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ABSTRACT 
O2 is a communication protocol or “middleware” for 
real-time music applications. It features automatic discov-
ery to simplify network configuration, clock synchroniza-
tion, a reliable message option, and named services. A 
new version of O2 offering new capabilities is described. 
O2 now supports global discovery and communication, 
extending the previous version, which was limited to a 
single local area network. O2 can also deliver messages 
through shared memory allowing efficient lock-free com-
munication with high-priority audio threads. Multiple 
styles of communication are facilitated in this new ver-
sion, which supports taps to copy or “spy” on message 
streams. Taps can be used to implement publish/subscribe 
directly, and services also have writable properties that 
are eagerly pushed to peer processes for reading. Typical 
applications of O2 in creating computer music systems 
are described. 

1. INTRODUCTION 

Computer music systems are often “composed” from rel-
atively isolated and independent modules for signal pro-
cessing, graphical interfaces, control logic, audio effects, 
etc. In the past, performance requirements often dictated 
using a monolithic program where all processing could be 
carefully organized and scheduled. Today, most comput-
ers have multi-core processors, which allow multiple pro-
grams to run in parallel. This results in less contention for 
resources and therefore fewer scheduling problems.  

Moreover, if tasks such as graphical interfaces, control 
and synthesis run in multiple programs, or at least in sep-
arate threads, more parallelism and therefore more com-
puting power becomes available. Communication be-
tween programs, however, can be difficult. Software de-
velopers or end users must deal with a variety of commu-
nication protocols, each with different data representa-
tions, requirements for establishing connections, naming 
conventions and other details. Different programs support 

different protocols, including MIDI [1], Open Sound 
Control (OSC) [2], ReWire (en.wikipedia.org/wiki/Re-
Wire_(software_protocol)), Abelton Link (www.able-
ton.com/en/link), and others, so additional software is of-
ten required to relay information between programs. 

Experimental computer music systems often explore 
new ways to control and generate sound, so existing pro-
tocols based on traditional conventions of equal tempera-
ment, time signatures and tempo are often too rigid and 
limited. This might explain the popularity of OSC, which 
is a very simple and open-ended protocol for sending 
messages with an arbitrary set of parameters to objects or 
functions, organized in a hierarchical name space. 

The O2 protocol aims to address some of the shortcom-
ings of OSC, making it simpler to create powerful distrib-
uted music applications while keeping the open-ended ex-
tensible nature of OSC with which many musicians are 
already familiar. Important features of O2 include ser-
vices, which help to achieve modularity, discovery, which 
simplifies establishing connections, clock synchroniza-
tion, which creates a shared time base among all com-
municating processes, and message delivery options, that 
include (1) normal best-effort delivery as offered by UDP 
and (2) reliable delivery as offered by TCP [3]. 

These features formed the core of O2 version 1, which 
has been described previously [4]. This paper describes 
some of the new features in version 2 and their relevance 
to music systems. Related work is described in the next 
section, followed by an overview of O2. Section 4 pre-
sents new capabilities in version 2, and some implemen-
tation details are provided in Section 5. Section 6 de-
scribes some typical applications of O2, and Section 7 
presents conclusions. 

2. RELATED WORK 

O2 is inspired by OSC, which is widely used in the com-
munity. O2 messages include the key ingredients of OSC 
messages: A URL-like address string and a set of typed 
parameters.  Despite its success, OSC has a number of 
limitations, including the need to provide clients with the 
server IP address (which is often dynamic), and the prob-
lem of losing messages sent over Wi-Fi. 

Libmapper [5] is a music communication system in-
tended to map inputs from sensors into synthesis control 
parameters. This rather specific focus makes libmapper 
less general than other systems but more powerful in 
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tasks for which it is designed; for example, libmapper of-
fers dynamically configurable connections from sensor 
parameter to control parameter with various adjustable 
mapping functions. 

LANdini [6] has similar goals to O2 in that it offers 
discovery on a LAN and reliable transmission. However, 
LANdini messages flow in 3 “hops” – from application 
(1) to local server, (2) to remote server, (3) to remote ap-
plication, and the overall message rate for N devices is 
proportional to N2. However, LANdini has inspired some 
recent new capabilities in O2. 

MobMuPlat (www.mobmuplat.com) [7] is software 
specifically for running Pure Data (Pd) [8] on mobile de-
vices. In addition to support for graphical interfaces and 
sensors, MobMuPlat supports a simple discovery and peer-
to-peer connection scheme within a LAN. 

3. INTRODUCTION TO O2 

O2 is described elsewhere [4], but we give a brief intro-
duction here. The remainder of this paper will focus on 
new developments that extend the first version of O2. 
The basic function of O2 is to send one-way, peer-to-peer 
messages, usually to make a remote procedure call. Ra-
ther than directing messages to specific ports or host 
computers, messages are addressed to services. Any pro-
cess can offer one or more services. This allows some 
flexibility in system design and configuration. Services 
can be moved from one host to another or from one pro-
cess to another without changing any clients. 

Messages contain a sequence of data items with type 
information (as in OSC). O2 messages also include a 
timestamp. Addresses are URL-like strings, similar to 
OSC addresses, e.g., /synth/lfo/freq; however, the 
first node in an O2 address (here, synth) is a service 
name, and the rest of the address refers to destinations (or 
operations) within that service. 

O2 offers two ways to send a message: 
o2_send(address, time, types, val1, val2, …); 
o2_send_cmd(address, time, types, val1, val2, …); 

where o2_send sends with a “best effort” or UDP policy, 
typically for time-sensitive sensor data that will be up-
dated periodically, while o2_send_cmd uses a lossless or 
TCP policy, typically for critical one-time commands. 

O2 automatically performs clock synchronization so 
that messages can be delivered at precise times in the fu-
ture. This is a technique for avoiding network jitter [9]. 

O2 also offers OSC compatibility. To act as an OSC 
client, an application can delegate an O2 service to an 
OSC server. Messages for that service will then be for-
warded to the OSC server. O2 can also act as an OSC 
server that converts incoming OSC messages to O2 mes-
sages and forwards them to an O2 service. 

 
1 A future extension might use STUN (en.wikipedia.org/wiki/ 
STUN) to traverse NAT gateways and offer lower latency in 
some cases. 

4. NEW CAPABILITIES 

4.1. Global Discovery and Communication 

The pandemic has created new awareness and activity in 
music networking. O2 version 2 extends the discovery 
protocol beyond the local area network to the global In-
ternet. This wide-area discovery protocol uses MQTT 
(mqtt.org), a lightweight Internet-of-Things (IoT) mes-
saging protocol for which there are open servers.  

Using MQTT, O2 processes subscribe to a topic that 
informs them of other O2 processes. To support multiple 
O2 users on the Internet or even on a single LAN, each 
group of communicating O2 processes, called an ensem-
ble, is given a unique name. 

Suppose our ensemble name is myens. To become 
reachable, each process subscribes to the MQTT topic 
o2-myens/xxxxxxxx:yyyyyyyy:zzzz, where 
x…:y…:z… encodes the public IP address (x…x), local IP 
address (y…y) and port number (zzzz) of the process, all 
in hexadecimal. 

Each process also subscribes to O2-myens/disc and 
sends its service name (every process has an automati-
cally generated O2 service name) to that topic. This noti-
fies every existing process that the new process exists and 
how to reach it. By examining local and public IP ad-
dresses, O2 processes can determine if they have direct 
connectivity to each other. If so, pairs establish a direct 
peer-to-peer connection. Processes behind NAT fire-
walls continue to use MQTT to reach other networks1. 
Figure 1 illustrates connectivity between O2 processes. 

To send a message, O2 first looks in a dictionary for 
who offers the indicated service. If the service is offered 
by a remote process, O2 checks for an existing connec-
tion (either a TCP socket or a UDP address). If found, the 
message is sent directly. If not, O2 (version 2) publishes 
the message to the MQTT topic corresponding to the des-
tination process. Network routing is based only on the 

 
Figure 1. Connectivity possibilities in O2 include processes on 
the same host (A to B), processes on the same LAN (A or B to 
C), and processes on different LANs (any to D). Process A uses 
the shared memory option to exchange messages between two 
threads. 



 

 

service name, but upon receipt by the process offering the 
service, the remainder of the address is used to find a spe-
cific handler (a function pointer). 

4.2. Shared Memory Communication 

One drawback of O2 version 1 for audio applications was 
that all communication required networking system calls. 
Typically, network communication is not recommended 
(and may be prohibited) in audio processing threads. To 
address this, version 2 has a shared memory interface for 
very low-latency messaging between threads. This is par-
ticularly intended to support sound synthesis. O2 can 
now provide communication where one would typically 
require special lock-free mechanisms to communicate 
with asynchronous audio computation. 

The life cycle of a message in this case is as follows: 
(1) In the message construction process, message 
memory is allocated from a built-in, real-time allocator 
that dequeues memory from a free list2. If the free list is 
empty, memory is allocated from a large pre-allocated 
memory region. (2) The message is delivered by pushing 
it onto a linked list that is read by the other thread. (3) 
The receiving thread periodically removes the entire list 
with an atomic lock-free operation. It then reverses the 
list to put the messages in time order and delivers each 
message. (4) After delivery, the message is pushed atomi-
cally onto the same free list from which it was allocated. 
These free lists are shared by all threads. 

Threads using shared memory communication run a 
subset of O2 called O2lite and cannot send network mes-
sages. Instead, they communicate only with a full O2 
thread acting as proxy to forward messages to and from 
other hosts. To a remote process, all the services appear 
to belong to the proxy. When an incoming message is re-
ceived by the proxy, the service name is checked to deter-
mine if it should be handled immediately or be forwarded 
to a shared memory thread. Similarly, outgoing messages 
from a shared memory thread are posted to the proxy, 
which forwards them to the real destination. 

4.3. Publish/Subscribe 

A normal style of message passing in O2 (or OSC) as-
sumes the sender is requesting a remote action. This is es-
sentially the remote procedure call (RPC) approach. An-
other style is based on the idea that the sender wants to 
make information available, such as the current value of a 
sensor, but does not know what processes are interested 
in that information. This style can be implemented by al-
lowing interested parties to subscribe to some message 
source. The source must remove subscribers (other ser-
vices) when they fail or terminate. 

To implement this style of communication, O2 has a 
mechanism called a tap. Originally, taps were created to 
support debugging in a distributed system. When a ser-
vice taps another service, it receives copies of all 

 
2 One free list for each size, with choices in increments of 8 up 
to 512 bytes, then sizes double up to 16MB. 

messages arriving at that service. Taps can be used di-
rectly to implement publish/subscribe. The publisher cre-
ates a local service, possibly without any message han-
dler. To publish, it sends a message to this service. Sub-
scribers create a local service that taps the publisher’s 
service. 

O2 maintains taps, removing them when the receiver 
fails (detected by monitoring the receiver’s TCP socket). 
To avoid the infinite circulation of messages in the event 
of a circular tap structure, tapped message have a “hop 
count” that prevents the message from being forwarded 
more than twice. 

4.4. Properties 

Yet another style of communication is based on sharing 
state rather than sending messages. Imagine a service that 
can be “ready” or “paused.” Clients of the service might 
want to know when the service is “ready.” Of course, the 
service could actively send its state to interested parties 
through publish/subscribe, but new subscribers might 
miss the message. At best, all subscribers have to receive 
and remember state changes. 

LANdini has a built-in mechanism for assigning prop-
erties to hosts. For example, a laptop orchestra might 
have a conductor, a number of players, and some non-
player processes. The conductor might want to identify 
who are the players. This is simple if players can have a 
“player” property. In O2, players would be services, each 
with a unique name, and originally there was no easy way 
to find services that are players (except possibly through 
naming conventions: player1, player2, etc. 

Inspired by LANdini, O2 now allows applications to 
associate a list of property/value pairs (both are strings) 
with each service. O2 functions allow a process to look 
up property values or to search for all services with a cer-
tain property value, such as “player:true.” 

Properties are implemented as part of the O2 discovery 
system. Whenever the status of a service changes (it is 
created or destroyed), update messages are automatically 
sent to all known O2 processes. Properties are simply an 
extension of the service status. Whenever anything 
changes, the complete service status is transmitted to all 
processes. Frequent changes or large amounts of state can 
result in a large amount of network traffic, but small 
amounts of fairly stable state information can be conven-
iently provided with this mechanism. 

5. IMPLEMENTATION 

O2 is written in C++, runs on macOS, Linux and Win-
dows, and is freely available as open-source software 
(github.com/rbdannenberg/o2). It uses Bonjour (known 
as Avahi on Linux) for discovery of processes. As each 
process is “discovered” by another, a TCP connection is 
made, and additional information is then exchanged via 
special O2 messages about services. Every process keeps 



 

 

a complete and up-to-date map from service name to ser-
vice provider (a process) so that messages can be routed 
quickly and directly to the intended receiving process. 

Clock synchronization is built into O2 and requires 
one process to be manually designated as the reference 
clock. Other processes discover the clock service and pe-
riodically request the time. Local clocks are updated after 
filtering out delayed responses and compensating for 
round-trip network transmission time. Clocks are ad-
justed smoothly to avoid jumps in the estimates of the 
global clock time. Since O2 messages are accurately 
timed, a process can schedule internal events simply by 
sending messages to itself. By layering clock synchroni-
zation over O2 discovery and messaging, and by integrat-
ing O2 clocks with timestamps and message scheduling, 
the implementation is compact, self-contained, and al-
lows an external time reference such as digital audio, in 
contrast to using a protocol such as NTTP. 

Message delivery begins by looking for the first node 
of the address in a hash table of services. (See Figure 2.) 
Each service is associated with two lists: (1) service pro-
viders lists remote processes or local handlers (functions) 
that implement the service, sorted by their process IP ad-
dresses. The highest is designated as the “active” service. 
(2) taps list services that have tapped this service. The 
message is sent to the active service (if any) and all taps 
on the service. Normally, the service provider directly 
references an object maintaining a TCP socket, a buffer 
for incoming messages, and the connection state. Alterna-
tively, the service could be local and described by a tree 
of hash tables used to decode the address3. 

 
Figure 1. To deliver messages, each process first maps the 
service name (first node of the address) to either: (top) a 
remote-process object encapsulating an open TCP socket, UDP 
address, and connection state; (middle) local service represented 
as a tree to decode the address, e.g., /s2/x/y, mapping it to a 
handler function pointer or object; (bottom) a Bridge Interface 
instance, which implements shared memory, MQTT and other 
transports. This diagram is slightly simplified, as each service 
actually maps to a list of service providers and taps rather than a 
single provider. 

 
3O2 supports OSC-like address patterns, and the tree structure 
allows efficient search for matching addresses. However, since 
OSC patterns are not widely used, a simpler and more efficient 
“flat” hash table of full address strings is also maintained to 

Yet another option is that the service can be provided 
by a bridge. The bridge abstraction allows O2 to be ex-
tended to other transports and protocols. The use of 
MQTT for global discovery and connectivity is one ex-
ample, and the shared memory interface is another. The 
bridge abstraction has also been used to create a minimal 
protocol, O2lite, which gives O2 messaging capabilities 
to microcontrollers (over WiFi) and web browsers (over 
WebSockets) [10]. In fact, O2 includes an integral web 
browser to serve web applications and an O2lite imple-
mentation in Javascript making it easy to connect brows-
ers to O2 ensembles. 

5.1. Performance and Evaluation 

Most of the runtime in message sending is due to basic 
network operations and not the additional functions pro-
vided by O2. In a simple test, sending short messages 
round-robin between two processes on the same machine, 
O2 sends about 35,000 messages per second using either 
TCP or UDP, compared to about 45,000 per second with 
a streamlined implementation using UDP directly. When 
actual networks are involved, costs are higher, and the 
relative cost of O2 protocols is negligible. 

For shared memory operation, we achieve about 
600,000 short messages per second, or a 3.3 μs round trip 
to send a message to another thread and get a reply. Most 
of the time, however, is due to polling for network activ-
ity. If multiple messages are sent within one polling pe-
riod, the polling cost will be amortized over many mes-
sages. Detailed analysis, factoring out the cost of check-
ing for network events, indicates that a one-way shared 
memory send and receive adds only 0.32 μs of processing 
time, which is equivalent to 3.1 million messages per sec-
ond. All tests were performed on a 2.4GHz Intel Core i5 
running macOS. 

O2 version 2 uses non-blocking calls for send and re-
ceive to minimize its timing impact, but only one mes-
sage is queued to prevent clients from queuing an un-
bounded number of messages waiting on a too-slow con-
nection. A process that is about to block in a send can de-
tect that condition and avoid blocking altogether. 

Of course, any system or protocol is judged not only 
by performance but by functionality and ease-of-use, 
which is very hard to measure. We believe O2 is a strong 
candidate for computer music applications because it has 
evolved from experience with OSC, ZeroMQ [11] and 
others. We have used it for laptop orchestras, audio serv-
ers, interactive music systems and web interfaces, and we 
hope the community will use it more widely. 

6. APPLICATIONS 

O2 is intended for a variety of applications. Interconnec-
tion and communication become critical as music systems 

allow a full address lookup in a single step. A compilation op-
tion allows the developer to disable pattern decoding, which 
also avoids maintaining the tree structured pattern lookup struc-
ture.  



 

 

become more complex, combining graphical interfaces, 
sophisticated sound synthesis systems, machine learning 
modules, wireless sensors, video projection, and even 
global participation. We believe O2 can be helpful in 
many applications such as the following. 

6.1. Laptop Orchestras 

The first application of O2 was in a laptop orchestra per-
formance. Discovery simplified the process of connecting 
players to a central conductor service, eliminating the 
need to type in IP addresses and port numbers. The con-
ductor established a shared musical time framework by 
publishing a mapping from O2 time to beat, e.g.,  
  𝑏𝑒𝑎𝑡 = (𝑟𝑒𝑎𝑙_𝑡𝑖𝑚𝑒 − 𝑡𝑖𝑚𝑒_𝑜𝑓𝑓𝑠𝑒𝑡) × 𝑏𝑒𝑎𝑡𝑠_𝑝𝑒𝑟_𝑠𝑒𝑐𝑜𝑛𝑑. 
Since clocks were synchronized, music from the ensem-
ble was synchronized so accurately that we had to con-
sider the speed of sound in our setup. Control combined 
global information from the conductor with local control 
by each player. Some players used TouchOSC 
(hexler.net/touchosc) and other controllers connected to 
their laptops using the OSC compatibility feature of O2. 
(video: youtu.be/3OYhC3KNt-g) 

6.2. Sensors and Synthesis 

O2 was designed to be light-weight and to run directly on 
microcontrollers with Linux, such as the Raspberry Pi 
(raspberrypi.org). However, microcontrollers abound, and 
version 2 of O2 includes an O2lite implementation for 
Arduino-compatible microcontrollers such as the ESP32, 
which is a low-cost, low-power microcontroller with sup-
port for Wi-Fi. With these types of microcontrollers and 
O2, sensors can be integrated into computer music sys-
tems with a minimum of on-stage configuration. Reliable 
2-way communication allows sensors to be configured re-
motely, e.g., to request specific sensor data or change the 
sample rate without reprogramming. Code samples are 
included in O2 source code. 

6.3. Network Music 

Many computer music performers collaborate over net-
works [12]. Although O2 is not designed to support audio 
and video streaming, network music often involves col-
laborative control of music generation systems, graphical 
displays and sharing gestural controller data. O2 makes it 
easy to bridge multiple sites, especially computers on 
home Wi-Fi networks that do not have public IP ad-
dresses. Even applications running OSC can be intercon-
nected as follows (see Figure 3): Create and run a local 
O2 application that acts as an OSC server on (arbitrarily) 
port 8000, forwarding messages to service remote. Cre-
ate and run a remote O2 application that delegates ser-
vice remote to an OSC server at (also arbitrarily) port 
8000. Now a local OSC application can send to “lo-
calhost” (128.0.0.1), port 8000. The messages will be 
transferred to the remote machine (anywhere with Inter-
net access) and delivered to the remote OSC server on 
port 8000. This approach parallels our “Telematic 

Soundcool” performance [13], which was implemented 
directly with TCP before O2 was available. 

6.4. Interactive Installations 

Installations often use multiple computers for audio, 
video and control processing. Especially when microcon-
trollers and existing Wi-Fi networks are used, connec-
tions can require manual configuration or even repro-
gramming microcontrollers with fixed IP addresses. With 
the ability to automatically connect multiple laptops and 
microcontrollers, O2 simplifies configuration and offers 
open-ended message formats and addressing to support 
the needs of the installation. Another interesting option is 
that artists often want to monitor long-term installations 
remotely to make sure they are functioning correctly. Us-
ing global-scale discovery, publish/subscribe, and other 
capabilities, the artist can construct remote monitoring 
software that taps into the installation to obtain status, run 
tests, or monitor activity. Although this idea has not been 
used in a real installation, the capabilities are illustrated 
in a working prototype described elsewhere (see Figure 4 
in [4]). 

6.5. Audio Synthesis 

Audio synthesis typically runs on high-priority threads 
where locks or blocking calls, which could add un-
bounded delay, are prohibited. Without locks, software 
must resort to lock-free data structures so that control 
software can communicate with audio synthesis software.  
O2 now offers lock-free communication for time-critical 
audio processing. This is not unlike the use of OSC by 
the Supercollider synthesis server [14], only with more 
flexible addressing, discovery, clock synchronization, etc. 
See github.com/rbdannenberg/arco for a working exam-
ple. 

6.6. Modular Performance Systems 

O2 originated in the context of a modular performance 
system [15], with modules that include a conductor for 

 
Figure 3. Bridging OSC over the Internet. An OSC Sender 
sends to a local O2 Server (left), which discovers the remote 
service and forwards OSC messages reliably. The remote 
service converts messages back to OSC and sends them to a 
local OSC receiver. Thus, OSC is delivered reliably across the 
Internet without any manual configuration of IP addresses and 
ports. If OSC processes are behind firewalls, O2 will 
automatically revert to using an MQTT broker to forward 
messages. 



 

 

coordinating performers, sequence-players for perform-
ing MIDI sequences, audio-players using phase-vocoders 
to synchronize audio playback to live performers, and 
score-players to display music notation and turn pages 
automatically. O2 is now integrated with our code, so 
modules discover other modules and configure them-
selves, e.g., players can operate stand-alone, but when a 
conductor is discovered, the players accept control (start, 
stop, set position, tempo) from the conductor. Clock syn-
chronization allows modules to run as separate processes 
but still synchronize precisely, even in the face of net-
work latency. 

This approach offers great flexibility. For example, we 
have a polyphonic score-follower that, when substituted 
for the usual conductor, converts the system into a (not 
yet released) computer accompaniment system [16]. We 
believe that future live computer music systems will in-
clude intelligent agents as performers, and we hope that 
configuring these future systems will be as commonplace 
as today’s rock band connecting electric guitars, pedals, 
mixers, microphones, amplifiers and speakers. 

7. CONCLUSIONS 

O2 is a powerful communication protocol or “middle-
ware” that aids in the construction of interactive real-time 
computer music systems. This article introduces new de-
velopments now available in version 2, including discov-
ery and communication on a global scale using the same 
structure of services and messages. O2 does not rely on 
DNS [3], so it works without domain names and fixed IP 
addresses, which are often impractical in-home networks, 
mobile devices and concert venues. At the very local 
level, messages can now be delivered efficiently between 
high-priority threads sharing memory using lock-free data 
structures to support low-latency audio processing. 

Also new in O2 are some styles of communication. 
State information can be shared through properties asso-
ciated with services. Frequently changing information can 
be monitored using a publish/subscribe protocol. 

We have also described six common patterns of com-
munication in music applications ranging from low-la-
tency audio computation and control to network music on 
a global scale. A feature of O2 is that a single message 
format and addressing mechanism can be used to send 
messages to a thread in the same process or to another 
host anywhere on the Internet. In fact, the location of ser-
vices (receivers) is abstracted from the address, so sys-
tems become more modular and reconfigurable. 

In the future, we expect to make more libraries availa-
ble implementing O2lite natively so that code written in 
Python, Java, Javascript and other languages can send 
messages into an O2-based application. We also expect 
to create external O2 objects for Max (cycling74.com) 
and Pd (puredata.info) as an alternative to OSC. 
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