1 8 Real-Time Scheduling and Computer Accompaniment

Roger Dannenberg

18.1 Introduction

Some of the most interesting applications of computers in music involve
real-time computer music systems. The term “real time™ refers to systems
in which behavior is dependent upon time. As a simple example, a program
that controls a music synthesizer to perform a piece of music is a real-ime
program. This sort of program is perhaps the least interesting form of real-
time computer music system because it ignores the possibility of live real-
time interaction between human performers and computer music systems.
More sophisticated approaches can be classified into at least three catego-
ries: computer music instruments. computer accompaniment systems. and
interactive composition systems. Although all of these categories are in-
spired by traditional terminology, it should be emphasized that the special
properties of the computer force a rethinking of the meaning of terms like
“instrument’ and “‘composition.” This reorganization of meaningis onc of
the attractions of computer music.

A computer music instrument is. by analogy to acoustic instruments. a
device that produces sound in response to human gesture and control.
Most electronic keyboard instruments are now computer controlled: thus
they provide examples of traditionally oriented real-time computer Music
systems. A more innovative instrument can be seen in the sequential drum
of Max Mathews [11]. This instrument can play stored sequences of notes
when triggered by striking a specially instrumented drum. The position and
force on the drum can control different aspects of each note.

A computer accompaniment system is based on the model of traditional
accompaniment in which a score is initially provided for both the solo and
the accompaniment. The job of the accompanist is to synchronize with the
soloist. One of the sound exaniples is a recording of a trumpet solo accom-
panied by computer [4].

While accompaniment systems are given musical materials in the form of
a precomposed score, interactive composition systems use the computer
actually to generate musical materials in response to input from live
musicians. Other appropriate terms for this type of system include im-
provisation and composed improvisation [6]. A short version of Jinimy
Durante Boulevard [5), a work of composed improvisation. is included as

From Current Directions in Computer Music Research, edited by Max V. Mathews and
John R. Pierce, Cambridge, MA: MIT Press, 1989.

226 R. Dannenberg

Keydown(B)

D ———

29000900 & 00 09
—— 00— 00— &

T//F’:D—

Keydown(G)

Figure 18.1
A musical timing diagram of a potential execution of the echo program. Keydown events
are indicated by arrows.

another sound example (given on the accompanying compact disk). In this
piece, a keyboard. flute. and trumpet are interfaced to a computer. which
also controls several music synthesizers. A number of tasks run simul-
taneously, analyzing input from the flute and keyboard. recording material
from the trumpet. computing musical material to be performed, and con-
trolling the synthesizers.

All of these real-time systems depend upon schedulers as a means of
coordinating and ordering the execution of many small tasks over the
course of time. To illustrate the role of the scheduler more specifically. the
following example presents a moderately difficult real-time programming
task and solves it in an elegant manner.

18.1.1 An Example

The problem is to play a sequence of notes with diminishing loudness to
simulate an echo. An echo sequence must be triggered whenever a key is
pressed on a keyboard. and sequences may overlap in time. Suppose, for
example, that a G and a B are pressed at times indicated by arrows in figure
18.1. The resulting sequences of events are seen to interleave in time. A
scheduier is essential for the realization of programs with several indepen-
dent but simultancous real-time tasks such as this.

A program that realizes this behavior is given below. It is written In
a stylized version of C that should be understandable to anyone familiar
with a modern programming language like C. Pascal, or Ada. To avoid
clutter, the nesting of program statements will be indicated by indentation
rather than by explicit symbols. Algol (and Pascal) assignment (¢ =) and
equality (=) symbols will be used in place of the symbols used in C
(= for assignment, = = for equality). The meaning should always be

Real-Time Scheduling and Computer Accompaniment 22

clear from context. Keywords will be printed in boldface. program identifiers
will be printed in italics. and CONSTANT VALUES will be printed in SMALL
CAPITALS.

echo(ptich. loudness)
loudness . = loudness—>
if loudness > 0
note(pirch. loudness)
cause(DELAY. echo. pitch. loudness)

keydown(pitch)
notre(pitch. INITIALLOUDNESS)
cause(DELAY, ¢cho. pirch. INITIALLOUDNESS)

This program is executed in an environment that continuously looks
forinput from a keyboard. When a key is pushed. keydown is called with the
pitch of the key. The kevdown routine schedules the ec/io routine to run
after a short delay by calling cause.

The cause routine is critical to the behavior of the program. Its first
argument is a delay and its second argument is the name of a routine. The
cause routine schedules a call to the specified routine after the given delay.
Any other parameters to cause are saved and passed to the specified routine
when it is called. Thus. the echo routine will be called DELAY time units after
keydown. The echo routine begins by decrementing its loudness parameter.
If the parameter is still greater than zero, echo plays the given note (by
calling nore) and uses cause to schedule another call to ecfo. This will
decrease the loudness further. play another note and schedule yet another
call. This process repeats until the loudness goes to zero or below, at which
time echo does nothing. Since echo does not schedule anything else at this
point, the sequence of notes comes to an end.

Since each call to echo runs for a very short time (typically less than 1
ms), there is plenty of processing time to deal with other actions that are
scheduled to occur in between the notes of an echo sequence. In particular,
many overlapping echo sequences can be active at once. Each sequence uses
the same echo routine but is characterized by a distinct pirch parameter.
(With this version of echo, pressing a key a second time during a sequence
will start a second sequence with the same pitch, which may be undesirable.)

This example illustrates a few important concepts. Virtually all timing in
conventional real-time programs is achieved by explicit calls to service

2238 R. Dannenberg

routines like cause. It is usually assumed that programs execute very fast
except for these calls, which usually have the effect of delaying execution.
During the time execution is delayed, there is normally enough time to
perform many other actions. By taking advantage of this idle time, other
tasks can be processed. The scheduler (in this case cause) plays an impor-
tant role in the management of time-dependent tasks because it is respon-
sible for running tasks in the right sequence and at the right time.

The cause routine used in the echo program has two nice properties. It
not only serves to schedule events, but it also saves parameters and passes
them to the events when they are performed. Since saving and passing
parameters is largely a straightforward matter of bookkeeping, only the
scheduling aspects of cause will be considered further.

The cause construct is due to Douglas Collinge, who designed the
language Moxie [7]. Upon learning about Moxie, this author promptly
stole the central idea and the name to create Moxc, a version of Moxie
based on the C programming language.’ Moxc was used to implement
Jimmy Durante Boulerard and runs on several personal computers.

In the remainder of this chapter, various implementations of real-time
schedulers are presented. Then implementations that perform scheduling
with respect to a variable-speed time reference are examined. This provides
a natural way to implement musical effects such as tempo change and
rubato. Finally, a more sophisticated scheduler is presented that incorpo-
rates musical knowledge to enhance its ability to adjust tempo dynamically
to obtain musical results.

18.2 Real-Time Schedulers

The echo program illustrates the need to schedule events for performance
at a specific time in the future. This section considers a sequence of
scheduler implementations, each one containing an improvement over the
previous one. The final implementation will exhibit excellent real-time
behavior.

It is convenient to define some primitive operations that will be used by
each scheduler. The gerrime() operation reads the current real time; for
example,

t:= gettime()

assigns the current time to r. The seralarm(:) operation causes the opera-

Real-Time Scheduling and Computer Accompaniment -2

tion alarm() to be invoked at time 1. If 7 is less than the current time, then
alarm() is invoked immediately. If an alarm is pending due to a previous
setalarm. then invoking seralarm again will cancel the effect of the previous
setalarm. In other words, at most one alarm can be pending. This corre-
sponds to typical real-time systems that have a hardware counter (the
reading of which is modeled by getrime) and a hardware timer (the setting
of which is modeled by sezalarm). When the timer times out. a hardware
interrupt is generated (modeled by invoking alarm).

Using these primitives, the goal is to implement a scheduler with the
operation schedule(id, time). where id is an event identifier and 1ime is the
time of the event. The schedule operation causes the operation event(id) to
occur at rime if time is in the future. Otherwise, the operation takes place
immediately.

The schedule and setalarm operations are similar in that they each cause
another operation (erent and alarm. respectively) to take place in the
future. However. schedule is more powerful because it “‘remembers” mulu-
ple requests. Since multiple requests can be outstanding. schedule assocl-
ates an identifier with each request. One use of schedule is to implement the
cause routine used in the echo program. In this case. id would be the address
of a block of memory containing a routine entry point and parameters. The
event operation would run the indicated routine with the saved parameters.
Another typical use of schedule is to reactivate sleeping processes. In this
case, id would be the address of the process descriptor that is to be
reactivated. Thus. schedule is a general building block that can be used ina
number of ways.

Two important observations to keep in mind are that (1) the scheduler
must keep track of an arbitrary number of pending schedule requests. and
that (2) the requests do not necessarily arrive in the same order in which
they must be satisfied. Thus. a scheduler must have some way (0 remem-
ber a set of pending requests and a method for sorting requests into time
order.

In the implementations that follow, the same notational conventions
seen in the echo program example will be used. Because the C language
notation for structures is rather cumbersome, the following conventions
will be followed. A structure with elements A. B. ..., Ciscreated by calling
new(A. B.....C). The fields FIELD1, FIELD2, ..., FIELDN of a structure s are
denoted by s.FIELD!I. S.FIELD2. S.FIELDN.

230 ‘ R. Dannenberg

18.2.1 Implementation 1

A straightforward implementation of the scheduler wakes up and runs at
every increment of time and looks at the pending requests to see if one
should be satisfied. The data structure consists of requests, a list of pairs of
ids and times. which is initially empty. The variable ¢ is used to compute the
next time at which alarm should be invoked. The scheduler is initialized by
setting ¢ and invoking seralarm (setalarm will immediately generate an

interrupt that calls alarm):

initialize()
set requests 10 EMPTY
= gettime()
setalarm (1)

The schedule operation adds an id and rime to the requests list:

schedule(id, time)
insert new(id, time) into requests

The alarm operation searches through the list of requests looking for any
whose time has come. It then increments ¢ and calls seralarm so that alarm
will be invoked every unit of time.

alarm()
for each r in requests
if r. TIME <= gettime()
remove r from requests
event(r.ID)
=1+ 1
setalarm(1)

Note: Since schedule and alarm operate on the same variables, it is essential
that alarm not be invoked by an interrupt during the execution of schedule.
In order to simplify this presentation, it is assumed throughout that the
executions of schedule and alarm are always mutually exclusive.

The schedule operation has the nice property that it takes a fixed amount
of time, assuming requests is implemented as a linked list [1]. However, this
scheduler suffers from two problems. First, the alarm operation must look
atevery pending request every time itis invoked. As the number of requests
goes up, so does the computational cost of alarm. Second, alarm is invoked

Real-Time Scheduling and Computer Accompaniment 231

T

q id |t ——Vlld t —+— NULL
|)
l/d t

Figure 18.2

Inserting a new element into a hinked Iist.

even when there are no requests to be satisfied. This might be tolerable if the
time needed to execute alarm were small, but that is not the case here. The
next irnplementation uses a prioriry queue to reduce the cost of alarm
operations.

18.2.2 Implementation 2

A priority queue is a data structure that contains a set of items. each of
which has a priority. In this case. items will be requests ([id. time] struc-
tures), and the priority of an item will be determined by 1ts time component.
Priority queues have an inserr operation. which adds an item to the queue.
an inspect operation, which returns the [id. time] structure with the highest
priority (earliest time), and a remove operation that removes the item with
the highest priority. Since priorities are static (that is. the priority cannot
change after the insert operation), an efficient implementation is to repre-
sent the queue as a linked list. sorted by increasing time values. Each list
element is a structure with three fields: 1p. TIME. and NEXT. where the NEXT
fieldis alink to the next listelement. As explained above, new(id. time. next)
will allocate and initialize a new linked list node. To insert a new id and rine
in the list. the new function is called to allocate a structure to hold the idand
time and remember (in the NeXT field) a reference to the remainder of the
list. Figure 18.2 illustrates the operation of inserting a new item into a list,
an operation that will be used throughout this chapter. The operation
shown is .

q:= new(id, 1, q)

and the value of g before the assignment is indicated by a dotted line. NULL
represents a pointer to the empty list.

R. Dannenberg

139]
(8]
3]

For the scheduler, the queue is initially a list with one node whose time
component is infinity (this simplifies other parts of the implementation).

newqueue()
return new (0, infinity, NULL)

An implementation of insert is

inseri(queue, id. time)
if time < queue. TIME
return new(id. time, queue)
pointer := queue
while 1 >= pointer NEXT.TIME
pointer = pointer NEXT
pointer NEXT .= new(id. time. pointer NEXT)

return queue

To complete the priority queue implementation, inspect and remove
operations must be provided. In the implementation below, inspect returns
data from the front of the queue. and remove returns a reference to the rest
of the queue. Notice also that the problems of storage reclamation are
ignored to simplify this presentation:

inspect(queue)
return new(queue.1D, queue.TIME)

remove(queue)
return queue.NEXT

A new scheduler can be implemented using a priority queue. This time,
requests is initialized as a priority queue:

initialize()
requests := newqueue()
t:= gettime()
setalarm(t)

The schedule routine is as follows:
schedule(id, time)
requests:= insert(requests, id, time)

Now. since the request with the earliest time is at the front of the queue,
alarm only needs to look at the front of the list of requests.

Real-Time Scheduling and Computer Accompaniment 233

alarm()

ri=inspect(requests)

while gerrime() >= r.TIME
event(r.1n)
requesis := remove(requests)
ri= inspect(requests)

=1+ 1

setalarm(r)

This implementation solves the first problem of Implementation 1.
namely. the a/arm operation now takes time proportional to the number of
requests readyv to be satisfied plus a small fixed overhead. This is quite
good. since satisfying the requests by calling event is likely to dominate the
total computation cost. This implementation still suffers from the fact that
a small fixed cost is incurred every time unit because alarm is invoked
whether or not there are pending requests.

Even though this scheduler is a great improvement over Implementation
I.a new problem has been introduced. Recall thatin Implementation 1. the
schedule operation took a fixed amount of time. In the new implementa-
tion. the schedule operation takes time proportional to the number of
pending requests in the worst case. This is because the insert operation may
have to scan the entire queue in order to find the right place to insert a new
item. Thus. alarm is now efficient at the cost of making schedule rather
inefficient. Nevertheless. most real schedulers are essentially identical to
Implementation 2.

18.2.3 Implementation 3

One way to improve the previous scheduler is to use a faster implementa-
tion of priority queues. Since faster implementations are not common
knowledge. at least not as common as they should be. a short digression
on fast priority queues is in order to present one algorithm for priority
queues.

A data structure called a seap provides a fast way to implement a priority
queue [3]. The time required to insert and remove elements is proportional
to the logarithm of the number of elements in the queue. A heap is a
complete (or full) binary tree in which each node stores a value that 1s less
than or equal to the values of its children. Heaps are typically stored in an
array where the first element (at index 1) is the root. The children of a node
atindex i are at array locations 2iand 2i + 1. Figure 18.3 illustrates a heap
and its array representation.

234 R. Dannenberg

201 6

W
5

J
<

7]

Figure 18.3
A heap data structure uses an array to represent a binary tree.

To treat the heap as a priority queue, insert and remove operations are
needed. Let H[1] through H[N] be a heap. Iniually, N = 0 and the heap 1s
emptly. To insert an element into the heap, the element is added to the end
of the heap and is “‘bubbled up™ by iteratively exchanging the element with
its parent until the heap property is satisfied. To remove an element from
the heap, the first element of the array is taken. To restore the heap
property, the lastelement of the heap is moved to the beginning of the array
(the top of' the tree) and “‘bubbled down ™ as follows: the element is swapped
with the smallest of its children until all of the element’s children are greater
than or equal to the element. The routines follow:

initialize()
N:=0

insert(time)

N=N+1

H[N]:= time

=N

while [> |
parent := floor(i/2)
if H|{parent] <= time

return

swap(H[i), H| parent))
i:= parent

remove()

H[1):= H[N]

v
(U%]
wn

Real-Time Scheduling and Computer Accompaniment

Ni=N-1
=1
child:= 2 xi
while child <= N
if child +1 <= N
if H{child + 1] < H[child]
child .= child + |
child 1s now the index of the least child
if H[i] <= H{[child]
return
swap(H[i], H{child])
= child

child = 2 %1

inspect()
return /{[1]

In these routines, only the times are stored in the heap. For use in
a scheduler, an event must be associated with each time. This is a
straightforward extension to make once the algorithms are understood.

Notice that the size of array A sets an upper limit to the number of events
that can be stored on the heap. A priority queue based on 2-3 trees [1]
offers sitmuilar high performance without an intrinsic upper bound on the
queue size.

Be redefining newquewe, insert, inspect. and remove. the scheduler can
be improved without changing either schedule or alarm! Since this is a
straightforward substitution. no further implementation details are
presented here.

Using a heap for the priority queue changes the cost of both the schedule
and the alarm operations. The schedule operation costs are reduced from
something proportional to » to something proportional to logn. This
improvement is quite significant when # is large. The alarm operation,
which formerly cost a fixed amount per satisfied request, now costs some-
thing proportional to log n per satisfied request. This is a small price to pay
considering the savings made in the schedule operation.

18.2.4 Implementation 4

More improvements are possible. Implementation 4 incorporates an opti-
mization that avoids the alarm operation unless necessary. The trick is to

236 R. Dannenberg

use setalarm to invoke alarm only at the proper time. Both schedule and
alarm must be changed, and seralarm is not called when the system is
initiahzed:

mitialize()
requests = newqueue()

schedule(id. rime)
requests = inseri(requests. id, time)

r.= inspect(requests)
setalarm(r. TYME)

alarm()
ri= inspeci(requesis)
while gerrime() >= r.TIME
erent(r.p)
requests .= remove(requests)
ri= inspect{requesis)
setalarm(r.TIME)

Notice that both schedule and alarm end by calling seralarm(r. TIME),
where r.TIME is the time of the carliest pending request, as determined by
inspect.? Thus. alarm will always be invoked when the next pending request
is ready. but never carlier.

Implementation 4 saves a fixed cost at every time increment for which no
request is ready. If the unit of time is very short. this can be a significant
savings. Many real implementations use this technique to optimize Imple-
mentation 2. In most computer music applications, however. a time resolu-
tion of several milliseconds is adequate.® Therefore, the overhead of invok-
ing the alarm operation at every unit of time could amount to less than 1%
of the computing resources in a carefully written scheduler.

In a real-time computer music system, frequent operations that consume
only a small amount of processing time are not as problematic as less
frequent operations that involve significant computation. Following this
line of reasoning, Implementation 4 has not led to a substantial improve-
ment: an unimportant aspect of the scheduler has been optimized while
significant overheads remain in the form of the priority queue operations
invoked by schedule and alarm. Implementations 5 and 6 will incorporate
a strategy that largely removes this problem.

Real-Time Scheduling and Computer Accompaniment 237

TABLES EVENT LISTS
table 1 > id NULL (baset/me)
NULL)
3" id |nNuLL
—H* —
NULL d > /d NULL
NuULL
table 2 i I NULL | (basetime + N)
NULL
NuULL
NULL]
L
Eane d NULL | basetime + 2N ~ 1)
Figure 18.4

table I and rable 2, with lists of events scheduled for times between basetime and basetime
+2N — 1.

18.2.5 Implementation 5

Implementation 5 is quite similar to Implementation 3, but a different
method is used to avoid the overhead of the priority queue. The idea is to
use the fact that at a time resolution of several milliseconds, a separate list
of requests can be maintained for each unit of time for several seconds into
the future. Since there is a separate list for each unit of time (see figure 18.4),
scheduling an event amounts to inserting the event idin the proper list. This
always takes a small constant amount of time. Furthermore, performing
eventsis very fast. Ateach unitof time itis only necessary to advance to the
next list and perform all of the events in the list. Thus, there is a small
constant amount of time necessary per event and per time unit to perform
events. This is much better than the performance of the previous scheduler
when there are many events waiting in the queue.

The scheduler presented in this section will provide constant time sched-
uling and constant time event dispatching, but it will only allow scheduling
a finite amount into the future. This limitation will be removed in the next
section.

For reasons that will become clear later, two tables (arrays) of lists called
tablel and table2 are used. and each will store N lists, named tablel{0] . ..
tablel[N — I]and table2[0] ... table2[N — I]. The operation swap(tablel,

238 R. Dannenberg

table2) exchanges the contents of tablel and table2.* When the scheduler 1s
started, each table is filled with empty lists, baserime is initialized to the
current time, and serzime 1s used to invoke alarm:

initialize()
fori:=0to N — 1
tablel{i]:= NuULL
table2[i]:= NULL
basetime ;= geitime()
= basetime
setalarm(basetime)

Now. tablel{i] (for any i between 0 and N — 1) will be a list of requests
scheduled for time basetime + i. and rable2[i] will hold requests scheduled
for time basetime + N + (. In figure 18.4, tablel and rable2 are shown. The
scheduled time for several events is indicated in parentheses to the right of
the events. Each table entry stores a possibly empty list of structures with
two fields, id and nex:. Note that the time of an event is implied by the
choice of table entry, so there 1s no need to store the time in the lists.

At time baserime + N, all requests in rable! will have been satisfied, so
table! can be reused for future events. This 1s accomplished by swapping
rablel and table? and adding N to basetime. Figure 18.5 illustrates the
correspondence between table entries and time before and after a swap
operation. Notice how rablel is renamed and relocated in time to become
the new rable?.

The implementation of alarm is simple. First, if the end of rablel is
reached, swap tables. Then get the list of pending requests corresponding to
the current time and call event for each id in the list. Finally, clear the
current table entry to allow it to be reused when the tables are swapped.

alarm()

if t = basetime + N
swap(tablel. table2)
basetime =t

requests := tablel[t — basetime]

while requests <> NULL
event(requests.iD)
requests ;= requests.NEXT

Real-Time Scheduling and Computer Accompaniment 239

basetime table 1

Swap
table 2 ———— table 1

basetime + N

table 2

Figure 18.5
Data structures for Scheduler Implementation 3.

tablel{r — basetime] = NULL
=1+ 1
setalarm(t)

The schedule operation locates the right list and inserts the id:

schedule(id. tinie)
if ime < basetime + N
tablel{time — baserime] =
new(id. tablel[time — basetime})
else if tinie < basetime + (2 N)
rable2[time — (basetime + N)}:=
new(id, table2{time — (basetime + N)])
else error()

Note that just before the swap operation, all lists in rable] are empty as a
consequence of alarm. This makes rablel ready to be reused as the new
table?.

Both alarm and schedule now take a constant amount of time per request.
The only problem with this scheduler is that it does not allow us to schedule

240 R. Dannenberg

Constant Pendi Priorit Constant

Time — ?n ‘ng D, ronty N table 2 p—3 Time
List Queue

Insert Remove

Figure 18.6

Flow of event request data from scheduling time to performance time.

events for further than N time units into the future. (The maximum time at
which an event can be scheduled is basetime + 2N — 1, and the current
time can be as great as basetime + N — 1: the difference 1s V.) Notice that
if a request is scheduled further ahead of time than this. there will be no
table entry to receive it. However. if requests are always made with times
less than N time units into the future. schedule will always work, and its
real-time characteristics are almost ideal (the only possible reservation
being the overhead incurred by invoking alarm when there are no requests
to be met). The last implementation will extend this one to allow requests
to be made at arbitrary times in the future.

18.2.6 [mplementation 6

The key idea of this implementation is to use the previous implementation
to handle all near-term requests and to add a fallback strategy for long-
term requests. Notice that the scheduler has at least NV units of time to deal
with any far-term request. so it 1s possible to delegate most of the work to
a background process that runs when there is no other work to do. Since
practical real-time systems have a large amount of idle time, this strategy
is quite reasonable: time-critical (near-term) scheduling operations will
execute in constant time, and non-time-critical (long-term) scheduling
operations will take more processing time, but will take advantage of
otherwise idle processing time.

The algorithm works as follows: any request that cannot be immediately
entered into a table is put on a simple linked list called pending. Note that
this takes only a fixed amount of time. In the background, a process uses
idle processor time to remove items from the pending list and insert them
into a priority queue. It also takes items from the queue and inserts them
into tables as this becomes possible. The low of data for events scheduled
after basetime + 2N is illustrated in figure 18.6. The double arrows repre-
sent transfers that take place in the background.

The timing constraints on the background process are simplest to under-
stand if the requirements are made a little stronger than absolutely neces-

Real-Time Scheduling and Computer Accompaniment 24]

sary. At the moment just after basetime is incremented. rable? 1S empty
and represents lists of events that are to take place in the interval from
basetime + N to basetime + 2N — 1. The pending list may contain requests
for this interval. but no more requests for the interval will be added to
pending because any new request for that interval will be inserted directly
into the table. Thus. when baserime is incremented. there are N time unitsin
which to insert the pending list into the priority queue and then to transfer
to table2 everything in the queue with a time earlier than basetime + 2N.
Since new requests with times of basciime + 2N or greater might be
scheduled while this background task is running, it is convenient to use
two lists. pendingl and pending?2. Requests will be added to pendingl and
removed from pending2. A swap operation will exchange them when base-
time 1s incremented.

Figure 18.7 illustrates timing relationships. During the time interval
labeled 1. events are moved from pending2 to the priority queue and then
to table2. Meanwhile. any event scheduled for time interval 2 is placed
on pendingl. At basetime + N, a swap occurs. exchanging pending! and
pending?2. table] and table2. and adding N to basetime so that the whole
sequence repeats. The resulting scheduler is given below:

alarm()

if 1 = baserime + N
swap(tablel. table?)
swap(pendingl. pending2)
basetime 1=t

requests .= tablel[t — bhasetime]

while requests <> NULL
event(requests.1D)
requests = requests.NEXT

tablel{t — basetime]:= NULL

L=t +1

setalarm(t)

schedule(id, time)
if time < basetime + N
tablel{time — basetime]:=
new(id. table1{rime — basetime))
else if time < basetime + (2x N)
rable2[time — (basetime + N)]:=
new(id, table2(time — (basctime + N)))

242 R. Dannenberg

basetime { table 1
Swap
basetime + N teble 2. ———— table 1
1

basetime + 2N basetime + N table 2

| basetime + 2N

!
|

'

Figure 18.7
Data structures for Scheduler Implementation 6.

else
pendingl := new(id. time. pending)

background(startiime)
mybase := starttime
while TRUE
mybase := mvbase + N
while myvbase > basetime
do nothing
while pending2 <> NULL
insert(queue. pending2.1D. pending 2. TIME)

Real-Time Scheduling and Computer Accompaniment 243

pending?2 = pending 2 NEXT

q := inspect(queue)

while ¢.TIME < mybase + (2% N)
schedule(q.1D. q. TIME)
queue .= remove(queue)

g = inspect(queue)
if mybuase <> basetime

error()

The important variables are

rable]
table?

pending?

pending |

events scheduled for baserime <=t < basetime + N
events scheduled for basetime + N <=t < basetime + 2N

temporarily holds events scheduled during baserime —
N <=1 < basetime for times greater than baserime + N

temporarily holds events scheduled during basetime <=1
< basetime + N for times greater than basetinme 4 2N

Initialization is as for the previous scheduler, with a few additions:

initialize()

fori:=0to N — 1
rablel{i]:= NULL
rable2{i]:= NULL

basetime := gettime()

1= basetime

setalarm(basetime)

pendingl :
pending2 -

= NULL
= NULL

queue .= newqueue()
start background(basetime)

The background process is started and is passed the initial value of
basetime as a parameter. The background process uses this value to deter-
mine when to perform a cycle of its outer loop that moves requests from
pending?2 to queue. and then from gueue to rable2. After these operations,
background checks 10 make sure it has completed its task within N time
units. If it has, mybase will still equal basetime.

244 R. Dannenberg

For computer music applications. this scheduler is superior to those
considered carlier. The schedule and alarm operations take a constant
amount of time to execute in all cases. When events are scheduled far in the
future. there is an additional computational expense proportional to logn
per event. but this expense is delegated to a background process. During
each regular interval of N time units (where Vis an arbitrary number). the
background process must enqueue all requests pending from the previous
interval and dequeuc all requests pending for the nextinterval. This interval
can be made large if desired in order to minimize the effect of “bursts™ of
scheduling requests.

Notice that if all events are scheduled for times greater than basetime +
2N, then this scheduler will do slightly more work than Scheduler Imple-
mentation 4. The extra work arises from moving each event on and off of
both a pending listand a table. In addition. the a/arm routine must be called
every unit of time. However. even in the worst case this scheduler still has
a significant advantage because events can be scheduled and dispatched in
constant time. This is very important in music where events often come in
bursts—for example. at the beginning of a chord with many notes. The
high performance during bursts of scheduling or dispatching activity more
than makes up for the extra work performed by the background process.

The memory space required by the scheduler is proportional to V + .
where NV is the time interval size and A is the number of pending requests.
There is no way to get around M in any scheduler. and the memory space
due to tables of size N = 1.000 might typically be 8.000 bytes. one-sixteenth
of a single 1 M-bit memory chip. At a time resolution of I ms, this would
give an interval time of one second.

Experienced programmers may recognize that a circular buffer could be
used in place of the double-buffering scheme of two tables used here. The
double-buffering scheme is used here because it makes it easier to under-
stand the requirements that must be met by the background process.

(After this chapter was completed, a paper was independenty published
by Varghese and Lauck [12] that develops algorithms similar to those in
this section. Rather than use a background process to schedule future
events. all events are immediately entered into a table at the event time
mod N. The alarm routine must examine entries in the table and invoke
only event requests whose time matches the current time. This is simpler
than Implementation 6 but slightly more expensive.)

Real-Time Scheduling and Computer Accompaniment 245

Scheduler Implementation 6 was designed because other existing sched-
uler algorithms did not deliver the performance desired for real-time com-
puter music systems. The present design overcomes significant problems
associated with other schedulers.

18.3 Scheduling with Virtual Time

In each of the schedulers discussed 1n the previous section. times are refer-
enced to a single clock that is presumed to correspond to real (physical)
time. In computer music programs. 1t is often convenient to have a time
reference or references that do not correspond to real ume. Consider the
conductor’s baton, which (among many other functions) measures time in
beats.

Because tempo may vary, time as measured in beats may not have a fixed
linear relation to real ime. By analogy. one can imagine a software sched-
uler that uses a nonhnear or variable speed time reference.

This concept can be extended to incorporate several simultaneous but
independent time references, analogous to having several conductors con-
ducting at different tempi. A further extension is the composition (in the
mathematical sensc) or nesting of time references [9]. As an intuitive
introduction to this concept. imagine taking a recording of a rubato
passage of music and varying the playback speed. The resulting tempo will
be a composite of two functions, or tinme maps. that map {rom one time
reference to another: the playback speed and the original tempo. In this
section, various ways to implement virtual-time schedulers will be consid-
ered. starting with a simple extension to the last scheduler in the previous
section.

18.3.1 A Single-Reference, Virtual-Time Scheduler

The simplest virtual-time scheduler contains a single time reference that
can be made to advance at any positive speed with respect to real time. For
now, it is assumed that the speed of virtual time relative to real time can be
changed within the program by calling setspeed(s), where s is the new speed
of the virtual time. The speed variation can be implemented in either
hardware or software.

Usually, real-time computer systems have a programmable real-time
clock that generates an interrupt every N cycles of a very fast (often 1-10

246 R. Dannenberg

MHz) system clock. In terms of the schedulers of section 18.2, an interrupt
corresponds to calling alarm(). For example, if the system clock period is
1 ps and the nominal time unit used by the scheduler is 1 ms, then N would
be 1 ms/1 us = 1.000. If N is changed to 900, the interrupt period will be
0.9 ms. Thus. virtual time (the time reference used by the scheduler) would
go faster.

[n cases where a hardware solution is not possible, software can be used.
The software solution described here will not produce truly periodic inter-
vals like the ones generated in hardware. Instead. the approach will pro-
duce the correct average period in the long run. The actual advances of
virtual time (or calls to @larm) will occur on transitions of the real-time
clock. which limits the time resolution of the system. This is typically nota
problem since the real-time clock interval is small. A schematic of the
software solution follows:

[niually:
d:=0.0
On hardware interrupt:
di=d+ s
while d >= 1.0
d:=d—1.0
alarm()

Both dand s are floating point numbers. Note that if s, the speed of virtual
time, is exactly I, then alarn is called on every interrupt. The speed can be
arbitrary; for example, if s = 0.71, then alarm will be called 71 times out of
every 100 interrupts, and the calls will be spaced fairly uniformly. In
general. during an interval of 1 units of real time, alarm is called approxi-
mately sz times. Thus, the ratio of virtual to real time approaches exactly
st/t = s, asdesired. Also notice thatif sis greater than 1.0, alarm will at least
sometimes be called more than once in response to a single interrupt. This
is necessary to get an average alarm rate greater than the interrupt rate.
Rather than use floating point numbers as indicated above, fixed point
numbers or integers are often used for greater efficiency. The same pro-
gram can be written with only integer operations. In the version below. the
speed sis set to an integer scaled to 1,000 times the desired speed of virtual
time. For example. if the desired speed is one-half, s would be 500, and
alarm() would be called on every other hardware interrupt. (The choice of

Real-Time Scheduling and Computer Accompaniment 247

one thousand is arbitrary. Larger numbers allow greater accuracy in the
representation of fractions but require larger integers.) Here is the code:

Imually:
d:=0
ONE:= 1000

On hardware interrupt:
di=d+s
while ¢ > ONE
d:=d — ONE
alarm()

18.3.2 Multiple Reference Schedulers

Problems arise if it is necessary to schedule according to several time
references. A simple. but potentially expensive, approach is to operate a
separate scheduler for each time reference. The interrupt routine presented
above is rewritten as follows:

Initally:
d;:= 0.0 for each ¢

On hardware interrupt:

for each 1
dii=d, + s
while ¢, >= 1.0
dii=d;— 1.0
alarm;()

In this approach, there is a separate speed (s;) for each scheduler. Time
for scheduler 7 advances when alarm, is called. This approach is practical
only when the number of schedulers is small because the cost is propor-
tional to the number of schedulers.

18.3.3 An Efficient Compromise

[t seems wasteful to compute the advance of each virtual clock at every unit
of real time. but this is necessary because the speed of a virtual clock can
change at any moment. If changes to s are restricted. this problem can
largely be eliminated. One possible restriction is to require complete
knowledge of how s will change in the future. It is then possible to compute

248 R. Dannenberg

the real time to which any virtual time will correspond. If the desired real
time can be computed when an event is scheduled, there is no need for
special virtual-time schedulers.

Unfortunately. for most interactive real-time programs it is too restric-
tive to require future knowledge of the behavior of s. For example, s might
be controlled by a slider in real time. Another possible restriction is to allow
s to change only with some small advance notice. This would allow a
conversion of each virtual time to a real time shortly before the real time
occurs.

This idea can be applied to Scheduler Implementation 6 from the previous
section. Recall thatin scheduler 6. a background process pulls events from
a queue and enters them into rable2 while events in tablel are activated in
sequence. For this new scheduler. there will be a separate queue for each
virtual-time reference. and the background process will pull events from
each queue. translating virtual times into real times and inserting events
into rable2. Once an event is entered into a table. its real time cannot be
changed. which is another way of saying s must be known in advance. The
worst-case advance notice (or latency, depending on one’s point of view) is
twice the table size.

The implementation of this scheduler begins with routines for converting
virtual time to real time. The calculation assumes that virtual time moves
forward at a rate s from the last time at which s was changed:

virttoreal(vtine, 1)
return realref; + (viime — virtref;) = s;

The parameter / indicates which virtual-time reference is to be used. For
each reference. s; is the speed. realref; is the time at which s; was last
changed. and virtref; is the virtual time at which s; was changed. Figure 18.8
illustrates this graphically. To change s, the following routine is called:

setspeed(speed. i)
time = gettime()
virtref; .= virtref; + (1ime — realref;)/s;
realref; .= time
5= speed

The serspeed routine computes the current virtual time based on previous
values of virtref,, realref;, s;. and the current real time. Then, viriref;,
realref;, and s; are updated.

Real-Time Scheduling and Computer Accompaniment 249

virt-to-real {vtime)

b e e e e e e e e e e e

reairef

]
[
!
REAL |
TIME | !
| !
| l
| I
virtref {vtime
!
{)i
VIRTUAL TIME
Figure 18.8

The virtual- to real-time calculation.

A new routine. rschedule. can now be written.

vschedule(id. vrime. i)
time = riritoreal(vtime.)
if time <= gettime()
event(id)
else if time < basetime + N
tablel(time — basetine]:=
new(id. tablel{time — basetime])
else if rine < basetinie + (2= N)
table2{tme — (baserime + N)]:=
new(id. table2{time — (basetime + N)J)
else pendingl := new(id. vtime. i, pending)

This routine 1s similar to schedule except it takes an extra parameter (i)
that specifies which virtual-time reference to use. If the event is expected to
happen during the times represented by rablel or rable2, then the event is
scheduled for a particular real time. Otherwise, the event is put on the
pending queue to be handled by the background process. which is now
presented:

background(staritinie)
mybase .= starttime
while TRUE

250 R. Dannenberg

mybase := mybase + N
while myvbase > basetime
do nothing
while pending? <> NULL
.= pendingl.1.
insert(queue;, pending2 1D, pending2 VTIME)
pending?2 .= pending2 NEXT
for each{
q = inspeci(queue;)
time ;= virttoreal(q.VIIME.)
while 1ime < mybase + 2 N
schedule(q.1D. time)
queue; .= remove(queue;)
q .= inspeci(queue;)
time = virtioreal(q.VTIME. ¢.1)
if mybase <> basetime
error()

This code 1s based on that of Scheduler Implementation 6. Notice that the
pending queue now specifies which time reference. and theretore which
priority queue in which to insert the event. Notice also that now there can
be more than one priority queue, so the background process must examine
each one.

What has been accomplished with this new algorithm? In the beginning
of this section. it was found that computation costs were proportional to
the number of virtual-time references. This was true because each virtual
time was updated at every unit of real time in order to schedule events
properly. The new scheduler saves work by converting all virtual times to
real times. There is still a computation cost proportional to the number of
virtual-time references. but now this happens on each iteration of the
background process rather than every unit of real time. Thus the new
scheduler 1s much more efficient.

The disadvantage of this approach is that there is some latency between
the time s changes and the time at which this affects the real time of an
event. Barry Vercoe has described programs with this property, presenting
them as a model of human physiology [13]. The latency due to fixing
performance times slightly in advance of real time is analogous to human
reaction ume.

Real-Time Scheduling and Computer Accompaniment 251

To get an idea of the magnitude of the latency, a reasonable implementa-
tion might use real time units of 5 ms and tables of length 16. This would
give a worst case latency of 5 x 16 x 2 = 160 ms or 0.16 s. Note that
this number reflects the worst-case delay before a new s takes effect; if s
changes by some percentage p. then the maximum timing error will be
roughly (p/100) x 0.16 s. Also note that these numbers are arbitrary and
there seems to be a wide range of reasonable choices. The main trade-off
is that as the table gets smaller, latency goes down. but so does the amount
of time available in the background process to handle a burst of events.
Overall, this approach is interesting, but not very satisfying. It is fairly
complex, yet an implementation is likely to suffer from too much latency or
situations where the background process fails to make its deadline.

18.3.4 Yet Another Scheduler

Another implementation is worth considering. In this scheduler, there will
be no latency except that due to the processor falling behind when there are
many events to schedule or activate. This scheduler will not be as efficient
as the previous one.

The idea is based on Implementation 4 in the previous section. Recall
that Implementation 4 uses a priority queue for events and that it uses
setalarm so that the scheduler does not work until it is time to activate the
next event. Now imagine having one priority queue for each virtual-time
reference and allowing each one to set an individual alarm. The alarm will
be set with the anticipated real time of the next event. (Speed changes will be
dealt with later.)

In practice, there may not be an individual hardware timer for each
virtual time reference. but this is exactly the problem that schedulers solve!
The virtual-time schedulers will use a single real-time scheduler to schedule
themselves. and the real-time scheduler will use the hardware timer as
always.

Assume that there is an Implementation 6 scheduler that implements the
operation schedule(i. time) that results in a call to valarm(i) at the indicated
time. The only change necessary to Implementation 6 is to replace the call
to event with a call to valarm.

The virtual-time scheduler is presented below:

vschedule(id. vtime. 1)
ri= inspect(requesis;)

R. Dannenberg

[
(9,
89

requests; .= inseri(requests;. id. vtime)
if vtime < r.VTIME
schedule(i. virttoreal(vtime i))

The object is to make sure that valarm will be called at the real time
corresponding to the next item in the requests queue. If the virtual time of
the new request (veime) is less than the earliest time of any other event n
requests (r.viime), then schedule is called with the real time corresponding to
vtime. the new earliest virtual time. The implementation of valarm detects

and 1gnores dny extra requests:

valarm(1)

ri= inspect(requesis;)

vtinie = r.VTIME

while virtroreal (r vTIME. 1) <= gellime()
event(r.1p)
requesis = remove(requesis;)
ri= inspect(requesis;)

if vrime <> r.VvTIME
schedule(i, virtroreal(r VIIME. 1))

Extra requests are detected by the while loop. Ifitis not yet time to perform
the next event in the queue. nothing happens. If one or more events in the
queue are performed, then viime will no longer equal r.etime and valarm
finishes by scheduling the anticipated real time of the next event in the
queue. To complete the implementation. here is setspeed:

setspeed(speed. 1)
s; 1= speed
r.= inspect(requesis;)
schedule(i, virttoreal(r VTIME. 1))

This scheduler is interesting because it always schedules valarm for the next
known event time for each virtual-time reference. Since the real-time
scheduler is so efficient. there is little overhead in scheduling extra valarn
events. Notice thatitis never a problem to schedule anextra valarm because
valarm checks to see that it is time for an event before performing it. On the
other hand it is important always to have at least one valarm scheduled for
the real time of the next event. so each call to serspeed also schedules valarm
for the new predicted time of the next event.

Real-Time Scheduling and Computer Accompaniment 253

Figure 18.9
A hierarchv of virtual-time schedulers.

In this scheduler. a call to rschedule and a subsequent valarm has a cost
proportional to the log of the number of events in the requesr queue. There
is also an added cost of calling schedule. but this cost is essentially fixed
except for potential background processing. Finally, each call to setspeed
adds the cost of calling schedule.

18.3.5 Composition of Time Maps

After exploring real-time schedulers and virtual-time schedulers. there is
still one area left to consider. A logical extension to the scheduler is one in
which a virtual-time scheduler uses another virtual time as a reference. This
allows arbitrary nesting of virtual-time references.

The implementation of such a system uses a tree of schedulers where the
root is a real-time scheduler and other nodes are virtual-time schedulers.
Figure 18.9 illustrates a tree of virtual-time references. References E and D
use C as a time reference. and B and C use A (real time) as a reference. Each
scheduler uses its parent to schedule an alarm when it is time for the next
event to be activated. Thus. the parent scheduler determines the reference
time forits children. It can be seen that the previous scheduler is a two-level
tree with this structure.

In a multilevel tree. the cost of performing an event is the sum of the cost
at each level. For example. in figure 18.9, the performance of an event
scheduled with scheduler E begins with an event scheduled with A, the real-
time scheduler. This first event invokes the ralarn routine of scheduler C,
which in turn runs the ralarm routine of scheduler E. The valarm routine of
E finally performs the scheduled event. The idea of scheduling alarms that

254 R. Dannenberg

turn out to be useless because of a subsequent speed change is still applica-
ble in a multilevel tree of schedulers.

To reduce the overhead of dispatching events that are many levels deep,
it is possible to collapse any tree to two levels. For example. in figure 13.9,
D and E would be moved 1o the level of B and C. To do this, 1t is necessary
to modify serspeed to update all affected time references. For example,
changing the speed of C must indirectly affect D and E. Finally, the
virttoreal function must be modified to compute the correct composition of
time maps. This approach makes dispatching faster at the expense of a
more expensive serspeed operation.

Another extension of virtual-time schedulers is to consider using a
continuously varying speed. For example. a smooth acceleration might be
effected by changing the speed linearly instead of in steps. To incorporate
this capability. the only change necessary is in the function virttoreal. The
real time of a future event at virtual time ¥, will be the integral of the speed
function s(v) from the current virtual time ¥, to ¥}, If s(v) can be restrnicted
to a polvnomial. then the virrtoreal function will consist of evaluating the
integral of s, also a polynomial [9].

18.3.6 Related Work

The idea of nested virtual-time schedulers is not new, and implementations
have been described by Jaffe and by Anderson and Kuivila. Jaffe's article
[9] considers a non-real-time system oriented toward computer-aided com-
position. The system by Anderson and Kuivila [2] is a real-time implemen-
tation in which the delay of the next event must be specified as each event
is scheduled. Executable processes can be used to specify speed changes,
resulting in a very flexible means for specifying time maps.

The work described here makes two contributions to existing methods.
First the real-time scheduling algorithm is a significant improvement over
the use of heaps or other “fast” methods. Second, all of the virtual-time
scheduling algorithms described in this chapter allow events to be scheduled
in arbitrary order, and it is unnecessary to know the time of the next event,
or whether the next scheduled event will be before or after the present one.

[n fairness to the previous work. it is often the case that one knows when
the next event will be scheduled. or at least one can often know the order
of events. This leads to greater efficiency in the referenced works, insuring
that there are no extra calls to viime.

Real-Time Scheduling and Computer Accompaniment 255

18.4 Computer Accompaniment

All of the schedulers presented so far deal only with time and events and
could be used for, say. controlling machinery as well as music. In this
section, a scheduler that assumes a musical context is examined. This
assumption enables the scheduler to incorporate musical knowledge, re-
sulting in a very sophisticated (but not very general) scheduler.

Computer Accompaniment® is a task similar to that of a human accom-
panist, who listens to another performer. reads music, and performs an-
other part of the music in a synchronized fashion. Computer accompani-
ment does not involve any improvisation or composition. Instead, the
computer is given a score containing a description of the music to be played
by each performer. In this model. the soloist considers only his or her (or
its!) part of the score and determines the tempo of the performance. The
(computer) accompanist dynamically adjusts its timing to match that of the
soloist.

Computer accompaniment has been accomplished by a computer system
that can be divided roughly into two parts: the “‘analytical” part that uses
a fast algorithm to perform pattern matching on a symbolic representation
of the score and the solo, and the “"musical™ part that attempts to produce
a sensible performance in the face of continual adjustments in tempo.
Figure 18.10 separates these parts further into a number of separate tasks
that are described below.

18.4.1 Analytical Tasks

The “analytical” part has the job of following the soloist in the score. This
part consists of two concurrent tasks. The first task, called the /iszener, is a
preprocessor of input from the soloist. Listening in this context means
converting sound into a symbolic form to be used by the next task. A single
melodic line from. say, a trumpet or flute is processed in real time to obtain
time-varying pitch information, which is then quantized to obtain the
discrete pitches of a musical scale. Alternatively, a music keyboard whose
pitch output is inherently symbolic can be used. In either case, the listener
task sends a schematic representation of the soloist’s performance to the
next task. The delay between the onset of a note and its detection by the
listener must be small to achieve responsive accompaniment.

This second task, called the marcher, compares the actual performance to
the expected performance as indicated in the score. The objective of the

256 R. Dannenberg

Performance of Score
Solo
Input
Preprocessor
A
Matcher
\ 3

Accompaniment }

Y
1 Synthesis

¢

Accompaniment

Figure 18.10
Block diagram of a computer accompaniment system.

comparison 1s to find a correspondence between the performance and the
score, thereby relating real time to the uming indications in the score. In
accompaniment, the goal is to construct a time map in real time 1n order to
make the virtual times of score events take place at the real times of the
performance events. Since either the soloist or the listener task may make
mistakes (the listener task makes mistakes because pitch and attack detec-
tion, especially in a noisy acoustic environment, is inherently error prone),
the matcher must be tolerant of missing notes, extra notes, or notes whose
pitches are wrong. Furthermore, the timing of notes will vary from one
performance to the next. To deal with this kind of ““fuzzy™ match, a real-
time adaptation of dynamic programming is used. The output of the
matcher is a sequence of reports that occur whenever the matcher is fairly
certain that a note performed by the soloist corresponds to a particular
note in the score. A matcher for monophonic inputs is described in [8] and
two matchers for polyphonic inputs are described in [4].

18.4.2 Musical Tasks

The “musical” part contains a third task, called the accompanist, which
controls the timing of the accompaniment. Note that most of the accom-

Real-Time Scheduling and Computer Accompaniment 257

paniment is determined by the score, and timing is the only dimension that
varies from one performance to the next. (Other parameters, such as
loudness. could be varied as well.) Typically the accompanist will output
commands that mean something like ““the violin should now begin playing
C-sharp,” and a synthesizer handles the actual sound generation. The main
problem in the accompaniment task is to adjust the timing of the accom-
panist in a musical fashion.

One approach to providing timing would be to use a virtual-time refer-
ence to schedule accompaniment events. Calls to serspeed could be used
to keep the accompaniment in synchronization with the performance.
Although this scheme would work reasonably well, it would be unable to
handle jumps to new positions in the score in a musical way. A better
approach is to write a scheduler thatincorporates musical knowledge. The
scheduler gets the clock speed and offset relative to real time from the
matcher task. Adjustments must be made carefully if they are to sound
musical. and a rule-based approach is used to program the accompanist.
For example. one rule says thatif the virtual clock is behind the soloist by
a moderate amount, it is better to catch up by playing very fast than by
skipping part of the accompaniment. Note that this is not as simple as the
virtual-time schedulers seen in the previous section. In order to enhance the
quality of the accompaniment. the accompanist can repeat parts of the
score if virtual time jumps backward, skip parts of the score if virtual time
jumps forward by large amounts. and generally alter timing according to
the context of the score. The accompanist can be called a knowledge-based
scheduler because it schedules events based on knowledge of musical
interpretation as well as the passage of time.

18.4.3 Implementation

The implementation of the accompanist relies on an underlying real-time
scheduler of the sort described in the first section. The overall structure of
the accompanist is fairly simple: the accompanist calculates the real time at
which the next accompaniment will occur, and an event is scheduled to
reactivate the accompanist at that time. Normally, the accompanist will
then suspend itself and when the proper time is reached, the accompanist
will be reactivated. It then performs the next accompaniment event, and the
cycle is repeated.

The accompanist is also reactivated when input arrives front the matcher.
Recall that the matcher reports when the soloist plays a note in the score;

258 R. Dannenberg

therefore. the current real time is known to correspond to the virtual time
of the matched note in the score. The accompanist can now recalculate the
speed of virtual time, the current virtual time, and the real time of the next
accompaniment event. An event is scheduled to reactivate the accompanist
at that time.

If the performance time of the matched note is not close to the expected
time for that note. the accompanist must take a corrective action. A rule
that matches the current situation will determine the action: for example. if
the virtual time skips far ahead. the accompanist will stop any notes
currently sounding and skip to a new location in the score.

Left to its own. the accompanist always has a single reactivation event
scheduled while it is asleep. However, the matcher may intervene with some
information that changes that accompanist’s notion of when it must next
do something. Rather than changing the time of the previously scheduled
wakeup event. it schedules a new one. This is analogous to setting another
alarm clock after deciding to wake up at a different time. Since the
accompanist knows when it should wake up. it can ignore alarms that go
off at other times.

18.4.4 Thinking Ahead

One consequence of the accompanist implementation is that the analytical
score following tasks are only weakly coupled to the musical accompani-
ment tasks. This is as it should be. since an accompaniment performance
should make a certain musical sense even without the solo it is meant to
support. The partial independence allows the accompanist to continue its
performance even in the absence of input from the soloist. This is essential
for situations where the accompaniment has many notes against a sus-
tained note or rest in the solo part.

Because of this partial independence, it is not true that the accompani-
ment system must lag behind the soloist. To avoid this potential problem,
the latency of the system is determined experimentally and subtracted from
the scheduled real time of every accompaniment event. Therefore, the
accompaniment anticipates every event by an amount equal and oppo-
site to the latency in the system. just as a tuba player must anticipate in
order to compensate for the latency of his instrument. If the soloist and
accompanist are to play two notes simultaneously, it is only after the
soloist’s note is processed that the accompanist can know whether its
timing was correct. If not, the discrepancy is used to update the virtual-time

Real-Time Scheduling and Computer Accompaniment 259

reference so that the next note will be timed more correctly. The resem-
blance to human performance is striking.

18.4.5 Related Work

Computer accompaniment systems have been developed independently by
Dannenberg [4, 8]. Vercoe [13. 14], and by Lifton [10]. The paper by Bloch
and Dannenberg 4] discusses matchers for monophonic and polyphonic
performances in detail. The paper by Vercoe and Puckette [14] describes the
idea of learning performance timing through rehearsal. and Lifton’s paper
[10] describes a system for the accompaniment of vocal music.

18.5 Conclusions

Computer music instruments. accompaniment systems. and interactive
composition systems are opening new doors for performers and compos-
ers. Schedulers are critical components in these systems, and this chapter
has presented a collection of schedulers for computer music applications.
Scheduler Implementation 6 is a particularly efficient real-time scheduler
with a constant cost per scheduled event plus some background processing
for events scheduled far into the future. Several virtual-time schedulers
were also described. Finally the concept of a knowledge-based scheduler
was explored in the context of computer accompaniment systems.

As real-time music systems increase in complexity, the idea of knowledge-
based schedulers may very well evolve into the noton of expert perfor-
mance svstems, that is. computer programs that model the behavior of
human performers. Composers who use these systems will enjoy the flexi-
bility of computer-generated sounds. without giving up all of the advan-
tages of having human performers play their works. Composers who write
their own expert performance systems will be able to explore and develop
new standards of performance practice tuned to their own personal musical
goals.

Acknowledgments
Most of this chapter grew out of conversations with Ron Kuivila in

between concerts and lectures at the 1985 International Computer Music
Conference and the Second STEIM Symposium on Interactive Composi-

260 ' R. Dannenberg

tion in Live Electronic Music. [t was during these conversations that the
idea for a fast scheduler was born. Barly Truax, Simon Fraser University,
Michel Waisvicz. and STEIM deserve special thanks for organizing these
conferences. which generated such a sharing of ideas. John Maloney fur-
nished many helpful comments and spotted some errors in an earlier draft.
The author would also like to thank the Computer Science Department
and the Center tor Art and Technology at Carnegie-Mellon University for
their support of this work.

Notes

[. Moxc is available as part of the CMU MIDI Toolkit from the Center for Art and
Technology, Carnegie-Mellon University, Pittsburgh, PA 15213,

2. The reguests queue is initialized with a request whose time is infinity. so inspecs will always
return a value. Itis assumed that seralerm{infinity)is defined to disable the alarm indefinitely.

2. Sound travels on the order of a foot per millisecond.
4. In an actual implementation. tablel and table2 would be blocks of memory uccessed

through pointer variables. The swap operation merely exchanges the contents of the pointer
variables. Thus swap is very fast.

5. Computer Accompaniment is the subject of a pending patent.

References

(1] Aho. Hoperoft, and Ullman. The Design and Analysis of Computer Algorithms. Addison-
Wesley, 1974,

[2] David P. Anderson and Ron Kuivila. A Model of Real-Time Computation for Computer
Music. In Proceedings of the 1956 International Computer Music Conference, pp. 35-41.
Computer Music Association, 1986.

[3] Jon Bentley. Programming Pearls. Conumnunications of the ACM 28(3):245-250, 1985.

(4] Joshua J. Bloch and Roger B. Dannenberg. Real-Time Computer Accompaniment of
Keyboard Performances. In Proceedings of the 1985 International Computer Music Confer-
ence, pp. 279-290. Computer Music Association, 1985,

(5] Xavier Chabot. Roger Dannenberg, and Georges Bloch. A Workstation In Live Perfor-
mance: Composed Improvisation. In Proceedings of the 1986 International Compuier Music
Conference, pp. 57-60. Computer Music Association, 1986.

[6] Joel Chadabe. Interactive Composing: An Overview. Computer Music Journal 8(1):22~
27,1984

[7} D.J.Collinge. MOXIE: A Language for Computer Music Perform;mc‘c, In Proceedings of
the 1984 ICMC. pp. 217-220. Computer Music Association, 1984,

[8) Roger B. Dannenberg. An on-Line Algorithm for Real-Time Accompaniment. In Pro-
ceedings of the 1984 International Computer Music Conference, pp. 193-198. Computer Music
Association, 1984,

(9] David Jaffe. Ensemble Timing in Computer Music. Computer Music Journal 9(4): 3848,
1985.

Real-Time Scheduling and Computer Accompaniment 261

{10} John Lifton. Some Technical and Aesthetic Considerations in Software for Live Inter-
active Performance. In Proceedings of the 1985 Iniernational Computer Music Conference,
pp. 303-306. Computer Music Association, 1985.

{11} Max V. Mathews and Curtis Abbott. The Sequential Drum. Compurter Music Journal
4(4):45-59. 1980.

{12] G. Varghese and T. Lauck. Hashed and Hierarchical Timing Wheels: Data Structures
for the Efficient Implementation of a Timer Facility. In Proceedings of the Eleventh ACM
Symposium on Operaiing Systems Principles, published as Operating Systems Review 21(5):
25-38. ACM Order No. 534870, 1987.

{13] Barry Vercoe. The Synthetic Performer in the Context of Live Performance. In Proceed-
ings of the 1984 International Computer Music Conference, pp. 199-200. Computer Music
Association, 1984.

[14] Barry Vercoe and Miller Puckette. Synthetic Rehearsal: Training the Synthetic Per-
former. In Proceedings of the 1985 International Compuier Music Conference, pp. 275-278.
Computer Music Association, 1985.

