
Research Article
O2: A Network Protocol for Music Systems

Roger B. Dannenberg

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Correspondence should be addressed to Roger B. Dannenberg; rbd@cs.cmu.edu

Received 2 January 2019; Revised 18 March 2019; Accepted 4 April 2019; Published 6 May 2019

Guest Editor: Federico Fontana

Copyright © 2019 Roger B. Dannenberg. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

O2 is a communication protocol for music systems that extends and interoperates with the popular Open Sound Control (OSC)
protocol. Many computer musicians routinely deal with problems of interconnection, unreliable message delivery, and clock
synchronization. O2 solves these problems, offering named services, automatic network address discovery, clock synchronization,
and a reliablemessage delivery option, as well as interoperability with existing OSC libraries and applications. Aside from these new
features, O2 owes much of its design to OSC, making it easy to migrate existing OSC applications to O2 or for developers familiar
with OSC to begin using O2. O2 addresses the problems of interprocess communication within distributed music applications.

1. Introduction

Music software and other artistic applications of computers
are often organized as a collection of communicating pro-
cesses. Simple protocols such as MIDI [1] and Open Sound
Control (OSC) [2] have been very effective for this, allowing
users to piece together systems in a modular fashion. Shared
communication protocols allow implementers to use a variety
of languages, apply off-the-shelf applications and devices, and
interface with low-cost sensors and actuators. In addition,
mobile applications intrinsically run on multiple distributed
host computers and require a communication protocol for
any kind of coordination.

Figure 1 illustrates several common organizations for net-
worked music systems. Figure 1(a) shows the “input/mapper/
output” structure, where sensors and input devices stream
values to a control system that maps sensor values to control
parameters, which are passed on to a music synthesizer or
audio signal processor [3]. Examples of this approach include
SensorChimes [4] and play-along mappings of Fiebrink et
al. [5]. The libmapper system is a communication protocol
designed to support this approach [6].

Figure 1(b) illustrates a “conductor/ensemble” structure
commonly used in laptop orchestra and mobile device music
systems.Multiple performers can join and leave the ensemble
by connecting to a central conductor or coordinator that
directs the performers. Examples are described by Essl [7],

Trueman et al. [8], and Dannenberg et al. [9]. This same
configuration is used in wide-area networked music perfor-
mances on a global scale such as quintet.net [10] and the
Global Network Orchestra [11].

Figure 1(c) illustrates a peer-to-peer organization that is
used in networked performances characterized by autonomy
and emergent behavior as opposed to the top-down control
seen in the conductor/ensemble model. Gresham-Lancaster
offers an interesting early history and discussion of this
approach [12]. More examples of all three structures are
described by Wright [13].

In all of these patterns, we see networking has advanced
from point-to-point communication to more flexible and
comprehensive communication substrates often used as
much for softwaremodularity and resilience as for communi-
cation.We introduce the protocol, O2, that provides for com-
munication and coordination among music processes and
offers some important new features over previous protocols
such as OSC.

A common problem in any distributed system is how
to initialize connections. For example, typical OSC servers
do not have fixed IP addresses and cannot be found via
DNS servers as is common with Web servers. Instead,
OSC users usually enter IP addresses and port numbers
manually. The numbers cannot be “compiled in” to code
because IP addresses are dynamically assigned and could
change between development, testing, and performance. O2

Hindawi
Wireless Communications and Mobile Computing
Volume 2019, Article ID 8424381, 12 pages
https://doi.org/10.1155/2019/8424381

http://orcid.org/0000-0003-1823-9856
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8424381

2 Wireless Communications and Mobile Computing

Sensors

Sensors

Decision
&

Control

Sound
Synthesis

(a)

Performer

Performer

Performer

Conductor

(b)

Performer

Performer

Performer

(c)

Figure 1: Common structures for networked music systems: (a) the “input/mapper/output” structure; (b) the “conductor/ensemble”
structure; (c) peer-to-peer structure.

eliminates most network configuration problems, allowing
programmers to create and address services with fixed,
human-readable names.

Music applications often have two conflicting require-
ments for message delivery. Sampled sensor data should be
sent with minimum latency. Lost data is of little consequence
since a new sensor reading will soon follow, and retransmit-
ting stale sensor data serves little purpose.This calls for a best-
effort delivery mechanism such as UDP. On the other hand,
somemessages are critical and one-time only, e.g., “stopnow.”
These critical messages are best sent with a reliable delivery
mechanism such as TCP.

Another desirable feature is timed message delivery,
especially for music where timing is critical. One powerful
method of reducing timing jitter in networks is to pre-
compute commands and send them in advance for precise
delivery according to timestamps. O2 facilitates this forward-
synchronous approach [14] with timestamps and clocks.

Our goal has been to create a simple, extensible com-
munication mechanism for modern computer music (and
other) systems. O2 is inspired by OSC, but there are some
important differences. While OSC does not specify details
of the transport mechanism, O2 uses TCP and UDP over
IP (which in turn can use Ethernet, WiFi, and other data
link layers). By assuming a common IP transport layer, it is
relatively straightforward to add discovery, a reliable message
option, and accurate timing.

In the following section, we describe important and novel
features of O2. This is followed by a section on related work.
Then, we describe the design and implementation, focusing
on novel aspects of O2. A communication protocol is mainly
useful as “glue” between different systems. In the section
“Interoperation,” we describe how O2 interoperates with
Open Sound Control, Web applications, and various lan-
guages. Finally, we present some performancemeasurements,
a summary, and conclusions.

2. O2 Features and API

The main organization of O2 is illustrated in Figure 2. We
will first introduce some O2 terminology. An O2 host is a

computer with an IP address. An O2 process is a running
program. There may be multiple processes running on a
single host. AnO2 ensemble is a named collection of processes
that communicate and share services. Every O2 process
belongs to one and only one ensemble. This allows multiple
independent performers or groups to use O2 over the same
network without interference. An O2 address is a URL-
like string designating a function or method. For example,
/synth/filter/cutoffmight address a function to set the
filter cutoff frequency in the synth service.

2.1. Creating a Service. The top-level (first) node in an address
names an O2 service. A service is an abstraction for a set
of functions or a resource such as a synthesizer, a display, a
sensor, or a controller. A service is accessible via O2messages,
which consist of an address and a set of typed parameters.
Services can be created dynamically by any process, services
are “owned” by a process and automatically discovered by all
other O2 processes, and all messages addressed to a service
are delivered by invoking a registered callback function
within the process.

To create a service, one writes

o2 initialize(ensemble); // one-time O2
startup

o2 service new(service); // create a new
service

where ensemble is a unique ensemble name.
Typically, each full address in the hierarchical name space

represents a function. To associate a function with an O2
address, call

o2 method new(address, types, handler,
info, coerce, parse);

where address is the full address, e.g. /synth/filter/
cutoff, types gives the expected parameter types (for
example, "si" specifies that a string and a 32-bit integer
parameter are expected), handler is the address of the callback
function to which the parameters are passed, and info is
an additional parameter to pass to this handler function.

Wireless Communications and Mobile Computing 3

TCP/IP

Host B

Host C

Service
2Service

1 Service 3

Service 4

Host A

Host D
“Sensor”
Service

Bluetooth

ZigBee,
Serial,
USB, etc.

Client 1

Client 2

Figure 2: A distributed O2 ensemble showing processes connected by TCP/IP (wireless and/or wired) over a local area network, running
multiple services, with additional single-hop links over Bluetooth, ZigBee, etc. Services on Host A may run within a single process or in
separate processes, and all processes may act as clients, sending messages to any service.

The coerce and parse parameters give additional control over
message handling.

2.2. Discovery. Services are automatically detected and con-
nected byO2.This solves the problemofmanually entering IP
addresses andport numbers.Thediscovery process is detailed
in Section 5.

Messages in O2 are delivered only when the address
exists, so if a service has not been created, a network
connection is lost, or a process terminates, the message will
be dropped without raising any exceptions. This is often a
great simplification for applications. For example, a sensor
process can send sensor data to a consumer service whether
or not the service exists. It is not necessary to carefully start
the server process before starting the client (sensor process).
When the service is active, it gets the data; when it is not, the
service lookup will fail locally, and no message will be sent.
In practice, this can cause problems when a client needs to
configure a service or request important information from it.
In these cases, it is common for clients to call

o2 status(service)

until the service is created and discovered, at which point
communication can begin. It might be noted that similar
problems arise even with simple client-server communica-
tion with TCP/IP: the client’s connect call will fail (after at
least a round-trip across the network) if the server does not
exist.

2.3. Sending Messages. Messages can be sent either with
lowest latency or reliably using two different functions:

o2 send(address, time, types, val1,
val2, . . .);
o2 send cmd(address, time, types, val1,
val2, . . .);

where types (in the C implementation) specifies the types
of parameters. The first form (o2 send) uses UDP, which is

most common for OSC, and the second form (o2 send cmd)
sends a “command” usingTCP, ensuring that themessagewill
be delivered.

2.4. Timed Message Delivery. O2 runs a clock synchroniza-
tion service to establish a shared clock across the distributed
ensemble. The master clock is provided to O2 by calling

o2 set clock(clock callback fn, info);

where clock callback fn is a function pointer that provides
a time reference and info is a parameter to pass to the
function. The master clock can be the local system time of
some host, an audio sample count converted into seconds
(for synchronizing to audio), SMPTE time code, GPS, or
any other time reference. Notice that every send operation
(o2 send, o2 send cmd) specifies a delivery time. A send
operation always transmits a message immediately to the
receiver without regard for the timestamp. If the message
arrives early, it is held in a priority queue until the delivery
time. Thus, if messages can be sent early (e.g., by increasing
overall latency), message delivery times can be very precise
(reducing timing jitter) [14]. This is often important for
accurate timing in music.

3. Related Work

Table 1 summarizes some properties and features of various
systems for networked music applications. Many simple
systems implement application-specific protocols using TCP
or UDP to carry text or binary data. Open Sound Control
(OSC) offers a simple but very successful standard protocol
for a variety ofmusic andmedia applications [2].Theprotocol
is extensible and supported by many systems and implemen-
tations.Thebasic design supports a hierarchical address space
of variables that can be set to typed values using messages.
The messages can convey multiple values, and thus OSC
may be viewed as a remote function or method invocation
protocol. One very appealing quality of OSC, as compared

4 Wireless Communications and Mobile Computing

Table 1: Summary of properties of O2 and some alternative communication systems for real-time music networks. “Location Transparency”
means that processes or services can be addressed by name or function rather than by direct IP addresses and/or port numbers. “Data Streams”
refers to libmapper’s unique ability connect producers of numerical data streams to consumers, including mapping and filtering options to
adapt sensor outputs to controller system inputs.

Location
Transparency

Typed,
Named

Parameters
Discovery

Mixed
Reliable &
Best Effort

Timed
Delivery Data Streams Comments

TCP or UDP

OSC ✓

Timed
delivery is
possible;
rarely

implemented.
O2 ✓ ✓ ✓ ✓ ✓

libmapper ✓ ✓ ✓ ✓

Landini ✓ ✓ ✓ ✓ ✓

Messages sent
indirectly

through local
servers; N2

ping traffic
limits

ensemble
size.

to distributed object systems (such as CORBA [15]), is its
simplicity. In particular, the OSC address space is text-based
and similar to a URL, which means that programmers can
write human-readable addresses directly without the need for
interface description languages or preprocessors to translate
strings to binary codes. It has been argued that OSC would
be more efficient if it used fixed-length binary addresses, but
the success of OSC suggests that users are not interested in
greater efficiency at the cost of more complexity.

Discovery in O2 automatically shares IP addresses and
port numbers to establish connections between processes.
The liboscqs (http://liboscqs.sourceforge.net) andOSCgroups
(http://www.rossbencina.com/code/oscgroups) library and
osctools (https://sourceforge.net/projects/osctools) project
support discovery through Zeroconf [16] and other systems.
Malloch [6] describes the use of multicast for discovery, but
this requires an agreed-upon and reserved multicast address.
Essl [7] advocates the use of Bonjour (Apple’s implementation
of Zeroconf), and included Bonjour-based discovery into
networkedmobile-phone-basedmusic software. Bonjour has
been slow to become a standard cross-platform service, but
it offers a good solution to discovery. Eales and Foss explored
discovery protocols in connectionwithOSC for audio control
[17]; however their emphasis is on querying the structure of
an OSC address space rather than discovery of servers on the
network.

LANdini [18] addresses many of the problems that O2 is
designed to solve. To solve the problemof discovery, LANdini
runs a server on each host, and servers discover other servers
using UDP broadcast messages. A sending process delivers
a message to the local LANdini server, which forwards
the message to the destination host’s LANdini server, and
from there the message is forwarded again to the receiving
process. This means that three messages are sent for each

application-level message delivery. Since LANdini is built
using OSC, which in turn uses UDP, LANdini implements
its own retransmission scheme for reliable message sending.
An implementation with 𝑛 hosts sends 3n(n-1) messages per
second, limiting the practical ensemble size. LANdini also
performs clock synchronization among servers, but there
is no additional synchronization between servers and the
ultimate destination processes.

The libmapper system [6] is particularly aimed at
“input/mapper/output” systems (Figure 1(b)) and directly
supports connections with specified mappings and filters,
which is beyond the scope of O2. However, libmapper seems
to be less suited to more general communication including
over wide area network systems.

Software developers have also discussed and imple-
mented OSC over TCP for reliable delivery. Systems such as
liblo (http://liblo.sourceforge.net/) offer either UDP or TCP,
but not both unless multiple servers are set up, one for each
protocol.

Clock synchronization techniques are widely known.
Cristian [19] described a simple method that is the basis for
clock synchronization in O2. Madgwick et al. [20] describe
a method for OSC that uses broadcast from a master and
assumes bounds on clock drift rates. Brandt and Dannenberg
describe a round-tripmethodwith proportional-integral con-
troller [14]. OSC itself supports timestamps, but only in mes-
sage bundles, and there is no built-in clock synchronization.

4. Design Considerations and Details

In designing O2, we considered that computing technology
is not as limited today as it was when OSC was designed. In
particular, embedded computers running Linux or otherwise
supporting TCP/IP are now small and inexpensive, and

http://liboscqs.sourceforge.net
http://www.rossbencina.com/code/oscgroups
https://sourceforge.net/projects/osctools
http://liblo.sourceforge.net/

Wireless Communications and Mobile Computing 5

the Internet of Things (IOT) will spur further development
of low-cost, low-power, networked sensors and controllers.
While OSC deliberately avoided dependency on a particular
transport technology, enabling low-cost, lightweight commu-
nication, O2 assumes that TCP/IP is available to (most) hosts.
O2 uses that assumption to offer new features. We also use
floating point to simplify clock synchronization calculations
because floating point hardware has become commonplace
even on low-cost microcontrollers, or at least microcon-
trollers are fast enough to emulate floating point as needed.

4.1. Addresses in O2. In OSC, most applications require users
to manually set up connections by entering IP and port num-
bers. In contrast, O2 provides “services.” An O2 service is just
a unique name used to route messages within a distributed
application. O2 addresses begin with the service name,
making services the top-level node of a global address space.
Thus, whileOSCmight direct amessage to/filter/cutoff
at IP 128.2.1.39, port 3, a complete O2 address would be
written simply as /synth/filter/cutoff, where synth is
the service name.

4.2. UDP versus TCP for Message Delivery. The two main
protocols for delivering data over IP are TCP and UDP. TCP
is “reliable” in that messages are retransmitted until they are
successfully received, and subsequent messages are queued
to insure in-order delivery. UDP messages are often more
appropriate for real-time sensor data because new data can
be delivered immediately rather than waiting for delivery or
even retransmission of older data.O2 supports both protocols.

To illustrate the need for both delivery protocols, we
wrote simple O2 programs to send 20,000 short messages
at 20 messages per second, alternating use of TCP and
UDP between two personal computers sharing a local WiFi
network. Five of 10,000 UDP messages (0.05%) were lost
by the network, and the maximum delay between receive
times of two consecutive UDP messages was 343ms. Of
course, all TCP messages were delivered, and the maximum
delay between messages was also 343ms. However, the
delay between TCP messages was greater than 110ms 303
times (3%) but only 89 times (0.9%) with UDP. Thus, TCP
retransmissions generate a significant number of delays that
might be avoided using UDP when packet loss is not critical.
These numbers are highly dependent upon network behavior,
but it is clear that TCP and UDP are both useful.

4.3. Time Stamps and Synchronization. O2 protocols include
clock synchronization and time-stamped messages. Unlike
OSC, every message is time-stamped, but one can always
send 0.0 to mean “as soon as possible.” Synchronization is
initiated by clients, which communicate independently with
a designated master clock process.

4.4. Taps and Debugging Support. Debugging a distributed
application is difficult in part because there is no single point
of control. When a component fails to behave as expected, it
is helpful to know what messages, if any, are being received
there. O2 has a message monitoring facility:

o2 tap(tappee, tapper);

installs a “tap,” where messages delivered to service tappee (a
string) are copied, the message address is modified by replac-
ing tappee with tapper, and the new message is delivered (to
service tapper). This facility supports the construction of a
remote message monitoring program. A simple monitor has
been implemented and is described below in the “Interoper-
ation” section.

5. Implementation

The O2 implementation is small and leverages existing
functionality in TCP/IP. The OS X library, for example, is
about 130KB, compared to a popularOSC library, liblo, which
is 100KB. In this section, we describe the implementation of
the important new features of O2.

5.1. Service Discovery. To send a message, an O2 client
must map the service name from the address (or address
pattern) to an IP address and port number. We considered
existing discovery protocols such as ZeroConf (also known
as Bonjour, Rendezvous, and Avahi) but decided a simpler
protocol based onUDPbroadcastmessages would be smaller,
more portable to small systems, and give more flexibility
if new requirements arise. In particular, ZeroConf must
be installed and configured as a server on some operating
systems, whereas discovery in O2 is integrated with the O2
library.

Figure 3 illustrates the discovery sequence. When an O2
process is initialized, it allocates a server port and broadcasts
its server port, host IP address, and an ensemble name. Any
process running an instance of O2 with the same ensemble
name will receive one of these broadcasts, establish a TCP
connection to the remote process, and exchange service
names. Multiple independent ensembles can share the same
local area network without interference if they have different
ensemble names.O2 retransmits discovery information every
discovery period since there is no guarantee that all processes
receive the first transmissions. The discovery period is short
enough to avoid long discovery latency and long enough to
avoid too much network traffic. (See “Scaling Issues” below.)

To direct a message to a service, the sender extracts the
service name from the full address and uses a hash table to
find an entry for the service name. The entry contains the
correspondingTCP socket or address for aUDPmessage.The
message is then sent to the process.The receiver uses another
hash table to find a handler for the message and invokes the
handler.

5.2. Discovery Ports. As described above, each O2 process
performs discovery directly without relying on a separate
server process.Unfortunately, this requires the use ofmultiple
ports (one perO2 process). In an early implementation, it was
thought that each process would allocate 1 of 𝑛 predefined
discovery port numbers. Then, discovery messages would be
broadcast to all 𝑛 port numbers. Since message traffic grows
linearly with n, there is pressure to keep 𝑛 small, but 𝑛 is the
upper bound on the number of processes that can run on a
single host, so it seems that 𝑛 should be at least 10, increasing
discovery message traffic by a factor of n ≥10.

6 Wireless Communications and Mobile Computing

Server IP address and
port number (broadcast)

Received through
Discovery PortTCP Connect

Exchange Lists of
Services, UDP ports

Received through
per-peer TCP socket

Received by
TCP server socket

Received through
per-peer TCP socket

O2 Messages

time

Discoverer
Process

Discovered
Process

Figure 3: Discovery protocol. After receiving an O2 process’s IP address and port number, a peer establishes a TCP connection and the peers
exchange service names and UDP ports (for messages sent via UDP), after which processes can exchange O2 messages. There is a chance in
a fully symmetrical protocol that each process can connect to the other simultaneously. To avoid this, the TCP Connect is only issued from
the process with the lower IP:port combination, breaking the symmetry.

Perhaps surprisingly, we canmake 𝑛 arbitrarily largewith-
out necessarily increasing discoverymessage traffic, using the
following method. Discovery port numbers are ordered, and
processes allocate the first available port from an ordered list:
port1, port2, . . . portn. Now, consider two processes A and B,
which have allocated portPA and portPB. Process A will only
broadcast to ports 1. . .PA, and process B will only broadcast
to ports 1. . .PB. One of the following must be true: either PA
< PB, PA > PB, or PA = PB. If PA < PB, then B will broadcast
to portPA. If PA > PB, then A will broadcast to portPB. If PA
= PB, then A will broadcast to portPB and B will broadcast to
portPA. In all cases, a discovery message will be sent from one
process to the other, and both will be connected. If A and B
are on separate hosts, each will typically open port1 and only
broadcast to port1. In the case ofm ≤ n processes on the same
host, they will typically open port1 through portm requiring
m(m+1)/2 broadcast messages every period, but we do not
expect𝑚 to be large.

The default O2 configuration sets n = 16, allowing up to
16 O2 processes on one host. Ports are not reserved through
the Internet Assigned Numbers Authority (IANA), but since
O2 discovery will work as long as any port from the set of
16 is available, reserved ports are not critical. In summary,
the advantage of our port allocation and discovery scheme
is that rather than broadcasting from 𝑚 processes to every
possible discovery port, costing 16 mmessages, a distributed
ensemble with 1 process on each of 𝑚 hosts will broadcast
only 𝑚 messages per discovery period. Furthermore, this
peer-to-peer system does not require a separate discovery
server process.

Unfortunately, not all networks allow broadcastmessages,
and broadcasts are (usually) only available within a local area
network. As an alternative to discovery, any O2 process can
find all services by calling

o2 hub(ip address, port);

which provides the IP address and port for one other O2
process. O2 then contacts the other process and receives a list
of the current services as well as any future updates. A typical
use case is a wireless network where broadcast is disabled and
IP addresses are assigned dynamically, making it impossible
to use fixed IP addresses in the application software. Instead,
a designated “hub” O2 process posts its IP address and
port to a simple web server. Other O2 processes request the
hub information from the server and then call o2 hub to
form a fully connected ensemble. Posting an address to a
server in this way is performing a function similar to DNS.
An alternative to creating this specialized web service is to
configure hosts to use a dynamic DNS service and have at
least one O2 process register its address there.

5.3. Timestamps and Clock Synchronization. O2 implements
clock synchronization. O2 looks for a service named cs and
when available sends messages to / cs/ping with a reply-to
address and sequence number. The service sends the current
time and sequence number to the reply-to address.The client
then estimates the server’s time as the reported time plus
half the round-trip time. All times are IEEE standard double-
precision floats in units of seconds since the start of the clock
service. O2 does not require or provide absolute date and time
values.

This basic synchronization protocol suffers when mes-
sages are delayed, so O2 retains information from the last
5 pings and uses the one with the lowest round trip time.
Another problem, especially in music systems, is that when
clocks are adjusted, carefully timed music sequences can
literally skip a beat. In O2, when the local clock is not
synchronized, it is sped up or slowed down by 10% until it
matches the estimated master clock time. While 10% may
seem large, it is not a perceptually large change in terms
of musical tempo where the just-noticeable difference is 6-
8% [21], and the speed-up or slow-down period typically lasts

Wireless Communications and Mobile Computing 7

for only tens of milliseconds. In the case of very large clock
adjustments exceeding 1 second, it is consideredmusically not
useful to remain so far out of synchronization, so the local
clock is set to the correct time immediately.

5.4. Scaling Issues. Discovery, clock synchronization, and
reliable transmission all add network traffic to an O2 ensem-
ble. O2 is designed to support up to 100 processes in one
ensemble.We assume that the ensemble itself does not exceed
the network capacity, so our only design constraint is that
the overhead of using O2 does not overly tax the network or
processing time as the number of processes scales up to 100.

One source of sustained network traffic is the clock
synchronization protocol, in which each client periodically
sends a round-trip UDP packet to the master clock process.
We estimate clock time based on the fastest round-trip time
to themaster in 5 tries.With a polling period of 10 s, the clock
will be updated within 50 s. Assuming clock rate differences
of 40 PPM (based on standard ±20 PPM oscillators (https://
www.ctscorp.com/wp-content/uploads/CTS-Corporation-
Clock-Oscillator-Timing-Frequency-Electronic-Component-
Manufacturer.pdf)), the worst-case drift in 50 s is 2ms, which
is low in perceptual terms [22].With a send and replymessage
every 10 s, 99 clients will generate only 19.8 messages per
second. This low polling rate has the disadvantage that
processes would take about 40 s to establish synchronization.
Instead, the protocol sends the first 15 messages more
rapidly, achieving initial synchronization typically within
0.5 s without increasing the long-term network traffic.

Discovery messages are sent periodically and are nec-
essary since a new process could join the ensemble at any
time. There is a trade-off between the mean time to join
and the density of network traffic. O2 uses a period of 4
seconds, resulting in 25 messages per second in a 100-process
ensemble. As with clock synchronization, O2 uses a “fast
start” with a 0.133 s initial period between messages. In the
worst case, a discoverymessage is broadcast to all 16 discovery
ports in the first 4 seconds, but typically, in a distributed
system, O2 processes will use the first discovery port and
discovery will take place almost immediately. If the o2 hub
function is used by a process, discovery messages are not
needed and none are sent by the process.

A final source of network overhead is the TCP connec-
tions that are maintained between each pair of processes.
With 100 processes, there will be 4950 connections, but
of course these will be distributed across processes, with
each process making 99 connections. These connections are
created as part of the discovery process, so when a process
joins an ensemble of 99 other processes, there will be a
burst of network traffic (about 297 packets) to establish 99
TCP connections. Aside from this somewhat bursty setup
behavior, the TCP overhead is limited to acknowledgement
(ACK) messages, which only grow in proportion to the
number of application-level messages.

5.5. Replies and Queries. O2 has no built-in query system,
and, normally, O2 messages do not need replies. Queries
have been proposed for OSC but never became widely used,
indicating this is not a critical feature. Unlike classic remote

procedure call systems implementing synchronous calls with
return values, real-timemusic systems are generally designed
around asynchronous messages to avoid blocking to wait for
a reply.

Rather than build in an elaborate query/replymechanism,
we advocate a very simple application-level approach where
the “query” sends a reply-to address string. The handler for a
query sends the reply as an ordinarymessage to a node under
the reply-to address. For example, if the reply-to address in
a/synth/cpuload/getmessage is/control/synthload,
then the handler for /synth/cpuload/get sends the time
back to (by convention)/control/synthload/get-reply.
Optionally, an error response could be sent to /control/
synthload/get-error, and other reply addresses or
protocols can be easily constructed at the application level.

Although O2’s discovery protocols reveal all the active
services in an ensemble, there is no facility to query the
namespace of each service or find the parameter types or
documentation. However, a directory service was imple-
mented as anO2 service, allowing any other service to register
addresses and descriptions [23].

5.6. Address Pattern Matching and Message Delivery. An
option in both OSC and O2 is the use of “wildcards”
and patterns in addresses, allowing a single message to
control multiple parameters. For example, the address
/synth/chan*/alloff can be used to send a message
to /synth/chan01/alloff, /synth/chan02/alloff,
. . ., /synth/chan16/alloff, assuming these addresses
all exist. OSC has been criticized for the need to perform
potentially expensive parsing and patternmatching to deliver
messages. O2 adds a small extension for efficiency:The client
can use the form !synth/filter/cutoff, where the
initial “!” means the address has no “wildcards.” If the “!”
is present, the receiver can treat the entire remainder of
the address, “synth/filter/cutoff” as a key and do
a hash-table lookup of the handler in a single step. This
is merely an option, as a node-by-node pattern match of
“synth/filter/cutoff” should return the same handler
function.

6. Performance

O2 is implemented in the C programming language for
portability. Performance measurements show that CPU time
is dominated by network send and receive time, even when
messages are sent to another process on the same host (no
network link is involved). Table 2 summarizes measurements
where two processes send a message back and forth 2 million
times. The fastest time is with O2 and TCP. Perhaps TCP
slightly outperforms UDP in these tests because a stateful
connection can cache routing or other information.TheOSC
over TCP performancewas about half that ofO2.This is likely
due to the fact that OSC connections are one-way, and thus
two TCP connections were opened to send messages back
and forth. This prevents acknowledgement (ACK) signals
from “piggy-backing” on data packets, doubling the total
number of packets.Thesemeasurements were run on a 3GHz
Intel Core i7 processor, running OS X v.10.13.6. The main

https://www.ctscorp.com/wp-content/uploads/CTS-Corporation-Clock-Oscillator-Timing-Frequency-Electronic-Component-Manufacturer.pdf
https://www.ctscorp.com/wp-content/uploads/CTS-Corporation-Clock-Oscillator-Timing-Frequency-Electronic-Component-Manufacturer.pdf
https://www.ctscorp.com/wp-content/uploads/CTS-Corporation-Clock-Oscillator-Timing-Frequency-Electronic-Component-Manufacturer.pdf
https://www.ctscorp.com/wp-content/uploads/CTS-Corporation-Clock-Oscillator-Timing-Frequency-Electronic-Component-Manufacturer.pdf

8 Wireless Communications and Mobile Computing

Table 2: Small message send time (just the destination address and a 32-bit integer) for O2 versus OSC and TCP versus UDP. The same
communication was also implemented directly in TCP and UDP without any additional layers, sending only one 32-bit integer per message.
Run times are wall time, with all messages between two processes on the same host. Averages from multiple runs are reported. Individual
runs vary by ±1.5%.

UDP TCP
Time/Message Messages/Second Time/Message Messages/Second

OSC 29 𝜇s 35,000 s−1 56 𝜇s 18,000 s−1

O2 30 𝜇s 34,000 s−1 28 𝜇s 36,000 s−1

Direct 22 𝜇s 46,000 s−1 20 𝜇s 44,000 s−1

conclusion is that O2 features have a negligible impact on
performance relative to OSC.

Clock synchronization is difficult to measure. Any tech-
nique that can accurately compare clocks on remotemachines
can be used to synchronize them! However, we can get a
good idea of how well clocks are synchronized by observing
estimated clock differences that are produced by the clock
synchronization protocol itself. For example, if the protocol
estimates the clock is behind by 3ms, then the actual clock
error is probably 3ms or less (e.g., it could have been behind
by 1.5ms and is now set to be ahead by 1.5ms). We ran
O2 for 2 hours (740 clock sync periods) on two personal
computers sharing a wireless hub/modem that was also being
used for Internet access. The median round-trip time was
5.5ms, but there were 94 round trip times in excess of
100ms. Nevertheless, the maximum absolute estimated clock
difference was only 21ms. The median correction was 0ms
(times were recorded in whole milliseconds). Considering
that the just-noticeable difference for rhythmic timing is
about 10ms [22], we conclude that the clock synchronization
performance is adequate for music applications, but the
algorithm could probably be improved by detecting outliers
in the round-trip time.

7. Interoperation

OSC is widely used by existing software. OSC-based soft-
ware can be integrated with O2 with minimal effort,
providing a migration path from OSC to O2. O2 also
offers the possibility of connecting over protocols such as
Bluetooth (http://www.bluetooth.org), MIDI [1], or ZigBee
(http://www.zigbee.org), although each of these requires
extensions to be implemented within the O2 library. Finally,
it is possible to create servers to bridge between O2 and other
protocols, as illustrated by a WebSockets bridge server.

7.1. Receiving from OSC. To receive incoming OSCmessages,
call

o2 create osc port(service, port);
which tells O2 to begin receiving OSC messages on port,
directing them to service, which is normally local but could
also be remote. Since O2 uses OSC-compatible types and
parameter representations, this adds very little overhead to
the implementation. If bundles are present, the OSC NTP-
style timestamps are converted into O2 timestamps before
messages are handed off.

7.2. Sending to OSC. To forward messages to an OSC server,
call

o2 osc delegate(service, ip address,
port, tcp flag);

which tells O2 to create a virtual service (name given by
the service parameter) to convert incoming O2 messages into
OSC messages and forward them to the given ip address and
port, using a TCP connection if tcp flag is set. Now, any O2
client on the network can discover and send messages to the
OSC server.

7.3. Other Transports. Handling O2 messages from other
communication technologies poses two interesting problems:
What to do about discovery, and what exactly is the protocol?
Our goal is to allow the O2 API to be supported directly on
clients and servers connected by non-IP technologies. We do
this by having an O2 process forward messages to and from
non-IP hosts. As an example, let us assumewe want to use O2
on a Bluetooth device (we will call it Process D; see Figure 2)
that offers the Sensor service. We require a direct Bluetooth
connection to Process B running O2. Process B will claim
to offer the Sensor service and transmit that through the
discovery protocol to all other O2 processes connected via
TCP/IP. Any message to Sensor will be delivered via IP to
Process B, which will then forward the message to Host D via
Bluetooth. Similarly, programs running on Host D can send
O2 messages to Process B via Bluetooth where the messages
will either be delivered locally or be forwarded via TCP/IP
to their final service destination. It is even possible for the
destination to include a final forwarding step though another
Bluetooth connection to another computer; for example,
there could be services running on computers attached to
Process C in Figure 2. The same approach is used for other
transports such as ZigBee or serial links such as RS-232.

In addition to addressing services, O2 sometimes needs to
address the O2 subsystem itself; e.g., clock synchronization
runs even in processes with no services. Services starting
with digits, e.g., “128.2.60.110:8000,” are interpreted as
an IP:Port pair. To reach an attached non-IP host, a suffix
may be attached; e.g., Host D in Figure 2 can be addressed
by “128.2.60.110:8000:bt1.”

“Other transports” are not limited to networks. Recent
work has explored the use of shared-memory lock-free
queues to send O2 messages to high-priority threads in the
same process, providing synchronized communication with-
out locks. This is particularly useful in real-time music audio

http://www.bluetooth.org
http://www.zigbee.org

Wireless Communications and Mobile Computing 9

Figure 4: Web pages can access O2 via a WebSockets interface to a local server. Here, a web page is used to tap into messages delivered from
a graphical control panel process (at bottom) to a remote receiver process (not shown).

applications where locks are typically forbidden within audio
computation threads or callback functions. Applications will
see audio computation as anO2 service that can be addressed
in the normal way. Messages will be delivered by TCP/IP to
the right process, and, from there, messages can be forwarded
to the high-priority audio service by appending them to a
lock-free queue.

7.4. Language Support. O2 is currently implemented in the
C programming language for portability and to simplify
linking with programs written in other languages. Serpent
[24], a real-time scripting language developed especially for
interactive music applications, includes O2 in the standard
release. O2 has also been incorporated into Kronos [25] and
used to create a network-based audio synthesis server. In this
system, real-time audio is streamed via O2 messages [23].

7.5. WebSocket Support. An interesting recent development
is a server that enables O2 access from web pages using
WebSocket technology. The server, written in Serpent, is
a lightweight HTTP server with WebSocket capability. The

server is normally run on the local host along with a
web browser. Any page loaded into the browser can open
ws://localhost:8080/ to create a WebSocket connection
to the local server that also runs O2. A simple protocol is
implemented over a WebSocket to enable the web page to
join anO2 ensemble, create services, and send and receive O2
messages, including OSC messages. The use of WebSockets
adds an extra hop to message delivery but avoids the security
and practical problems of writing extensions for a variety of
web browsers.

Figure 4 illustrates a web-based application that canmon-
itor remote O2 message delivery using the o2 tap function
described earlier. The O2 monitor application, implemented
in JavaScript and HTML, connects over a WebSocket to the
local server that is running as an O2 process.

TheWebSocket interface to O2 also creates the possibility
for applications written in other languages such as Python,
Java, C#, or Ruby to access O2 through existing WebSocket
libraries rather than creating a “foreign function interface”
library for O2 in each language.

10 Wireless Communications and Mobile Computing

Figure 5: Control panel for the Conductor of the CMU Laptop Orchestra. The top left window is a map of the stage showing the locations of
all the players (only 2 are shown here).The circle moves to indicate the beat and tempo. At middle left are controls for tempo, meter, harmony,
and style, which are sent to all players when the COMMIT button is pressed. At the bottom is a chat window allowing players to communicate
during the performance.The conductor also has a number of standard chord progressions that can be selected below “Harmony” (top, center).
When players join the ensemble, their names are displayed in a list. To the left of each name is a solo (S) and mute (M) button; to the right
are softer (<) and louder (>) buttons surrounding the current loudness offset (0 in this example).

8. Example

One substantial example of O2 in practice has been recent
performances by theCMULaptopOrchestra. Originally built
around TCP/IP andOSC, this networked performance uses a
central conductor to send tempo, key, meter, and style infor-
mation to around 20 to 25 client computers (see Figure 5).
Each client is a semiautonomous player that follows themusi-
cal structure and constraints of the conductor but also has
real-time controls operated by a human (who is also the cre-
ator/programmer of the player). Players fill different musical
roles such as bass, melody, arpeggiator, chordal accompanist,
or drummer, and controls include mobile devices running
TouchOSC (https://hexler.net/software/touchosc) and con-
nected over Open SoundControl. A human “semiconductor”
can change tempo,meter, and key and alsomute, unmute, and
adjust the volume of individual players.

Players initially send their names to the conductor ser-
vice, which keeps a list of active players by checking their
status periodically. To obtain musical synchronization, the
conductor expresses beat times as a linear function: the time
for beat b, f (b) = a + b/s, where 𝑎 is the (theoretical) time
of beat zero, and 𝑠 is the tempo in beats per second. Only 𝑎
and 𝑠 need to be delivered to clients when the tempo changes,
and the delivery time is not critical since 𝑎 and 𝑠 are not
time dependent. All players compute the same value f (b) for
each beat, and all players have synchronized clocks, so beats
are accurately synchronized. In fact, the main impediment to
audio synchronization is variability in the latency of various
software synthesizers and audio device drivers. Each player
schedules output ahead of time according to an audio-latency
compensation parameter that users can adjust, resulting in
synchronization to within a few milliseconds. Readers can
view performances online at https://youtu.be/icLUJMM-11M

https://hexler.net/software/touchosc
https://youtu.be/icLUJMM-11M

Wireless Communications and Mobile Computing 11

and https://youtu.be/L-Sar4D7lIY. These performances used
WiFi to simplify the setup.

9. Summary and Conclusions

O2 is a new protocol for real-time interactive music systems.
It can be seen as an extension of Open Sound Control,
keeping the proven features and adding solutions to some
common problems encountered in OSC systems. In partic-
ular, O2 allows applications to address services by name,
eliminating the need to manually enter IP addresses and
port numbers to form connected components. O2 offers two
classes of messages so that “commands” can be delivered
reliably, and sensor data can be delivered with minimal
latency. In addition, O2 offers a standard clock synchroniza-
tion and time-stamping system that is suitable for local area
networks.We have implemented O2 and shown that its speed
is comparable to an Open Sound Control implementation.
Although O2 assumes that processes are connected using
TCP/IP, we have also described howO2 can be extended over
a single hop to computers via Bluetooth, ZigBee, RS-232, or
other communication links, and how a WebSockets-to-O2
bridge server can open O2 applications to web browsers.

A number of extensions are possible, and future work
includes extensions for audio and video streaming, and
dealing with network address translation (NAT). We are also
working on “externals” for Pd [26] andMax/MSP [27], which
are widely used development platforms in the computer
music community. As Zeroconf (Bonjour) becomes standard,
we believe we can abandon our self-contained discovery
system in favor of a standard one. O2 has been run in
networks of 25 hosts, but it would be interesting to measure
performance on larger networks, at least up to 100 hosts.
Overall, we believe O2 is a good candidate for OSC-like
applications and a variety of networked mobile and IoT
devices in the future.

Data Availability

The source code for O2 is available for commercial and
noncommercial use at https://github.com/rbdannenberg/o2.
The source code and executable versions of the Serpent pro-
gramming language are available for commercial and non-
commercial use at https://sourceforge.net/projects/serpent/.

Disclosure

This paper is an extensively revised and extended version of
an earlier conference publication.

Conflicts of Interest

The author declares that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

Thanks are due to Adrian Freed for comments on an earlier
paper. ZhangChi contributed to the initial implementation of

O2 and Hongbo Fang implemented a WebSockets protocol
in Serpent. O2 has developed and evolved through many
interactions with students, visitors, and faculty in the School
of Computer Science at Carnegie Mellon University.

References

[1] J. Rothstein, MIDI: A Comprehensive Introduction, A-R Edi-
tions, 2nd edition, 1995.

[2] M. Wright, A. Freed, and A. Momeni, “OpenSound control:
state of the art 2003,” in Proceedings of the 2003 Conference on
New Interfaces for Musical Expression (NIME-03), pp. 153–159,
Montreal, Canada, 2003.

[3] M.Wright, A. Freed, A. Lee, T.Madden, andA.Momeni, “Man-
aging complexity with explicit mapping of gestures to sound
control with OSC,” in Proceedings of the International Computer
Music Conference, pp. 314–317, International Computer Music
Association, Habana, Cuba, 2001.

[4] E. Lynch and J. Paradiso, “Sensorchimes: musical mapping for
sensor networks,” in Proceedings of the International Conference
on New Interfaces for Musical Expression, pp. 137–142, Brisbane,
Australia, 2016.

[5] R. Fiebrink, P. R. Cook, and D. Trueman, “Play-along mapping
of musical controllers,” in Proceedings of the 2009 International
Computer Music Conference, ICMC, pp. 61–64, Canada, 2009.

[6] J. Malloch, S. Sinclair, and M. M. Wanderley, “Distributed
tools for interactive design of heterogeneous signal networks,”
Multimedia Tools and Applications, vol. 74, no. 15, pp. 5683–
5707, 2015.

[7] G. Essl, “Automated ad hoc networking for mobile and hybrid
music performance,” in Proceedings of the International Com-
puter Music Conference 2011, pp. 399–402, Huddersfield, 2011.

[8] D. Trueman, P. Cook, S. Smallwood, and G. Wang, “PLOrk:
the Princeton Laptop Orchestra, year 1,” in Proceedings of the
International ComputerMusic Conference, ICMC2006, pp. 443–
450, 2006.

[9] R. B. Dannenberg, S. Cavaco, and E. Ang, “The Carnegie
Mellon Laptop Orchestra,” in Proceedings of the 2007 Interna-
tional Computer Music Conference, vol. II, pp. II-340–II-343,
The International Computer Music Association, ICMA, San
Francisco, USA, 2007.

[10] G. Hajdu, “Embodiment and disembodiment in networked
music performance,” in Body, Sound and Space in Music and
Beyond: Multimodal Explorations, C. Wöllner, Ed., pp. 257–278,
Routledge, Abingdon-on-Thames, 1st edition, 2017.

[11] R. B. Dannenberg and T. Neuendorffer, “Scaling up live internet
performance with the global net orchestra,” in Proceedings of the
11th Sound &Music Computing Joint with the 40th International
ComputerMusic Conference, pp. 730–736, Athens, Greece, 2014.

[12] S. Gresham-Lancaster, “The aesthetics and history of the hub:
the effects of changing technology onnetwork computermusic,”
Leonardo Music Journal, vol. 8, pp. 39–44, 1998.

[13] M. Wright, “Open Sound Control: an enabling technology for
musical networking,” Organised Sound, vol. 10, no. 03, p. 193,
2005.

[14] E. Brandt and R. B. Dannenberg, “Time in distributed real-time
systems,” in Proceedings of the International Computer Music
Conference, 1999.

[15] M. Henning, “The rise and fall of CORBA,”Queue, vol. 4, no. 5,
pp. 28–34, 2006.

https://youtu.be/L-Sar4D7lIY
https://github.com/rbdannenberg/o2
https://sourceforge.net/projects/serpent/

12 Wireless Communications and Mobile Computing

[16] E. Guttman, “Autoconfiguration for IP networking: Enabling
local communication,” IEEE Internet Computing, vol. 5, no. 3,
pp. 81–86, 2001.

[17] A. Eales and R. Foss, “Service discovery using open sound
control,” in Proceedings of the AES 133rd Convention 2012, AES,
pp. 348–354, San Francisco, USA, 2012.

[18] J. Narveson and D. Trueman, “LANdini: a networking utility
for wireless LAN-based laptop ensembles,” in Proceedings of
the Sound andMusic Computing Conference (SMC), Stockholm,
Sweden, 2013.

[19] F. Cristian, “Probabilistic clock synchronization,” Distributed
Computing, vol. 3, no. 3, pp. 146–158, 1989.

[20] S. Madgwick, T. Mitchell, C. Barreto, and A. Freed, “Simple
synchronisation for open sound control,” in Proceedings of the
41st International Computer Music Conference, pp. 218–225,
Denton , TX, USA, 2015.

[21] K. Thomas, “Just Noticeable Difference and Tempo Change,”
Journal of Scientific Psychology, 2007.

[22] A. Friberg and J. Sundberg, “Perception of just-noticeable time
displacement of a tone presented in a metrical sequence at
different tempos,” STL-QPSR, vol. 34, no. 2-3, pp. 49–56, 1993.

[23] V. Norilo and R. B. Dannenberg, “KO2 distributed music
systems with O2 and Kronos,” in Proceedings of the 15th Sound
and Music Computing Conference (SMC2018), 2018.

[24] R. B. Dannenberg, “A language for interactive audio appli-
cations,” in Proceedings of the 2002 International Computer
Music Conference, pp. 509–515, International Computer Music
Association, San Francisco, USA, 2002.

[25] V. Norilo, “Kronos: a declarative metaprogramming language
for digital signal processing,” Computer Music Journal, vol. 39,
no. 4, pp. 30–48, 2015.

[26] M. Puckett, “Pure data,” in Proceedings of the International Com-
puter Music Conference, pp. 224–227, International Computer
Music Association, San Francisco, CA, USA, 1996.

[27] M. Puckette, “Max at Seventeen,” Computer Music Journal, vol.
26, no. 4, pp. 31–43, 2002.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

