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Abstract 
Message passing between processes and across networks offers a powerful method to 

integrate and coordinate various music programs, offering software reuse, modularity and 
parallel processing. Networking can integrate components using different languages and 
hardware. O2 is a flexible protocol for communication ranging from the thread level up to 
global networks. O2 messages are similar to those of Open Sound Control, but O2 offers many 
additional features including discovery, clock synchronization, a reliable message delivery 
option, and routing based on services rather than specific network addresses. A bridge 
mechanism extends the reach of O2 to web browsers, shared memory threads and small 
microcontrollers. The design, implementation and application of O2 are described. 

Introduction 
In the early days of interactive music systems, it was common to dedicate an entire 

computer to a single real-time program so that operations could be carefully scheduled to meet 
real-time demands. Programs tended to be large and all-encompassing, dealing with a user 
interface, sensing, control processing, and (when computers became fast enough) audio signal 
processing. Over time, software components have become increasingly complex, and we cannot 
expect to find all the functionality we need in a single monolithic program. Reuse, re-purposing 
and integration of multiple large-scale components is now a practical approach to system 
building, especially for creators whose first priorities are to make music rather than to consider 
all details of implementation.  

Fortunately, computers have evolved to support this approach. Now, nearly all computers 
feature many cores, allowing them to run multiple real-time applications in parallel with little 
interference and far fewer scheduling concerns. Larger memories have also enabled multiple 
applications to run in parallel without page swapping that was disastrous for real-time music 
processing. Multiple coordinated software applications can take advantage of the parallelism 
available from multi-core processors, making more computing power available. Unfortunately, 
“composing” software systems still requires work to establish communication, coordination 
and control of multiple components. 

These interconnection problems can be solved in several ways: (a) there are many 
specialized standards such as VST, MIDI, SMPTE, Link and DMX512, often associated with off-
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the-shelf hardware, but not very general; (b) custom one-off solutions based on TCP/IP, RS232, 
ZigBee and other low-level data transports, which are often the simplest solution when only the 
simplest functionality is required; (c) higher-level message-passing systems and many 
commercial message-oriented middleware products. In the experimental music community, 
Open Sound Control (OSC) is arguably the most successful solution due to its flexibility, 
simplicity, peer-to-peer connections (no third-party intermediary), and available 
implementations (Wright, Freed and Momeni 2003). However, OSC lacks many desirable 
features. 

Challenges for Software Communication 
An important consideration for communication in music systems is real-time performance. 

Few networks offer hard real-time behavior where there are absolute guarantees on delivery 
times, but we can at least design for good expected performance. At least on lightly loaded 
networks, actual performance can then be quite predictable. Good performance depends on the 
right communication abstractions. For example, remote procedure calls (RPCs) that invoke an 
operation and return a result are a nice programming abstraction, but RPCs typically block the 
sender until the result is available. Due to blocking, this approach is not well suited to real-time 
systems. Thus, asynchronous one-way messaging, where the sender does not wait for replies, is 
typically used. 

Assuming asynchronous messaging, what do messages look like? Systems have been 
designed around single-value or attribute/value messages, but network messages can carry 
1000 bytes almost as easily as 1. Moreover, collections of values are often needed to describe 
operations and events (even a MIDI note-on contains a channel, key number and velocity), so 
messages should carry multiple values. The success of OSC, with its multiple-value messages, is 
a good indicator that this is an important capability. 

An important aspect of communication is configuring addresses and connections so that 
messages can be delivered to the right destination. Computer musicians must often configure 
raw IP addresses manually because addresses are assigned by networks, and addresses can 
change. Even within a single computer, connections are made to ports which are typically 
assigned manually to avoid conflicts. Furthermore, at least TCP connections require the server 
to exist before making a connection; otherwise, the client’s connection request will be dropped. 
A great deal of effort can be eliminated through “discovery” protocols that automatically 
configure communications. Automatic discovery also allows services to run together on one 
computer for development but later run on multiple computers to achieve higher performance. 

Another challenge is to achieve both good real-time performance and reliability. In practice, 
communication is largely based on IP (the “Internet Protocol”) which, at a low level, is a “best 
effort” packet delivery system. This simple and direct point-to-point transmission usually offers 
the lowest latency available. However, network messages (packets) can be lost when operating 
systems or network switches become overloaded, or (rarely) when data is corrupted in 
transmission. Therefore, a higher-level protocol (usually TCP) is commonly used to detect 
errors, retransmit packets, and ultimately deliver data with essentially perfect reliability. For 
many applications, a combination of best-effort and reliable transmission is necessary. 
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IP provides a widely supported and solid foundation for communication, but it is not 
always available, and a large set of communication features is not always called for. For 
example, web browsers offer a wealth of cross-platform tools for building interfaces and data 
displays, but they are limited to HTTP and WebSocket APIs, which can only connect to 
compatible servers. To achieve low latency, software music synthesizers are often barred from 
direct network communication and use shared-memory communication instead. 
Microcontrollers have limited memory and power, and when used only to collect and send 
sensor data, a powerful middleware package may be overly complex and power hungry. 

Timing in music is essential. Rather than leave timing entirely to applications, an important 
capability is to synchronize clocks and deliver messages with accurate timing at their 
destination. Clock synchronization and timed messages allow computations to be synchronized 
in spite of large amounts of timing jitter caused by network latency. 

To address these challenges, O2 was designed as a “communications middleware” for 
interactive music systems. O2 builds on some existing structures of Open Sound Control (OSC) 
since they are widely known and successful. In the next section, the fundamentals of O2 are 
described. The following “Related Work” section describes other communication systems, 
especially those for musicians. Section “New Features” describes several interesting features 
that have been added to O2 since its original implementation, including publish/subscribe and 
a bridge abstraction used to extend O2’s reach to non-IP systems. Section “Implementation 
Details” discusses the implementation and some performance measurements. Section 
“Applications” describes how O2 could be and is used in practice. Sections “Future Work” and 
“Conclusions” discuss possible extensions and summarize what has been learned from building 
and using O2. 

Introducing O2 
O2 is a protocol and an implementation enabling flexible asynchronous communication 

between processes and across threads, especially for interactive music applications. In this 
section, principal O2 abstractions are described along with basic operations from the 
programmer/developer’s perspective. 

O2 connects processes. An O2 process is essentially a single running program. (Threads and 
inter-thread communication will be discussed later.) O2 communication is potentially global, so 
it is important to limit communication to within a selected group called the ensemble. An O2 
ensemble is a collection of peer processes that are allowed to communicate with one another. 
Each ensemble has a distinct name, and each O2 process joins one and only one ensemble. 

An O2 process can provide one or more services. A service is just a name used to route 
messages. Typically, a service is offered by at most one process, but if multiple processes offer 
the same service, O2 will pick one process as the active service provider and the others will 
serve as backups in case the active process terminates or loses its network connections. 

To send a message to a service, one needs an address. An O2 address is a URL-like text string 
beginning with the service name. For example, /synth/lfo/freq addresses the synth 
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service. The suffix nodes lfo/freq designate an operation or resource provided or managed 
by the service. Addresses in O2 are similar to OSC addresses except the first node in an O2 
address is a service name used to find the process that offers the service. 

The message format in O2 is based on OSC messages with minor changes. Every O2 
message contains a timestamp that refers to globally synchronized O2 clock time. If the 
timestamp is greater than the current time, message delivery is delayed until the timestamp. 
Alternatively, the sender can use a timestamp of zero to indicate “as soon as possible.” Like 
OSC, O2 messages also contain an address, a type string describing the types of the data 
contained in the message, and a set of values. O2 types include standard OSC types such as 
integer, float and string, as well as some new ones including vectors. 

O2 from the Developer’s Perspective 
After initialization, where the application provides an ensemble name, O2 performs 

discovery, communication and timed message delivery in the background. To simplify 
interaction with the application, all O2 operation is explicitly invoked by the application, which 
calls o2_poll()every 1 to 50 milliseconds, depending on the timing precision required. To 
receive messages and respond to them, the application creates a service using 
o2_service_new(servicename) and installs message handlers using 
o2_method_new(address, types, handler, info, coerce, parse), where address is the full address, e.g. 
/synth/filter/cutoff, types gives the expected parameter types , handler is the address of 
the callback function to process matching messages, and info is an additional parameter to pass 
to this handler function. The coerce and parse parameters enable options for built-in type 
coercion and message unpacking before invoking the handler. Messages are delivered 
according to their timestamps using a built-in scheduler. 

Messages can be sent from any process, including the one that offers the service (in this case, 
networking is bypassed and the handler is invoked directly.) To send a “best effort” message, 
one calls o2_send(address, time, types, val1, val2, …) with the destination address, type string, 
and values val1, val2, etc. To send a message with guaranteed delivery, use o2_send_cmd 
instead. This name suggests that the message carries a “command” that must be delivered. 

What if a message is sent but there is no active service to handle it? In this case, O2 issues a 
warning and drops the message. O2 will also drop timestamped messages (with non-zero 
timestamps) if the receiver has not established a synchronized clock. In some cases, applications 
will want to wait for a service to be discovered and synchronized before sending it messages. 
The function o2_status(servicename) can tell if a service exists, whether it is local or remote, 
and whether clock synchronization has been achieved. 

To use clock synchronization, at least one process must provide a reference clock to the 
ensemble. This is done by calling o2_set_clock(). Optional parameters allow the clock 
reference to be provided by the application, such as an audio sample clock instead of the default 
system clock. 
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Notice that the application developer does not deal with IP addresses, port numbers, or 
even host names. O2 offers many more capabilities, described below, but before going into 
further detail, let us consider some related work. 

Related Work 
O2 originated as a project to extend Open Sound Control (OSC) with new capabilities. OSC 

is intentionally designed to be transport-independent, but that limits it to simple point-to-point 
communication established by some other means. That usually requires manual configuration 
of IP addresses and port numbers and forces developers to choose either UDP (best effort) or 
TCP (reliable), but not both. Clock synchronization, discovery, and other features are missing. 
At least discovery has been addressed by liboscqs (liboscqs.sourceforge.io), OSCgroups 
(www.rossbencina.com/code/oscgroups) and osctools (sourceforge.net/projects/osctools/). 
Discovery is also discussed and implemented by Essl (2011), Malloch, Sinclair and Wanderley 
(2015), and Eales and Foss (2012). 

Libmapper (Malloch, Sinclair and Wanderley 2015) is designed to map inputs from sensors 
to synthesis control parameters. The model is akin to connecting systems with patch cords, 
which is appropriate for connecting sensors, but not for general event-based control. An 
unusual feature is that libmapper offers various adjustable mapping functions to transform data 
between the sender and the receiver, which can be very useful when working with sensor data. 

LANdini (Narveson and Trueman 2013) has similar goals to O2 in that it offers discovery on 
a LAN and reliable transmission. To simplify the implementation, LANdini messages flow in 3 
“hops,” requiring a message from the sender to a local server, from the local server to a remote 
server, and from there to the destination. Also, the overall message rate for N devices is 
proportional to N2 due to traffic used to insure reliable delivery. However, LANdini has 
inspired some recent new capabilities in O2. 

MobMuPlat (www.mobmuplat.com) (Iglesia 2016) can be described as a software framework 
for running Pure Data (Pd) (Puckette 2002) on mobile devices. In addition to support for graphical 
interfaces and sensors, MobMuPlat supports a simple discovery and peer-to-peer connection 
scheme within a LAN, addressing some of the problems solved by O2. 

Networking approaches outside of the music community are far more numerous.  CORBA 
(Henning 2006) is an example of a distributed object system with many capabilities, but its 
complexity has discouraged its use.  ZeroMQ (Hintjens 2013) is less complex and supports a 
variety of communication patterns, but it does not offer discovery or messaging over UDP, so it 
is not suitable for many music applications. 

Clock synchronization techniques are well-known, but often omitted from music systems 
because of the extra implementation and configuration required. Cristian’s (1989) simple method 
is the basis for synchronization in O2. Madgwick et al. (2015) describe a method that uses 
broadcast from a reference but assumes bounds on clock drift rates. Brandt and Dannenberg 
(1999) describe a round-trip method with a proportional-integral controller. OSC bundles have 
timestamps, but clock synchronization is rarely included in OSC implementations. Goltz (2018) 
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describes Ableton’s Link technology, which uses clock synchronization specifically for the task of 
establishing a shared beat and tempo framework for applications. 

New Features 
Beyond the basic message-passing functions implemented for the first version of O2 

(Dannenberg 2019), significant extensions have been implemented to address various problems 
or to make O2 even more versatile. Properties provide a way to share information about services. 
Taps allow communications to be monitored and support the publish/subscribe communication 
pattern. A bridge allows O2 hosts to be connected to processes through protocols other than IP. 
Most bridges use a subset of O2 called O2lite, which runs over WebSockets, IP, and shared 
memory interfaces. 

Properties 
Inspired by LANdini, O2 properties are attribute/value pairs associated with service 

providers. An important use case is finding players in a laptop orchestra. Each player will be 
represented by a different O2 service name, so how does a central “conductor” process send 
messages to all players? Note that in O2, each player could offer a service named player, but 
O2 would direct messages to only one of them. Thus, each player must be reached via its own 
unique service name. Alternatively, the conductor cannot simply send to every service because 
not all services are players. The solution is for each player to attach a property, e.g. 
type:player, to its service. Then, the conductor can search for services with a type attribute 
equal to player to locate players. Properties are stored in strings, and copies of property 
strings are distributed by the O2 discovery mechanism, so they can be accessed or searched 
quickly without additional network delay. 

Taps and Publish/Subscribe 
Messages arriving at a particular service can be forwarded automatically to another service 

at any process by setting a tap, which consists of a process and a service name within that 
process. The destination service (the tapper) is associated with a specific process so that if the 
process is disconnected, the tap can be removed automatically rather than have it possibly 
redirect to another service provider.  

Taps were created to enable message monitoring and diagnosis, but they serve another role 
that is perhaps more important. A publish/subscribe pattern is one in which the sender 
publishes using some publishing name, and receivers can subscribe to the name in order to 
receive messages. This pattern allows the publisher (consider a sensor or global tempo control) 
to send information without knowledge of who is interested in that information or who will 
receive the messages. It is also a one-to-many pattern in contrast to the many-to-one pattern 
implemented by o2_send and services. To implement publish/subscribe, the publisher creates 
a local service, which need not have any message handlers. Publishing means simply sending to 
the service. Each subscriber taps the service to receive a copy of each published message. This 
scheme eliminates any need for the application to manage a subscriber list, including the 
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automatic removal of tappers when network connections are lost. (Alert readers will notice that 
publish/subscribe offers another solution to the problem of connecting a conductor to many 
players.) 

The Bridge Abstraction 
To be as versatile as OSC, O2 should be extensible to work with new transports such as 

Bluetooth or WebSockets. The bridge abstraction allows services to be provided across any 
message-passing transport. A bridge connects a single O2 process, the host, via a message 
transport, to a single process, the client. The host advertises services on behalf of the client. O2 
messages for those services arrive at the host and are immediately forwarded to the client. The 
client can send arbitrary O2 messages by sending them across the link to the host, where they 
are resent to reach their ultimate destination. Essentially, the host is both a proxy service 
provider for the client and a proxy for sending O2 messages. In this way, O2 can be extended to 
support any link technology, including RS232, Bluetooth, Zigbee, WebSockets and shared 
memory. 

O2lite 
Most bridges implement a subset of O2 called O2lite. There is even an O2lite bridge for 

TCP/IP, allowing for lightweight implementations on microcontrollers running Wi-Fi such as 
ESP32-based devices. In this case, the difference between O2 and O2lite is not the transport, 
since both use IP, but the fact that O2lite can only send and receive directly from a single O2 
host process. Messages to other processes must be relayed through the host. On the other hand, 
a small and simple implementation that is more suited to microcontrollers can be used, leaving 
the rest of O2’s functionality to laptop or desktop host computers. 

Another implementation of O2lite uses WebSockets for the transport. WebSockets allow 
browsers to connect to an O2 ensemble. Thus, browsers can be used as synthesizers or user 
interfaces. Mobile devices with accelerometers and touch surfaces can communicate with O2 
through their built-in web browsers. A library, o2ws.js, exists in Javascript for these 
applications. Browser applications, typically written in HTML and Javascript, must be 
downloaded over the HTML protocol. To be self-contained, especially on private local-area 
networks often used in performances or art installations, the O2 library implements a simple 
web service. Users can download web applications and connect to O2 without creating a 
separate server or website. 

A third interesting implementation of O2lite runs over a shared memory bridge. This is one 
solution to the problem that O2 does not directly support multiple threads. Even if it did, 
synchronizing threads and invoking network operations could introduce unacceptable latency 
to real-time threads, especially those used for audio signal processing. The shared memory 
bridge uses lock-free queues to pass messages between threads. Similar lock-free queues are 
used to allocate and free memory through a shared heap structure, supporting very low latency 
audio processing. In our tests, the shared memory bridge can send and receive a message using 
320 ns of CPU time plus a small overhead to poll for messages. An application of this bridge is 
described below. 
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OSC Compatibility 
One “transport” of great interest is OSC. To inter-operate with OSC, O2 uses a bridge-like 

mechanism that translates to and from OSC messages. To receive OSC, one calls 
o2_osc_port_new(servicename, port, tcpflag) to create an OSC server that forwards incoming 
message to the given port to the specified O2 service. For example, if servicename is sensor1, 
and the incoming OSC address is /value, the message is forwarded to O2 address 
/sensor1/value. To send to an OSC server, one calls o2_osc_delegate(servicename, 
ipaddress, port, tcpflag), which creates a new O2 service. Any O2 message to that service is 
translated to OSC by removing servicename from the address and is forwarded to the OSC server 
specified by IP address, port number, and protocol (TCP or UDP).  

Wide Area Networking with O2 
O2 uses Bonjour (called Avahi on Linux) for discovery (Guttman 2001). One limitation of 

Bonjour is its use of broadcast messages, which are restricted to the local area network. This 
means that distant machines cannot be discovered. Given the interest in network performance 
and collaboration, O2 implements an extended discovery protocol that works globally. Global 
discovery builds upon MQTT (mqtt.org), a lightweight Internet-of-Things (IoT) messaging 
protocol for which there are open servers that can be located through conventional domain 
name resolution. 

MQTT offers a publish-subscribe protocol. O2 processes construct a topic o2-
ensemblename/disc, based on their ensemble name, and publish their local and public IP 
addresses and port number through MQTT. O2 processes continually listen for MQTT messages 
that announce new members of the ensemble. When a new process is discovered, a direct TCP 
connection is attempted to enable further communication. 

An often-encountered problem is receiving messages behind Net Address Translation 
(NAT) firewalls, which are almost standard for home networks. NAT translates port numbers 
and IP addresses as they transit from local home networks to the public internet. In principle, 
the only way to receive a message behind NAT is to connect to a server and specify a “reply” 
port. The reply port in the outgoing message is replaced with a different number, but NAT 
updates tables so that any reply message from the internet can be directed to the true reply port 
on the home network. Thus, outgoing requests to servers work transparently. On the other 
hand, a connection originating from the internet will not reach the desired address or port 
through the firewall. There are interesting workarounds, including STUN 
(dl.acm.org/doi/book/10.17487/RFC3489), but O2 currently solves this problem by relaying 
messages through MQTT using the same server used for discovery. MQTT is used only when 
direct peer-to-peer connections cannot be established.  

Implementation Details 
O2 is implemented in C++ but has a purely procedural API accessible from C or any 

language that can interface with “foreign” libraries. O2 currently runs on macOS, Linux and 
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Windows, and is free and open source (github.com/rbdannenberg/o2). O2 can also be accessed 
through Pd using a set of four Pd objects (“externals”): o2ensemble, o2send, o2receive, 
and o2property. 

Discovery is based on Bonjour/Avahi and/or MQTT as described earlier. Upon “discovery” 
of another process, O2 determines if a connection already exists. If not, a TCP connection is 
made to it. To avoid two peers trying to connect to one another simultaneously, permanent 
connections are only made from a lower address/port number to a higher one. To connect to a 
peer with a lower address, a temporary connection is made, and a discovery-like message is 
sent requesting a connection in the reverse direction.  

TCP connections, once made, are bi-directional, and processes can reliably exchange their 
local services, properties, and UDP ports that are needed for “best effort” messages. All this 
information is sent using ordinary O2 messages to the specially recognized o2_ service. As a 
peer-to-peer network, the number of connections grows as N2 for N processes, but we assume 
O2 ensemble size is limited to at most 100 processes. Maintaining 100 network connections per 
process is small scale networking in terms of modern servers. Of course, performance will 
depend upon message rates and network capacity, but O2 has been used successfully over Wi-
Fi for a laptop orchestra with 25 processes and many more devices connected via OSC. 

Message delivery operates as follows. First, the message address is examined to obtain the 
destination service name. O2 uses a hash table to map the service to a list of service providers and 
a list of taps. (See Figure 1). The service providers are sorted by decreasing process address, and the 
first provider is considered the active provider that will receive the message. If the service 
provider is a remote process, the message is forwarded over TCP or UDP directly to that process 
for delivery. If the active provider is the local process, there will be a tree of hash tables used to 
decode the full address and determine a handler function to call. If the active provider is a bridge, 
OSC server or an MQTT connection, the message is delivered using the corresponding protocol. 
After delivery to the active provider, a copy of the message is delivered to each tap, if any, 
replacing the original service name with that of each tap before forwarding. 
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Figure 1. To deliver messages, each process first maps the service name (first node of the address) 
to a list of service providers and taps.  A service provider is either: (top) a remote-process object 

encapsulating an open TCP socket, UDP address, and connection state; (middle) local service 
represented as a tree to decode the address, e.g., /s2/x/y, mapping it to a handler function pointer 
or object; (bottom) a Bridge Interface (or MQTT or OSC) instance, which implements a specialized 

transport mechanism. 
The implementation of clock synchronization requires one process to provide a clock 

reference that other processes attempt to follow. Each so-called follower sends periodic requests 
for the reference time. The fastest round-trip is used to estimate any difference between the local 
and reference clocks, and local corrections are made. O2’s implementation makes smooth clock 
adjustments by temporarily changing the clock speed, eliminating rhythmic distortions in music 
that might be caused by suddenly setting the time forward or backward. O2 runs an efficient 
scheduler to deliver timestamped messages. Applications can use the scheduler by sending 
themselves timestamped messages to initiate timed events. 

The first implementation of O2 used blocking network send calls. Typically, send operations 
copy messages immediately to buffers and return, so in practice, calls rarely block. However, 
deadlock can occur when two processes are sending to each other over TCP. Now, O2 uses non-
blocking calls, and senders can detect and avoid sending more messages than the network can 
handle. 

Performance and Evaluation 
Communication software such as O2 should provide useful functions without introducing 

high overhead or performance penalties. In practice, sending a network message is already 
quite slow and expensive, so there is not much one can do that will make network performance 
significantly better or worse. For example, we measured a median round-trip time of 5.5 ms 
over a local Wi-Fi network, but within a single computer, the time averaged 28 µs, indicating 
that more than 99% of the time is due to Wi-Fi. The single computer round-trip could be 
reduced to 20 µs by calling network primitives directly instead of using O2. This indicates a 
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single message send overhead of about 4 us, but that number (in this simple test) includes 
polling all sockets for messages, running the scheduler and other tasks for each message. 

The shared-memory bridge uses the same message decoding implementation as regular O2 
messages but avoids networking altogether. By comparing the time to send and deliver a single 
message to the time to send multiple messages back-to-back, we can factor out the overhead of 
polling operations and determine that the time to allocate memory, write a message, send it, 
decode it, call its handler, and finally free the memory is about 320 ns. This is a likely a best-case 
scenario because repeatedly performing the same small task will ensure few cache misses. Also, 
keep in mind that this is a measurement of CPU utilization, whereas the real time delay is 
limited by the polling period between checks for new messages, typically on the order of 1 ms. 

Direct comparisons with OSC (using the liblo implementation) show negligible differences 
in performance except in one case. O2 uses a single bi-directional TCP connection, whereas OSC 
is one-way, so two connections are required for two-way communication. In our tests, OSC over 
TCP using two connections was exactly half as fast as O2 using a single TCP connection, but we 
would expect one-way send times to be nearly identical. Again, these times are swamped by 
network latency when actual networks are involved. 

Network configuration with O2 typically takes from 1 to a few seconds, including clock 
synchronization. Normally, clock synchronization and Bonjour discovery messages are 
infrequent, but when O2 is initialized, it actively contacts Bonjour and O2 processes to make 
connections quickly. When the reference clock is first discovered, clock synchronization runs on 
an accelerated schedule to reduce the time to estimate the reference clock time. 

Evaluation should also include ease of use, suitability and generality. These are “soft” 
attributes that can best be evaluated with time and experience. We believe O2 is a strong 
candidate for computer music applications because it has grown out of experience with many 
system implementations, including global network music performances, laptop orchestras, 
wireless sensors, audio servers and single applications with communicating processes. We hope 
the community will find O2 to be as useful as we do. 

Applications 
To illustrate the potential of O2, we describe several applications with a focus on how O2 

can support their construction. 

Laptop Orchestras 
The first application of O2 was in a laptop orchestra performance created by students. 

Discovery allowed for rapid prototyping, testing and performance setup in which “player” 
laptops connected to a “conductor” laptop. The conductor established a shared context 
including tempo, style, and other controls for players to interpret. Musical time was represented 
as a function of real time, with a few parameters transmitted by O2, namely beat(t) = beatoffset + 
(t – timeoffset) × beatspersecond. Since time t is based on O2 clock synchronization, every laptop 
can compute the current beat with high precision and schedule beat-based rhythmic output 
accordingly. Timed messages can change tempo by sending new parameters at precise times. 
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After compensating for local synthesizer delays, synchronization was limited mainly by the 
variation in distance from speakers to audience members at different locations. 

Control from the conductor was complemented by local control by each player, including 
the use of TouchOSC (hexler.net), which sends touch screen data from mobile devices over Wi-
Fi via OSC. O2’s OSC compatibility allowed players to incorporate TouchOSC data easily. 

O2 over WebSockets was used to connect to animations written in p5js (p5js.org) and 
running in a browser. Parameters from the conductor including tempo information were shared 
with the animations to synchronize them to the music. The performance can be viewed at 
bit.ly/CMULO2019. 

Sensors and Synthesis 
The original design of O2 anticipated that even microcontrollers would run a full network 

stack and act as full O2 processes. This is certainly possible with Raspberry Pi and other small 
linux-based systems, but we also felt a need for a lighter-weight and simpler implementation, 
which led to the development of O2lite. We use O2lite on ESP32-based microcontrollers and the 
Arduino development environment, which includes an implementation of Bonjour for 
discovery. Recall that with O2lite, a single O2 process serves as a bridge to the entire network. 

An example application is a small self-contained inertial sensor that communicates over Wi-
Fi.  Without O2, one would hard-code a destination IP address for data into the microcontroller. 
To use the sensor, one would manually disconnect from the internet and set a laptop IP address 
to match the one in the sensor. With O2, the sensor can discover the laptop’s dynamic IP 
address, and the 2-way capability of O2 allows the laptop to configure the sensor by setting the 
sample rate and other parameters. Once data is received at the laptop, software can map the 
sensor data to sound controls and send them (via O2 or OSC) to a synthesizer to implement 
interactive gestural control. An example can be viewed at //bit.ly/O2demo2022. 

Network Music 
Network music (McKinney 2016) often involves collaborative control of music generation 

systems, graphical displays, and sharing sensor data. O2 makes it easy to bridge multiple sites, 
especially computers on home Wi-Fi networks behind NAT, as discussed above. O2 can even 
help to bridge existing OSC-based systems by receiving OSC messages in a local O2 process, 
forwarding the messages to a remote site also running O2, and from there, forwarding from O2 
to an OSC system as a final destination (See Figure 2). Since O2 can use reliable transmission 
across the internet, this solves not only problems with configuration and NAT, but it can 
eliminate dropped packets which are frequent with wide-area networking. This approach 
parallels our “Telematic Soundcool” performance (Scarani et al. 2019), which was implemented 
directly with TCP before O2 was available. Even audio streaming is possible with O2 (Norilo 
and Dannenberg 2018), but it may be simpler to implement audio/video streaming with more 
specialized programs and just handle control information with O2. 
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Figure 2. Bridging OSC over the Internet. An OSC Sender sends to a local O2 Server (left), which 
discovers the remote service and forwards OSC messages reliably. The remote service converts 

messages back to OSC and sends them to a local OSC receiver. Thus, OSC is delivered reliably 
across the Internet without any manual configuration of IP addresses and ports. If OSC processes 
are behind firewalls, O2 will automatically revert to using an MQTT broker to forward messages. 

Interactive Installations 
Computer-based art installations, including multimedia and interaction, often use multiple 

computers and microcontrollers for sensing, control, and output. When existing Wi-Fi networks 
are used, artists and staff are faced with manual configuration tasks or even reprogramming 
microcontroller programs with hard-coded IP addresses. O2 simplifies connections through 
discovery while offering flexible open-ended messages to transmit whatever data is needed to 
support sensing and control. Clock synchronization can be used to coordinate different media 
controlled by different processes. 

Another possibility is remote monitoring and control: Artists cannot always keep an eye on 
installations in person, so some build monitoring capabilities into their systems so they can 
oversee the operational status remotely. O2’s global-scale discovery, taps, and other facilities 
simplify making connections from anywhere and monitoring any message activity within an 
installation’s computing ensemble.  Any service can be messaged to invoke operations or query 
data. O2 has not yet been used for this purpose, but a prototype for remote monitoring has been 
built and described (Figure 4 in Dannenberg 2019). 

Audio Synthesis 
Audio processing in software requires latencies on the order of 1 ms, which is near the limit 

of what consumer operating systems can offer. Real-time operating systems and specialized 
hardware can do better, but software and hardware choices (including audio interfaces and 
device drivers) are more limited and often higher cost.  Assuming a consumer operating 
system, effective low-latency audio processing requires developers to refrain from making most 
system calls, precluding normal memory allocation or locks to safely read and write shared 
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data. Calls within the audio thread to send and receive network messages are out of the 
question. 

Developers can carefully cope with all these restrictions or violate them and hope for the 
best. Alternatively, O2 uses its own lock-free memory allocator, and O2’s shared-memory 
bridge uses lock-free message queues to provide the flexibility of O2 messaging to low-latency 
audio threads. Audio processing can be tightly coupled to a control thread (an O2 process) 
using O2 messages delivered through shared memory, or the O2 process can connect to other 
processes running on the same machine, on a local area network, or even globally.  Controlling 
an audio process in this way is comparable to the use of OSC for control in the Supercollider 
synthesis server (Wilson, Cottle and Collins 2011), but O2 provides scheduling, discovery and 
clock synchronization in addition to messaging. A new experimental synthesis engine based on 
O2 and FAUST (faust.grame.fr) has been constructed to explore this direction further. 

Modular Performance Systems 
O2 was largely inspired by a project to support human-computer music performance using 

software modules such as sequencers, audio players using time-stretching to synchronize audio 
playback, conductors to control players, score displays to display music notation to human 
performers, sensors and synthesizers. The need for communication, coordination and timing 
among distributed music software components led to implementations with OSC, ZeroMQ 
(Hintjens 2013), and ultimately O2. With O2, modules operate stand-alone, but if a conductor is 
discovered, they automatically connect and delegate control over start, stop, set position and 
tempo operations. Clock synchronization is critical to coordinate players, and 
publish/subscribe is used to distribute conducting commands to all players. 

Our vision is that future music performance systems will include intelligent agents as 
performers, and modular systems will be configured by musicians just as today’s rock bands 
combine microphones, guitars, effects pedals, mixers, amplifiers and speakers using off-the-
shelf compatible components. 

Future Work 
O2 is now fully functional, but there are many areas for further development. Additional 

language support would encourage more use. O2lite can be ported to most languages. For 
applications to use the full O2 implementation, it should be possible to link to the existing O2 
implementation in C++, which we have done for Pd. Debugging distributed systems can be 
difficult, and some monitoring software has been prototyped but is not ready for practical use. 
Perhaps O2 could include more internal monitoring of latency, CPU utilization and other useful 
information. 

Security is a difficult problem, especially for real-time systems. O2 does not encrypt or 
protect data, so it is quite possible for an attacker to snoop network packets, discover an 
ensemble name, and inject malicious messages. For this reason, O2 does not enable global 
discovery by default. Secure virtual private networks (VPNs) are one way to secure O2 
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communication, but this is likely to affect latency. Built-in security measures should be based on 
a clear threat model and are left to future work. 

Audio and video streaming have many applications, ranging from modular effect chains 
within a single computer to network music performances on a global scale. Audio over O2 has 
been implemented (Norillo and Dannenberg 2018), but it is a complex problem with many 
conflicting goals. Perhaps O2 can inspire further work in this area. 

Conclusions 
O2 offers a new level of communication support or middleware, especially for real-time 

interactive music systems. Conceptually, O2 is similar to OSC in that it sends one-way messages 
containing a URL-like address that names a parameter or function and a set of typed values. 
However, O2 also addresses many more practical needs of application builders. First, O2 
delivers messages to services rather than network addresses, supporting more reconfigurable 
and distributed systems of peer processes as opposed to simple client/server configurations. 
Second, O2 includes discovery to automate network configuration, allowing processes to 
connect even globally without fixed IP addresses, domain names or port numbers. Third, O2 
offers new modes of communication, including publish/subscribe (one-to-many) messages, 
properties that are automatically propagated without explicit messages, taps for monitoring 
message traffic, and shared memory communication for very-low-latency applications 
including audio signal processing. Fourth, O2 offers a complete solution to distributed clock 
synchronization and timed delivery of messages, which is important in many music 
applications. 

An important requirement for communication software is to enable connections among 
diverse systems. O2’s C++ API is compatible with C and therefore easily integrated with many 
other languages. For example, external objects allow access to O2 within Pd. O2 also 
interoperates with OSC as both an OSC server to receive messages or an OSC client to send 
messages, with translation between O2 and OSC message formats. O2lite allows a client to join 
an O2 ensemble over a point-to-point link. O2lite for WebSockets along with a built-in HTML 
server enables web browsers to communicate with O2 processes and bridge to OSC. O2lite in C 
has been run on ESP32 microcomputers with Wi-Fi to create sensors that automatically connect 
to O2 networks. O2lite for shared memory is being used to create a new synthesis server.  

As computer music software systems continue to grow in capability and complexity, we 
hope that artists and researchers will build on these systems through creative combination, 
control and interconnection using O2. O2 is poised to solve many interconnection problems. 
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