

O2: Communication Middleware for Real-Time
Distributed Music Applications

 Roger B. Dannenberg
 Carnegie Mellon University

rbd@cs.cmu.edu

ABSTRACT
O2 is a communication protocol or “middleware” for
real-time music applications. It features automatic discov-
ery to simplify network configuration, clock synchroniza-
tion, a reliable message option, and named services. A
new version of O2 offering new capabilities is described.
O2 now supports global discovery and communication,
extending the previous version, which was limited to a
single local area network. O2 can also deliver messages
through shared memory allowing efficient lock-free com-
munication with high-priority audio threads. Multiple
styles of communication are facilitated in this new ver-
sion, which supports taps to copy or “spy” on message
streams. Taps can be used to implement publish/subscribe
directly, and services also have writable properties that
are eagerly pushed to peer processes for reading. Typical
applications of O2 in creating computer music systems
are described.

1. INTRODUCTION

Computer music systems are often “composed” from rel-
atively isolated and independent modules for signal pro-
cessing, graphical interfaces, control logic, audio effects,
etc. In the past, performance requirements often dictated
using a monolithic program where all processing could be
carefully organized and scheduled. Today, most comput-
ers have multi-core processors, which allow multiple pro-
grams to run in parallel. This results in less contention for
resources and therefore fewer scheduling problems.

Moreover, if tasks such as graphical interfaces, control
and synthesis run in multiple programs, or at least in sep-
arate threads, more parallelism and therefore more com-
puting power becomes available. Communication be-
tween programs, however, can be difficult. Software de-
velopers or end users must deal with a variety of commu-
nication protocols, each with different data representa-
tions, requirements for establishing connections, naming
conventions and other details. Different programs support

different protocols, including MIDI [1], Open Sound
Control (OSC) [2], ReWire (en.wikipedia.org/wiki/Re-
Wire_(software_protocol)), Abelton Link (www.able-
ton.com/en/link), and others, so additional software is of-
ten required to relay information between programs.

Experimental computer music systems often explore
new ways to control and generate sound, so existing pro-
tocols based on traditional conventions of equal tempera-
ment, time signatures and tempo are often too rigid and
limited. This might explain the popularity of OSC, which
is a very simple and open-ended protocol for sending
messages with an arbitrary set of parameters to objects or
functions, organized in a hierarchical name space.

The O2 protocol aims to address some of the shortcom-
ings of OSC, making it simpler to create powerful distrib-
uted music applications while keeping the open-ended ex-
tensible nature of OSC with which many musicians are
already familiar. Important features of O2 include ser-
vices, which help to achieve modularity, discovery, which
simplifies establishing connections, clock synchroniza-
tion, which creates a shared time base among all com-
municating processes, and message delivery options, that
include (1) normal best-effort delivery as offered by UDP
and (2) reliable delivery as offered by TCP [3].

These features formed the core of O2 version 1, which
has been described previously [4]. This paper describes
some of the new features in version 2 and their relevance
to music systems. Related work is described in the next
section, followed by an overview of O2. Section 4 pre-
sents new capabilities in version 2, and some implemen-
tation details are provided in Section 5. Section 6 de-
scribes some typical applications of O2, and Section 7
presents conclusions.

2. RELATED WORK

O2 is inspired by OSC, which is widely used in the com-
munity. O2 messages include the key ingredients of OSC
messages: A URL-like address string and a set of typed
parameters. Despite its success, OSC has a number of
limitations, including the need to provide clients with the
server IP address (which is often dynamic), and the prob-
lem of losing messages sent over Wi-Fi.

Libmapper [5] is a music communication system in-
tended to map inputs from sensors into synthesis control
parameters. This rather specific focus makes libmapper
less general than other systems but more powerful in

Copyright: © 2022 Roger B. Dannenberg. This is an open-access article
distributed under the terms of the Creative Commons Attribu-
tion License 3.0 Unported, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original au-
thor and source are credited.

tasks for which it is designed; for example, libmapper of-
fers dynamically configurable connections from sensor
parameter to control parameter with various adjustable
mapping functions.

LANdini [6] has similar goals to O2 in that it offers
discovery on a LAN and reliable transmission. However,
LANdini messages flow in 3 “hops” – from application
(1) to local server, (2) to remote server, (3) to remote ap-
plication, and the overall message rate for N devices is
proportional to N2. However, LANdini has inspired some
recent new capabilities in O2.

MobMuPlat (www.mobmuplat.com) [7] is software
specifically for running Pure Data (Pd) [8] on mobile de-
vices. In addition to support for graphical interfaces and
sensors, MobMuPlat supports a simple discovery and peer-
to-peer connection scheme within a LAN.

3. INTRODUCTION TO O2

O2 is described elsewhere [4], but we give a brief intro-
duction here. The remainder of this paper will focus on
new developments that extend the first version of O2.
The basic function of O2 is to send one-way, peer-to-peer
messages, usually to make a remote procedure call. Ra-
ther than directing messages to specific ports or host
computers, messages are addressed to services. Any pro-
cess can offer one or more services. This allows some
flexibility in system design and configuration. Services
can be moved from one host to another or from one pro-
cess to another without changing any clients.

Messages contain a sequence of data items with type
information (as in OSC). O2 messages also include a
timestamp. Addresses are URL-like strings, similar to
OSC addresses, e.g., /synth/lfo/freq; however, the
first node in an O2 address (here, synth) is a service
name, and the rest of the address refers to destinations (or
operations) within that service.

O2 offers two ways to send a message:
o2_send(address, time, types, val1, val2, …);
o2_send_cmd(address, time, types, val1, val2, …);

where o2_send sends with a “best effort” or UDP policy,
typically for time-sensitive sensor data that will be up-
dated periodically, while o2_send_cmd uses a lossless or
TCP policy, typically for critical one-time commands.

O2 automatically performs clock synchronization so
that messages can be delivered at precise times in the fu-
ture. This is a technique for avoiding network jitter [9].

O2 also offers OSC compatibility. To act as an OSC
client, an application can delegate an O2 service to an
OSC server. Messages for that service will then be for-
warded to the OSC server. O2 can also act as an OSC
server that converts incoming OSC messages to O2 mes-
sages and forwards them to an O2 service.

1 A future extension might use STUN (en.wikipedia.org/wiki/
STUN) to traverse NAT gateways and offer lower latency in
some cases.

4. NEW CAPABILITIES

4.1. Global Discovery and Communication

The pandemic has created new awareness and activity in
music networking. O2 version 2 extends the discovery
protocol beyond the local area network to the global In-
ternet. This wide-area discovery protocol uses MQTT
(mqtt.org), a lightweight Internet-of-Things (IoT) mes-
saging protocol for which there are open servers.

Using MQTT, O2 processes subscribe to a topic that
informs them of other O2 processes. To support multiple
O2 users on the Internet or even on a single LAN, each
group of communicating O2 processes, called an ensem-
ble, is given a unique name.

Suppose our ensemble name is myens. To become
reachable, each process subscribes to the MQTT topic
o2-myens/xxxxxxxx:yyyyyyyy:zzzz, where
x…:y…:z… encodes the public IP address (x…x), local IP
address (y…y) and port number (zzzz) of the process, all
in hexadecimal.

Each process also subscribes to O2-myens/disc and
sends its service name (every process has an automati-
cally generated O2 service name) to that topic. This noti-
fies every existing process that the new process exists and
how to reach it. By examining local and public IP ad-
dresses, O2 processes can determine if they have direct
connectivity to each other. If so, pairs establish a direct
peer-to-peer connection. Processes behind NAT fire-
walls continue to use MQTT to reach other networks1.
Figure 1 illustrates connectivity between O2 processes.

To send a message, O2 first looks in a dictionary for
who offers the indicated service. If the service is offered
by a remote process, O2 checks for an existing connec-
tion (either a TCP socket or a UDP address). If found, the
message is sent directly. If not, O2 (version 2) publishes
the message to the MQTT topic corresponding to the des-
tination process. Network routing is based only on the

Figure 1. Connectivity possibilities in O2 include processes on
the same host (A to B), processes on the same LAN (A or B to
C), and processes on different LANs (any to D). Process A uses
the shared memory option to exchange messages between two
threads.

service name, but upon receipt by the process offering the
service, the remainder of the address is used to find a spe-
cific handler (a function pointer).

4.2. Shared Memory Communication

One drawback of O2 version 1 for audio applications was
that all communication required networking system calls.
Typically, network communication is not recommended
(and may be prohibited) in audio processing threads. To
address this, version 2 has a shared memory interface for
very low-latency messaging between threads. This is par-
ticularly intended to support sound synthesis. O2 can
now provide communication where one would typically
require special lock-free mechanisms to communicate
with asynchronous audio computation.

The life cycle of a message in this case is as follows:
(1) In the message construction process, message
memory is allocated from a built-in, real-time allocator
that dequeues memory from a free list2. If the free list is
empty, memory is allocated from a large pre-allocated
memory region. (2) The message is delivered by pushing
it onto a linked list that is read by the other thread. (3)
The receiving thread periodically removes the entire list
with an atomic lock-free operation. It then reverses the
list to put the messages in time order and delivers each
message. (4) After delivery, the message is pushed atomi-
cally onto the same free list from which it was allocated.
These free lists are shared by all threads.

Threads using shared memory communication run a
subset of O2 called O2lite and cannot send network mes-
sages. Instead, they communicate only with a full O2
thread acting as proxy to forward messages to and from
other hosts. To a remote process, all the services appear
to belong to the proxy. When an incoming message is re-
ceived by the proxy, the service name is checked to deter-
mine if it should be handled immediately or be forwarded
to a shared memory thread. Similarly, outgoing messages
from a shared memory thread are posted to the proxy,
which forwards them to the real destination.

4.3. Publish/Subscribe

A normal style of message passing in O2 (or OSC) as-
sumes the sender is requesting a remote action. This is es-
sentially the remote procedure call (RPC) approach. An-
other style is based on the idea that the sender wants to
make information available, such as the current value of a
sensor, but does not know what processes are interested
in that information. This style can be implemented by al-
lowing interested parties to subscribe to some message
source. The source must remove subscribers (other ser-
vices) when they fail or terminate.

To implement this style of communication, O2 has a
mechanism called a tap. Originally, taps were created to
support debugging in a distributed system. When a ser-
vice taps another service, it receives copies of all

2 One free list for each size, with choices in increments of 8 up
to 512 bytes, then sizes double up to 16MB.

messages arriving at that service. Taps can be used di-
rectly to implement publish/subscribe. The publisher cre-
ates a local service, possibly without any message han-
dler. To publish, it sends a message to this service. Sub-
scribers create a local service that taps the publisher’s
service.

O2 maintains taps, removing them when the receiver
fails (detected by monitoring the receiver’s TCP socket).
To avoid the infinite circulation of messages in the event
of a circular tap structure, tapped message have a “hop
count” that prevents the message from being forwarded
more than twice.

4.4. Properties

Yet another style of communication is based on sharing
state rather than sending messages. Imagine a service that
can be “ready” or “paused.” Clients of the service might
want to know when the service is “ready.” Of course, the
service could actively send its state to interested parties
through publish/subscribe, but new subscribers might
miss the message. At best, all subscribers have to receive
and remember state changes.

LANdini has a built-in mechanism for assigning prop-
erties to hosts. For example, a laptop orchestra might
have a conductor, a number of players, and some non-
player processes. The conductor might want to identify
who are the players. This is simple if players can have a
“player” property. In O2, players would be services, each
with a unique name, and originally there was no easy way
to find services that are players (except possibly through
naming conventions: player1, player2, etc.

Inspired by LANdini, O2 now allows applications to
associate a list of property/value pairs (both are strings)
with each service. O2 functions allow a process to look
up property values or to search for all services with a cer-
tain property value, such as “player:true.”

Properties are implemented as part of the O2 discovery
system. Whenever the status of a service changes (it is
created or destroyed), update messages are automatically
sent to all known O2 processes. Properties are simply an
extension of the service status. Whenever anything
changes, the complete service status is transmitted to all
processes. Frequent changes or large amounts of state can
result in a large amount of network traffic, but small
amounts of fairly stable state information can be conven-
iently provided with this mechanism.

5. IMPLEMENTATION

O2 is written in C++, runs on macOS, Linux and Win-
dows, and is freely available as open-source software
(github.com/rbdannenberg/o2). It uses Bonjour (known
as Avahi on Linux) for discovery of processes. As each
process is “discovered” by another, a TCP connection is
made, and additional information is then exchanged via
special O2 messages about services. Every process keeps

a complete and up-to-date map from service name to ser-
vice provider (a process) so that messages can be routed
quickly and directly to the intended receiving process.

Clock synchronization is built into O2 and requires
one process to be manually designated as the reference
clock. Other processes discover the clock service and pe-
riodically request the time. Local clocks are updated after
filtering out delayed responses and compensating for
round-trip network transmission time. Clocks are ad-
justed smoothly to avoid jumps in the estimates of the
global clock time. Since O2 messages are accurately
timed, a process can schedule internal events simply by
sending messages to itself. By layering clock synchroni-
zation over O2 discovery and messaging, and by integrat-
ing O2 clocks with timestamps and message scheduling,
the implementation is compact, self-contained, and al-
lows an external time reference such as digital audio, in
contrast to using a protocol such as NTTP.

Message delivery begins by looking for the first node
of the address in a hash table of services. (See Figure 2.)
Each service is associated with two lists: (1) service pro-
viders lists remote processes or local handlers (functions)
that implement the service, sorted by their process IP ad-
dresses. The highest is designated as the “active” service.
(2) taps list services that have tapped this service. The
message is sent to the active service (if any) and all taps
on the service. Normally, the service provider directly
references an object maintaining a TCP socket, a buffer
for incoming messages, and the connection state. Alterna-
tively, the service could be local and described by a tree
of hash tables used to decode the address3.

Figure 1. To deliver messages, each process first maps the
service name (first node of the address) to either: (top) a
remote-process object encapsulating an open TCP socket, UDP
address, and connection state; (middle) local service represented
as a tree to decode the address, e.g., /s2/x/y, mapping it to a
handler function pointer or object; (bottom) a Bridge Interface
instance, which implements shared memory, MQTT and other
transports. This diagram is slightly simplified, as each service
actually maps to a list of service providers and taps rather than a
single provider.

3O2 supports OSC-like address patterns, and the tree structure
allows efficient search for matching addresses. However, since
OSC patterns are not widely used, a simpler and more efficient
“flat” hash table of full address strings is also maintained to

Yet another option is that the service can be provided
by a bridge. The bridge abstraction allows O2 to be ex-
tended to other transports and protocols. The use of
MQTT for global discovery and connectivity is one ex-
ample, and the shared memory interface is another. The
bridge abstraction has also been used to create a minimal
protocol, O2lite, which gives O2 messaging capabilities
to microcontrollers (over WiFi) and web browsers (over
WebSockets) [10]. In fact, O2 includes an integral web
browser to serve web applications and an O2lite imple-
mentation in Javascript making it easy to connect brows-
ers to O2 ensembles.

5.1. Performance and Evaluation

Most of the runtime in message sending is due to basic
network operations and not the additional functions pro-
vided by O2. In a simple test, sending short messages
round-robin between two processes on the same machine,
O2 sends about 35,000 messages per second using either
TCP or UDP, compared to about 45,000 per second with
a streamlined implementation using UDP directly. When
actual networks are involved, costs are higher, and the
relative cost of O2 protocols is negligible.

For shared memory operation, we achieve about
600,000 short messages per second, or a 3.3 μs round trip
to send a message to another thread and get a reply. Most
of the time, however, is due to polling for network activ-
ity. If multiple messages are sent within one polling pe-
riod, the polling cost will be amortized over many mes-
sages. Detailed analysis, factoring out the cost of check-
ing for network events, indicates that a one-way shared
memory send and receive adds only 0.32 μs of processing
time, which is equivalent to 3.1 million messages per sec-
ond. All tests were performed on a 2.4GHz Intel Core i5
running macOS.

O2 version 2 uses non-blocking calls for send and re-
ceive to minimize its timing impact, but only one mes-
sage is queued to prevent clients from queuing an un-
bounded number of messages waiting on a too-slow con-
nection. A process that is about to block in a send can de-
tect that condition and avoid blocking altogether.

Of course, any system or protocol is judged not only
by performance but by functionality and ease-of-use,
which is very hard to measure. We believe O2 is a strong
candidate for computer music applications because it has
evolved from experience with OSC, ZeroMQ [11] and
others. We have used it for laptop orchestras, audio serv-
ers, interactive music systems and web interfaces, and we
hope the community will use it more widely.

6. APPLICATIONS

O2 is intended for a variety of applications. Interconnec-
tion and communication become critical as music systems

allow a full address lookup in a single step. A compilation op-
tion allows the developer to disable pattern decoding, which
also avoids maintaining the tree structured pattern lookup struc-
ture.

become more complex, combining graphical interfaces,
sophisticated sound synthesis systems, machine learning
modules, wireless sensors, video projection, and even
global participation. We believe O2 can be helpful in
many applications such as the following.

6.1. Laptop Orchestras

The first application of O2 was in a laptop orchestra per-
formance. Discovery simplified the process of connecting
players to a central conductor service, eliminating the
need to type in IP addresses and port numbers. The con-
ductor established a shared musical time framework by
publishing a mapping from O2 time to beat, e.g.,
 𝑏𝑒𝑎𝑡 = (𝑟𝑒𝑎𝑙_𝑡𝑖𝑚𝑒 − 𝑡𝑖𝑚𝑒_𝑜𝑓𝑓𝑠𝑒𝑡) × 𝑏𝑒𝑎𝑡𝑠_𝑝𝑒𝑟_𝑠𝑒𝑐𝑜𝑛𝑑.
Since clocks were synchronized, music from the ensem-
ble was synchronized so accurately that we had to con-
sider the speed of sound in our setup. Control combined
global information from the conductor with local control
by each player. Some players used TouchOSC
(hexler.net/touchosc) and other controllers connected to
their laptops using the OSC compatibility feature of O2.
(video: youtu.be/3OYhC3KNt-g)

6.2. Sensors and Synthesis

O2 was designed to be light-weight and to run directly on
microcontrollers with Linux, such as the Raspberry Pi
(raspberrypi.org). However, microcontrollers abound, and
version 2 of O2 includes an O2lite implementation for
Arduino-compatible microcontrollers such as the ESP32,
which is a low-cost, low-power microcontroller with sup-
port for Wi-Fi. With these types of microcontrollers and
O2, sensors can be integrated into computer music sys-
tems with a minimum of on-stage configuration. Reliable
2-way communication allows sensors to be configured re-
motely, e.g., to request specific sensor data or change the
sample rate without reprogramming. Code samples are
included in O2 source code.

6.3. Network Music

Many computer music performers collaborate over net-
works [12]. Although O2 is not designed to support audio
and video streaming, network music often involves col-
laborative control of music generation systems, graphical
displays and sharing gestural controller data. O2 makes it
easy to bridge multiple sites, especially computers on
home Wi-Fi networks that do not have public IP ad-
dresses. Even applications running OSC can be intercon-
nected as follows (see Figure 3): Create and run a local
O2 application that acts as an OSC server on (arbitrarily)
port 8000, forwarding messages to service remote. Cre-
ate and run a remote O2 application that delegates ser-
vice remote to an OSC server at (also arbitrarily) port
8000. Now a local OSC application can send to “lo-
calhost” (128.0.0.1), port 8000. The messages will be
transferred to the remote machine (anywhere with Inter-
net access) and delivered to the remote OSC server on
port 8000. This approach parallels our “Telematic

Soundcool” performance [13], which was implemented
directly with TCP before O2 was available.

6.4. Interactive Installations

Installations often use multiple computers for audio,
video and control processing. Especially when microcon-
trollers and existing Wi-Fi networks are used, connec-
tions can require manual configuration or even repro-
gramming microcontrollers with fixed IP addresses. With
the ability to automatically connect multiple laptops and
microcontrollers, O2 simplifies configuration and offers
open-ended message formats and addressing to support
the needs of the installation. Another interesting option is
that artists often want to monitor long-term installations
remotely to make sure they are functioning correctly. Us-
ing global-scale discovery, publish/subscribe, and other
capabilities, the artist can construct remote monitoring
software that taps into the installation to obtain status, run
tests, or monitor activity. Although this idea has not been
used in a real installation, the capabilities are illustrated
in a working prototype described elsewhere (see Figure 4
in [4]).

6.5. Audio Synthesis

Audio synthesis typically runs on high-priority threads
where locks or blocking calls, which could add un-
bounded delay, are prohibited. Without locks, software
must resort to lock-free data structures so that control
software can communicate with audio synthesis software.
O2 now offers lock-free communication for time-critical
audio processing. This is not unlike the use of OSC by
the Supercollider synthesis server [14], only with more
flexible addressing, discovery, clock synchronization, etc.
See github.com/rbdannenberg/arco for a working exam-
ple.

6.6. Modular Performance Systems

O2 originated in the context of a modular performance
system [15], with modules that include a conductor for

Figure 3. Bridging OSC over the Internet. An OSC Sender
sends to a local O2 Server (left), which discovers the remote
service and forwards OSC messages reliably. The remote
service converts messages back to OSC and sends them to a
local OSC receiver. Thus, OSC is delivered reliably across the
Internet without any manual configuration of IP addresses and
ports. If OSC processes are behind firewalls, O2 will
automatically revert to using an MQTT broker to forward
messages.

coordinating performers, sequence-players for perform-
ing MIDI sequences, audio-players using phase-vocoders
to synchronize audio playback to live performers, and
score-players to display music notation and turn pages
automatically. O2 is now integrated with our code, so
modules discover other modules and configure them-
selves, e.g., players can operate stand-alone, but when a
conductor is discovered, the players accept control (start,
stop, set position, tempo) from the conductor. Clock syn-
chronization allows modules to run as separate processes
but still synchronize precisely, even in the face of net-
work latency.

This approach offers great flexibility. For example, we
have a polyphonic score-follower that, when substituted
for the usual conductor, converts the system into a (not
yet released) computer accompaniment system [16]. We
believe that future live computer music systems will in-
clude intelligent agents as performers, and we hope that
configuring these future systems will be as commonplace
as today’s rock band connecting electric guitars, pedals,
mixers, microphones, amplifiers and speakers.

7. CONCLUSIONS

O2 is a powerful communication protocol or “middle-
ware” that aids in the construction of interactive real-time
computer music systems. This article introduces new de-
velopments now available in version 2, including discov-
ery and communication on a global scale using the same
structure of services and messages. O2 does not rely on
DNS [3], so it works without domain names and fixed IP
addresses, which are often impractical in-home networks,
mobile devices and concert venues. At the very local
level, messages can now be delivered efficiently between
high-priority threads sharing memory using lock-free data
structures to support low-latency audio processing.

Also new in O2 are some styles of communication.
State information can be shared through properties asso-
ciated with services. Frequently changing information can
be monitored using a publish/subscribe protocol.

We have also described six common patterns of com-
munication in music applications ranging from low-la-
tency audio computation and control to network music on
a global scale. A feature of O2 is that a single message
format and addressing mechanism can be used to send
messages to a thread in the same process or to another
host anywhere on the Internet. In fact, the location of ser-
vices (receivers) is abstracted from the address, so sys-
tems become more modular and reconfigurable.

In the future, we expect to make more libraries availa-
ble implementing O2lite natively so that code written in
Python, Java, Javascript and other languages can send
messages into an O2-based application. We also expect
to create external O2 objects for Max (cycling74.com)
and Pd (puredata.info) as an alternative to OSC.

Acknowledgments

O2 has developed and evolved through many interactions
with students, visitors, and faculty in the School of

Computer Science at Carnegie Mellon University. Zhang
Chi contributed to the initial implementation.

8. REFERENCES

[1] J. Rothstein. MIDI: A Comprehensive Introduction,
A-R Editions, 1995.

[2] M. Wright, A. Freed, A. Momeni. “Open Sound
Control: State of the Art 2003.” Proceedings of the
International Conference on New Interfaces for Mu-
sical Expressio, 2003, pp. 153-159.

[3] P. L. Dordal, An Introduction to Computer Net-
works, 2016. (available at: www.freetech-
books.com)

[4] R. B. Dannenberg, “O2: A Network Protocol for
Music Systems,” Wireless Communications and
Mobile Computing, (2019), Article ID 8424381,
2019.

[5] J. Malloch, S. Sinclair, M. M. Wanderley,
“Distributed Tools for Interactive Design of
Heterogeneous Signal Networks,” Multimedia Tools
and Applications, 15(74), 2015, 5683–5707.

[6] J. Narveson, D. Trueman, “LANdini: A Networking
Utility for Wireless LAN-based Laptop Ensembles,”
Proceedings of the Sound and Music Computing
Conference 2013 (SMC 2013), 2013, pp. 309–316.

[7] Iglesia, D. “The Mobility is the Message: the Devel-
opment and Uses of MobMuPlat.” PdCon16~, 2016.

[8] Brinkmann, P., et al. “Embedding Pure Data with
libpd.” Proceedings of the Pure Data Convention,
2011.

[9] E. Brandt, R. B. Dannenberg, “Time in Distributed
Real-Time Systems,” Proceedings of the 1999 Inter-
national Computer Music Conference, San Fran-
cisco: International Computer Music Association,
1999, pp. 523-526.

[10] Dannenberg, R. B., “Building Interactive Music
Systems with O2, Microcontrollers and Web Brows-
ers,” Proceedings of the International Conference
on New Interfaces for Musical Expression, 2022.

[11] P. Hintjens, ZeroMQ, O’Reilly Media, Inc., 2013.
[12] C. McKinney, Collaboration and Embodiment in

Networked Music Interfaces for Live Performance,
University of Sussex, Ph.D. Thesis, 2016. (available
as: core.ac.uk/download/pdf/60240897.pdf)

[13] S. Scarani, A. Munoz, J. Serquera, J. Sastre and R.
B. Dannenberg, “Software for Interactive and Col-
laborative Creation in the Classroom and Beyond:
An Overview of the Soundcool Software,” Com-
puter Music Journal, 43(4) (Winter), pp. 12-24.

[14] S. Wilson, D. Cottle, N. Collins, The SuperCollider
Book. The MIT Press, 2011.

[15] R. B. Dannenberg, N. E. Gold, D. Liang, G. Xia,
“Methods and Prospects for Human-Computer Mu-
sic Performance of Popular Music,” Computer Mu-
sic Journal, 38(2) (Summer 2014), pp. 36-50.

[16] R. Dannenberg and C. Raphael, “Music Score
Alignment and Computer Accompaniment,” Com-
munications of the ACM, 49(8), 2006, pp. 38-43.

