 
compute audio directly.  Formes was originally designed to compute control 
information for the Chant (Rodet, et al. 1984) synthesis system. 

Boynton’s Scheme-based music language (Boynton 1992) uses functional 
programming  to generate MIDI data. The semantics are virtually identical to 
Canon, except that transformations are discrete rather than continuous, and the 
system runs in real-time. The real-time implementation allows communication and 
synchronization between sequentially executing processes, a feature that is not 
found in Canon or Nyquist. 

CLM (Common Lisp Music) (Schottstaedt 1994), like Nyquist, is based on Lisp 
and inherits many ideas from Music V, but there are significant structural 
differences between CLM and Nyquist. CLM has separate notions of score and 
instrument. Instruments write their outputs to a file rather than returning them as 
values. To pass output to further processing such as reverberation, a separate pass 
over the output stream is made. (Nyquist’s approach is described in the next 
section.) CLM instruments are composed from unit generators, but within each 
instrument definition, the composer must first create and initialize unit generator 
objects, then reference them in a loop that generates samples. Although there may be 
good reasons to expose these implementation details, this is a lower-level approach 
than even Music V’s. 

Nyquist has a close affinity to some systems intended to support expressive 
control of tempo and other parameters (Anderson and Kuivila 1990, Desain and 
Honing 1992a, 1993). Since time warping and continuous transformations are the 
topic of a forthcoming article (Dannenberg, to appear A), we will defer this 
discussion. 

Finally, signals in Nyquist have an interesting similarity to sequences of values in 
Lucid (Ashcroft and Wadge 1977), another functional language with an 
implementation based on lazy evaluation. Lucid has no explicit temporal semantics, 
however. 

A Brief Tutorial 
Nyquist is based on functional programming. The composer combines 

expressions to denote sounds. Expressions are written using Lisp (Touretzky 1984) 
syntax, where parentheses denote applying a function to a set of parameters. For 
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example, the expression 
(osc c4) 

means “apply the function osc to the parameter c4.” Parameters are evaluated first. 
In this case, c4 is a global variable (intended to remain constant) containing the 
value 60.0. The value 60.0 is passed to the osc function, and the result is a sinusoid 
with a frequency corresponding to middle C with a duration of 1 second. In 
Nyquist, fractional pitch values are used to work with microtones and non-equal 
temperaments: 60.01 is one cent sharper than 60.0. 

Expressions can be combined. The following expression computes a 6Hz 
sinusoid: 

(lfo 6). 
This can be scaled to a different amplitude: 

(scale 20 (lfo 6)) 
and used to provide frequency modulation to an FM oscillator: 

(fmosc c4 (scale 20 (lfo 6))) 
To hear this sound, we use the play command: 

(play (fmosc c4 (scale 20 (lfo 6)))) 
The play command is a special function in the sense that it has the side-effect of 
storing the sound in a file and invoking a system command to play the sound file. 
Here, functions are nested 4 deep. The normal order of evaluation is from inner-
most expression to outer-most, although there are exceptions. 

At some point, nested expressions start to become unwieldy, and it is best to 
define new functions to factor the complexity into manageable units. Function 
definition in Nyquist is exactly as in Lisp. Since Nyquist expressions can return 
sounds, Lisp functions can play the role of instruments. Here is an example of a 
simple instrument based on an FM oscillator: 

(defun fminst (pitch depth) 
   (mult (env 0.01 0.2 0.1 1 0.3 0.2) 
         (fmosc pitch (scale depth (osc pitch))))) 

The defun (for “define function”) operation is followed by the name of the new 
function “fminst”, a parameter list “(pitch depth),” and the body of the 
function. The body uses mult to multiply two signals sample-by-sample: an 
envelope generated by env and a tone generated by fmosc. 

As always in Lisp, defun is a special function that does not evaluate its 
parameters (name, parameter list, and body). Also note that the parameter list is just 
a list, not an invocation of a function. 

Once “instruments” are defined, they can be used to create sounds. Instruments 
can be tested interactively by playing a single instance: 

(play (fminst g4 100)) 
If function definition is analogous to a Music N instrument definition, then function 
application is analogous to a Music N note statement. With Music N, instruments 
include in their definitions a computation that sums their samples to a sample 
stream that is typically written to a file. In Nyquist, however, samples are simply 
returned from the function as a value of type SOUND. 

To sum (mix) these sounds, Nyquist provides a number of control constructs. 
The simplest is sim, short for “simultaneous.” The following computation: 
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(sim (fminst g4 100) 
     (fminst b4 100)) 

sums two simultaneous notes. Notes can be shifted in time using at: 
(sim (at 0.0 (fminst g4 100)) 
     (at 0.5 (fminst b4 100))) 

This is beginning to look something like a Music N score: a list of notes, each with a 
starting time and a list of parameters. Each note generates a sound and the results 
are all summed. Note however, that while Music N requires a special syntax for the 
score, and Music N scores always write samples to a specific sample stream, Nyquist 
requires no special syntax, and the result of a Nyquist “score” is just a value of type 
SOUND. This value can be written to a file, passed through a filter, summed to other 
values, used as a wavetable, etc. 

A common problem with Music N is to add some effect such as reverberation to 
certain notes in a score. The typical solution is to modify instruments to sum their 
output to a special global variable, which then serves as input to a reverberator. A 
reverberator “instrument” must be invoked from the score as if it is a note. In 
contrast, the solution in Nyquist is to merely apply reverberation to the sound 
returned by a note or a score: 

(reverb (sim (fminst g4 100) 
             (fminst b4 100))) 

Furthermore, since “scores” are part of the unified language, one can write functions 
that perform scores: 

(defun phrase1 (depth) 
   (sim (at 0.0 (fminst g4 depth)) 
        (at 0.5 (fminst b4 depth)))) 

This definition gives a name, phrase1, to the two-note sequence. Notice the depth 
parameter is passed to each note instance. Now, phrase1 is a reusable shorthand 
that can be used to create a “score”: 

(sim (at 0.0 (phrase1 100) 
     (at 2.0 (phrase1 200)))) 

The process of constructing phrases and sections hierarchically, using parameters to 
obtain variations, and applying transformations for further control creates a 
powerful notation for composition. 

Temporal Control Constructs 
Lisp has no notion of time, but Nyquist extends Lisp with temporal control 

constructs. Two common ones are sim, which is described above, and seq, which 
combines sound behaviors sequentially. The precise semantics are discussed below. 
For now, we present a simple example of two phrases in sequence: 

(seq (phrase1 100) (phrase2 100)) 
There are also constructs that iterate behaviors either in parallel or in sequence. 

Figure 1 shows a simple instrument that sums sinusoidal partials. Although a small 
example, this illustrates several strengths of Nyquist. First, Nyquist is dynamic; the 
number of partials is a parameter to the instrument (see add-inst in Figure 1.) 
Second, Nyquist is a general-purpose language; when we need to compute the 
chromatic pitch step corresponding to the nth harmonic, we can simply define a new 
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function (nth-partial) to compute it. Third, Nyquist supports hierarchical definitions; 
to make this example simpler and modular, envelope generation is defined as 
separate function. All of this is accomplished in 8 lines of code (not counting 
comments). 

;Function to compute pitch for Nth harmonic
(defun nth-harmonic (n)
   (hz-to-step (* n (step-to-hz n))))

;Function to compute partial envelopes
; Higher harmonics get longer rise times
; (pwl is the "piece-wise linear" generator)
(defun nth-env (n)
   ; at n*5ms, rise to 1, then decay to 0 at time 1
   (pwl (* n 0.005) 1 1))

;Additive synthesis instrument, uses partial which
; takes a pitch and an envelope and returns a
; sinusoidal partial.
(defun add-inst (pitch npartials)
   ;iterates body npartials times and return sum:
   (simrep (i npartials)
      ;i ranges from 0 to npartials - 1, so add 1:
      (partial (nth-harmonic (+ i 1))
               (nth-env (+ i 1)))))

 
Figure 1. An additive synthesis instrument definition with a 
variable number of partials. 

Transformations 
Nyquist supports a variety of transformations that make it convenient to modify 

the time, duration, overlap, loudness, pitch, and other attributes of sounds in a 
composition. For example, to change the loudness of a passage, we can use the loud 
transform: 

(loud 10 (phrase1 50)) 
One might expect the loud function to denote a signal multiplication operation, but 
in fact the loudness parameter is interpreted by phrase1, as we shall see in the next 
section.  

Transformations may be nested. In the next example of two phrases, the second 
phrase is transposed by a total of 13 semitones, subjected to a loud transform of 10, 
and implicitly shifted in time to the end of the first instance of phrase1: 

(transpose 12 
   (loud 10 
      (seq (phrase1 50) 
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           (transpose 1 (phrase1 100))))) 
Transformations can specify functions of time as well as scalar values. These are 
especially useful for smoothly changing parameters such as loudness during a 
crescendo. The semantics of continuous transformations are borrowed from Canon 
(Dannenberg 1989). Continuous transformations are interesting in Nyquist because 
the full power of the language can be used to “synthesize” control functions, which 
are no different from audio and control signals. 

In addition to the features illustrated by these few examples, Nyquist includes a 
library of many signal-processing and generating functions, sound file support for 
many popular formats, and the ability to use MIDI files as a source of note and 
control information. Nyquist is compatible with score files from the CMU MIDI 
Toolkit (Dannenberg 1986, 1993). 

Behavioral Abstraction 
The Nyquist approach offers a declarative style that is comparable to note lists 

while offering the power of a full programming language. Note lists of classical 
score languages are attractive because they can be generated, stored, and 
manipulated as data.  For example, making all the notes in a section louder is easy to 
do if the notes are represented as data.  On the other hand, note lists suffer from the 
fact that they are not programs.  In particular, there comes a time when “loudness” 
(and every other note-list parameter) must be interpreted to produce or control 
sound.   The point at which interpretation starts defines the boundary between the 
“score” and the “orchestra.” 

An alternative is to eliminate note lists and write programs instead.  This 
approach is attractive because it eliminates the distinction between score and 
orchestra, and releases any constraints on what can be expressed in the score.  
Higher-level concepts such as “trill” or “glissando” can then be defined through 
programming. However, the ability to conveniently manipulate scores is often lost, 
because it is much easier to manipulate data than it is to manipulate programs. 

Nyquist addresses this problem with declarative-style programs that “feel” like 
note lists and by using the same language to define both scores and synthesis 
procedures. It is possible to alter Nyquist scores by applying various 
transformations along the dimensions of time, loudness, pitch, articulation, and even 
sample rate. 

A potential liability of these transformations is that they may transform the 
wrong thing.  For example, in stretching a section of music that contains a trill, we 
do not necessarily want the trill to slow down, and we almost certainly do not want 
the pitch to drop!  Nyquist provides defaults for transformations, but allows the 
programmer/composer to override the defaults with more appropriate behaviors.   

Thus, the programmer/composer defines behaviors that “do the right thing” in 
the context of a specified set of transformations. A class of behaviors that are 
realized according to a context is called behavioral abstraction.  A few examples 
should clarify how Nyquist works. Consider a sequence of three sounds: 

(seq (s-read "a.snd") (grains) (osc Bf3)), 
where s-read is a behavior that simply reads a sound from a file, grains is a 
composer-defined function that implements granular synthesis, and osc is a 
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behavior that plays a given pitch. If we wanted to hear the same sequence at a lower 
amplitude, we could write: 

(loud -6 (seq (s-read "a.snd") (grains) (osc Bf3))). 
The loudness transformation requests the sound to be 6dB softer, but what exactly 
does “softer” mean? In the case of the built-in functions s-read and osc, the 
resulting sounds are scaled by 6dB. However, the grains behavior is free to 
implement a more perceptual notion of “softer,” for example generating sounds 
with less high-frequency content. 

Now suppose we wish to change the pitch.  We could write 
(transpose 3 (seq (s-read "a.snd") (grains) (osc Bf3))) 

This would have the effect of transposing the sequence up by 3 semitones. However, 
the s-read abstraction overrides transposition and prevents alteration of samples, 
the grains behavior implements transposition in a manner specified by the 
composer (perhaps higher-pitched grains have a different timbre), and the osc 
behavior will be transposed in the expected manner. 

How is this accomplished? It was noted earlier that the loud transform is not 
simply a multiplication, and the reason should now be clear: if the meaning of a 
transformation is to be defined internal to the behavioral abstraction, then a simple 
external operation such as multiplication or resampling is not sufficient. Somehow, 
the desired transformation must be communicated to the point where samples are 
generated. 

One way to achieve this goal is to pass transformation information as explicit 
parameters of every operation. This is very unwieldy because there are many 
transformations. Users would never tolerate having to extend every parameter list 
with half a dozen transformation parameters. 

The solution is to make transformation parameters implicit. Every function, in 
addition to the explicitly declared parameters, accepts a set of implicit parameters 
called the environment, which includes all the transformation parameters. If the 
programmer does nothing to override the defaults, then the implicit environment 
parameters are passed unchanged to nested functions. Therefore, when we write 

(transpose 5 (seq (osc c4) (osc d4))) 
the transposition amount is passed implicitly to both of the nested osc functions. 

Since the environment parameters are implicit, there must be some way to access 
their values. The parameters are bound to symbols such as *loud*, *warp*, and 
*transpose*, and it is recommended to access the environment through calls to 
built-in functions such as get-loud, get-warp, get-transpose, etc.. In any case, 
these are read-only variables, and normal Lisp assignment using setf is prohibited. 
(Unfortunately, the Nyquist interpreter does not presently enforce this rule.) Even 
though assignment to the environment is prohibited, it is essential to have control 
over the values passed to nested functions, overriding the default values of these 
implicit parameters. This is the role of the transformation operations. When Nyquist 
evaluates 

(transpose 5 (osc c4)) 
the following steps happen: 

1. The value of the symbol *transpose* is incremented by 5. 
2. The expression (osc c4) is evaluated. The implementation of the function 
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osc uses *transpose* in its calculation of frequency, so the result is 
transposed 5 semitones from C4 to F4. 

3) The previous value of *transpose* is restored. 
4) The sound computed by (osc c4) is returned as a result. 
Note that transpose does not follow normal Lisp expression evaluation order, 

which would first evaluate 5 and (osc c4), then pass the values to transpose. All 
transformations, including transpose, are special functions (Lisp macros to be 
precise). They operate on unevaluated parameters, allowing the Nyquist 
implementation to modify the environment before evaluating a behavior. 

One more example will help emphasize this critical point. Consider the 
following: 

(seq (phrase1 100) (phrase2 100)) 
An intuitive but incorrect assumption would be that phrase1 and phrase2 are 

computed to yield sounds, and that seq then shifts phrase2 by the duration of 
phrase1 and adds the two sounds together. In fact, seq first evaluates phrase1, 
passing it the current environment. Next, the logical stop time of phrase1 is 
determined to be 1.5 (based on the definition given earlier.) The environment is 
modified so that the start time is 1.5, and phrase2 is evaluated. It is entirely up to 
phrase2 when it starts, although any “well-behaved” function will start at the 
indicated start time. All of the Nyquist built-in functions are “well-behaved” by 
default. 

Before leaving the topic of transformations, I should mention that Canon has 
been criticized for its use of global variables (Honing  1995). This is, however, just an 
instance of  shallow binding, a well-known implementation technique. All language 
implementations use global variables, so please do not infer properties of the 
semantics from isolated details of the implementation. The semantics are essentially 
those of dynamically scoped variables, further restricted by the rule that the 
variables are only modified through a set of transformation control constructs. 

Logical Stop Times 
A problem faced in many score languages is how specify the end of a sound such 

that sequences of sounds can be specified. An obvious definition would be the point 
where the sound reaches and remains at zero, or one could simply define sounds to 
have a length of so many samples. The problem is that phrases can end with rests, 
and sometimes the decay of one note should overlap the attack of the next. 
Sequences based on sample counts do not support the musical concept of duration. 
In Nyquist, all sounds have a “logical stop time,” which can be before or after the 
last sample of the sound.  

The seq operator computes samples until the logical stop is reached. It then 
instantiates the next behavior in the sequence and begins to add remaining samples 
from the first sound to samples of the new sound. On the other hand, if the logical 
stop time is after the samples, the seq operator will append zero samples until the 
logical stop time. In this way, overlapping and non-overlapping sequences can be 
easily specified. 
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Control and Audio Signals 
One of the goals of Nyquist is to provide a very powerful environment in which 

to control synthesis. In many respects, control is more complex and requires more 
language support than synthesis. After all, control is at the interface between 
symbolic score description and continuous signal processing. This is where the two 
abstractions interact.  

In Nyquist there is no difference between a control signal and an audio signal. 
The full power of the language, including behavioral abstraction, sequential and 
parallel composition, and a full range of signal generators and filters, can be applied 
to generate control functions. One use of control functions is to parameterize a signal 
manipulation process. Examples of this usage include amplitude envelopes, 
frequency envelopes, and filter coefficients. Another use of control functions is to 
parameterize a transform.  For example, the loud and transpose introduced in the 
previous section become time-varying transforms when provided with a control 
signal. A full description of the semantics and implementation of continuous 
controls is forthcoming (Dannenberg, to appear A). 

Music-11 (Vercoe 1981) and Csound (Vercoe 1986) demonstrate a gain in 
efficiency by computing control information at a lower sample rate than the audio 
sample rate. In Nyquist, signals can be computed at any sample rate, but there are 
default rates for both audio and control signals. When signals of different sample 
rates are combined, the signal with the low sample rate is automatically up-sampled 
to match the higher sample rate. In most cases, linear interpolation is used, avoiding 
“zipper noise” in envelopes. Band-limited sample-rate conversion can be added 
explicitly if desired. To simplify mixed sample rate computation, all specifications 
are in terms of seconds rather than sample counts. 

Multiple Channels 
Nyquist signals can have any number of channels. A multi-channel signal is 

denoted by an array of simple signals. Most functions in Nyquist will accept multi-
channel signals as operands. Simple operands are “widened” as necessary. For 
example, if we try to multiply a stereo signal <A, B> by a simple envelope signal C, 
the envelope is duplicated and a stereo signal <A ∞ C, B ∞ C> is returned. The 
following “pan” function takes a monophonic signal and a pan control, returning a 
stereophonic signal. The Lisp vector function assembles an array from two 
elements: 

(defun pan (signal control) 
  (vector (mult signal (sum 1 (scale -1 control))) 
          (mult signal control))) 

Signals as Values 
One of the nice features of Nyquist is that signals are immutable values that can 

be assigned to variables and passed as parameters. In most computer music 
languages, signals are transient because they are computed one block at a time, and 
the previous block is overwritten by the current one. In Nyquist, if a signal is 
assigned to a variable, the whole sound is available for reuse. This means that 
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waveform tables, envelopes, grains, and impulses can be saved and reused. With 
large primary memories, it is convenient to save computed sounds in memory rather 
than in disk files. For example, sounds stored in memory can be used for 
comparison or as readily available inputs when evaluating filter parameters. 

There is the danger of exceeding memory limits. One megabyte holds about 11 
seconds of Nyquist's 32-bit samples at 22KHz. One drawback of Nyquist is that it is 
up to the user to avoid storing huge sounds in memory. On the other hand, as long 
as the user avoids assignment, memory usage is very modest. Nyquist never 
computes an entire sound in memory unless the sound is explicitly assigned to a 
global variable. A future article (Dannenberg, to appear B) will discuss the memory 
management implementation.  

Discussion 
Nyquist is the result of an evolution that began with Arctic, where the basic 

semantics were developed, continued with Canon, where the Lisp syntax and 
continuous transforms were added, and includes Fugue (Dannenberg, Fraley, and 
Velikonja 1991, 1992), an earlier implementation. Nyquist is near the “end of the 
line” in this evolution, and I am making extra efforts to document (Dannenberg 
1995) and distribute the results. 

Within the current language framework, there is much room for additional work. 
Additional synthesis techniques, support for spectra and analysis data, and high 
quality resampling (Smith and Gossett 1984) are all in progress. Ports to other 
operating systems, especially to Microsoft Windows would help Nyquist reach a 
broader audience. 

In many ways, the evolution of Nyquist goes all the way back to the beginnings 
of Music N. There are a few core ideas in Music N that are at the foundation of 
Nyquist, and it is humbling to think how revolutionary these ideas were in the 50's. 
First, there is the idea of instantiation, that every note “card” in the score creates an 
instance, a copy, of a computation. In Nyquist, every function application creates an 
instance of a computation as in Music N. Nyquist diverges from visual systems like 
Kyma (Scaletti 1989) and Max (Puckette 1991), where icons denote specific resources 
(Dannenberg, Rubine, and Neuendorffer. 1991) rather than abstractions that can be 
instantiated. 

Second, Music N pioneered the idea of connecting signal-processing operators 
(unit generators) via streams of samples representing signals. This idea was picked 
up later in computer science (Dennis 1980, Dennis and Weng 1979). In Music N, one 
has to order unit generator expressions by hand to get the proper behavior, but the 
illustrations of Music N patches (Mathews 1969) make it clear that there was a 
foundation of functional, dataflow semantics underlying the procedural syntax. 
Nyquist improves on the procedural syntax with an expression syntax. Furthermore, 
Nyquist introduces standard functional programming facilities using its Lisp base 
language. Finally, Nyquist retains the idea that a symbol should represent a function 
of time, making it simple to interconnect and combine operators by writing 
expressions. 

Third, Music N introduced the idea of associating a time and duration with the 
evaluation of an expression. This idea was also used in the 4CED program (Abbott 



 
 

Roger B. Dannenberg, Nyquist: A Language for Composition and Sound Synthesis 

12 
 
 

1981), which strongly influenced Arctic. Time and duration (actually “stretch 
factor”) were the only “environment” variables in Arctic, and the idea of the implicit 
parameters came from observing how timing is so elegantly handled in Music N. 
This notion was later extended to allow transformations of a variety of parameters 
and to allow continuous transformations. 

Fourth, behavioral abstraction is not present in Music N, but there are envelope 
generators whose output does not bear a linear relationship to duration, e.g. the 
attack time may be invariant. This preoccupation with envelopes and other 
behaviors influenced the design of Arctic, which along with Formes (Cointe and 
Rodet 1984) was an early language to demonstrate that classes of behavior could be 
encapsulated into abstractions, such that the abstractions could be temporally 
transformed. The same mechanism, extended to continuous transformations is 
present in Nyquist. 

One of the goals of Arctic and Nyquist was real-time control, and Nyquist was 
originally designed to be a real-time system. There are two problems interfering 
with a real-time version. First, the underlying Lisp interpreter must pause 
occasionally for garbage collection. The interpreter could be replaced, so this is a 
solvable problem. The second problem is that we want external events such as MIDI 
note-on messages to instantiate computation within Nyquist and furthermore to 
control and update these computations, for example a MIDI note-off message should 
terminate a sound. Since Nyquist sounds are immutable, it is hard to see how 
Nyquist can terminate a note once it begins. A solution in keeping with the 
functional programming style would be to make the note computation a function of 
MIDI input. This can be done, but it leads (as far as I know) to quite ugly and 
confusing programs. A more object-oriented solution seems to be the best approach, 
but this would require a major design change. I prefer to leave Nyquist as is. 

In summary, Nyquist is a distillation of some of the most important concepts of 
language design and composition systems. By integrating symbol processing and 
signal processing capabilities, it offers a very powerful and flexible language to 
composers and researchers. In spite of the high-level nature of Nyquist, the low-
level routines are highly optimized and the overall performance is quite high. A 
detailed analysis of software synthesis performance issues will appear in a separate 
article (Dannenberg and Thompson, to appear). 

Conclusion 
Nyquist is a high-level language for sound synthesis and composition. Nyquist is 

unique in that is spans a range of computational tasks from score manipulation to 
synthesis within a single integrated language. Nyquist already has an efficient 
implementation running on Unix workstations and Macintosh personal computers. 

Nyquist can be used directly through its programming interface. We also see the 
possibility of using Nyquist as a “sound rendering language” in the sense that 
Postscript (Adobe 1985) is a graphics rendering language. Thus, Nyquist could 
operate as a network sound server or a “back end” for any number of graphical 
composition or data sonification environments. 

Companion articles will describe transformation and time warping in Nyquist, 
the Nyquist run-time system, and optimization techniques for software signal 
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processing. In the future, we hope Nyquist will become more widely used as a 
research and composition tool, and we are working to make it more reliable, more 
complete, and executable on more systems. This is no small task, and I welcome 
assistance in reaching these goals. 
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