A Real Time Scheduler/Dispatcher”

Roger B. Dannenberg
Computer Science Department and
Center for Art and Technology
Carnegie Mellon University

Pittsburgh, PA 15213 USA

December 7, 1996

Abstract

Real-time systems often spend an inordinate amount
of time getting ready to do things in the future and
deciding what to do next. Designating a task to be
performed at some time in the future, or scheduling,
and finding the next task to be run, or dispatching,
typically take a total time which is linear in the num-
ber of waiting tasks. A new algorithm is presented
in which the time for both scheduling and dispatch-
ing is bounded by a small constant. An additional
constant load is placed on the processor, and a mod-
est background processing load is also imposed. The
new algorithm is compared to other popular real-time
scheduler /dispatcher strategies.

1 Introduction

Most real-time systems have some mechanism for say-
ing “perform this action at this future time” and many
music systems spend a lot of their computation power
in providing this capability. In this short paper, I will
show how to dramatically improve the performance
over that of the typical implementation.

The typical scheduler/dispatcher keeps a list of the
tasks to be performed in the future. These tasks are
sorted chronologically so that the next action to per-
form is the first action on the list. Systems typically
inspect the list at regular intervals. When the current
time equals or exceeds the performance time of the
first item on the list, the action is performed and the

OPublished as: Dannenberg, “A Real Sched-
uler/Dispatcher,” in Proceedings of the International Computer
Music Conference, Computer Music Association, (September
1988), pp 239-242. P.S. If you know how to properly at-
tach a footnote to a title in LaTex, please let me know. -
rbd@cs.cmu.edu

Time

first item of the list is discarded. Thus, the operation
that starts performing a task, which we will call dus-
patching, can be accomplished in a fixed amount of
time. (If several tasks can be scheduled for the same
instant, the dispatching time is proportional to the
number of ready tasks plus a constant.)

Let us now consider the scheduling operation which
puts tasks into the list for removal by the dispatcher.
In the worst case, the scheduler must search the en-
tire list to find the right insertion point. Thus, the
cost of scheduling is proportional to the total num-
ber of pending tasks. In music systems where this
number can grow large, this is a serious problem. To
make things worse, the worst case is a common one
in which a task is scheduled at a time later than the
time of any other tasks. One can easily treat this as a
special case or use a doubly-linked list and search in
decreasing time order, but the cost in the worst case
is not reduced.

In the next section, I will look at a few interesting
variations on schedulers and dispatchers. Then, I will
present a scheduler/dispatcher that performs its oper-
ations in constant time (with a little additional work
going on in the background).

2 Some Alternatives

What can we do to make scheduling more efficient?
The typical implementation described above is an ex-
ample of linear search, but faster methods, using other
data structures, are known. One method is the use of
balanced binary trees [1, 3]. A balanced binary tree
allows items with time tags to be inserted in random
order and removed in the order indicated by the time
tags.

Unlike the list-based implementation, the insertion



time for a binary tree is proportional to the logarithm
of the number of items (scheduled tasks) in the tree.
If the number of tasks doubles, the list-based sched-
uler doubles its execution time in the worst case, but
the tree-based scheduler execution time only increases
by a small constant. Removing an item from the tree
is just as expensive as inserting one, so dispatching
is more costly than in constant-time list-based dis-
patchers. This is bad, considering that one may want
to dispatch simultaneous events as efficiently as possi-
ble. On the other hand, every dispatch is preceded by
a schedule operation, and the total cost in the tree-
based implementation is significantly less than in the
list-based one.

Can we do better? The answer is a qualified “yes.”
To do better we have to schedule tasks only at an
integer number of clock ticks, and we must spend
a small (and constant) amount of processor time on
each tick. This is usually not a problem for music
applications, and many programs already do this in
the form of a “polling loop” that looks for ready-
to-run tasks. (With the previous dispatchers, a pro-
grammable timer can be used to eliminate polling by
interrupting the processor when it is time to dispatch
the next task.)

To do better, we use a technique called hashing® [3]
in which a table of lists rather than a simple list is
used to remember scheduled tasks. If the table has N
locations and we want to schedule a task for time T,
then the task 1s put on the list at table location T mod
N (the remainder of T divided by N). This technique
is described Varghese and Lauck [5] and is used in the
current implementation of Formula [2].

At each clock tick, the dispatcher only looks at one
of the N lists. For this scheme to work, either the
scheduler must sort the lists or the dispatcher must
inspect every element on the list. If the scheduler
sorts the lists, then scheduling time is proportional to
the length of the list in the worst case and dispatch-
ing time is a constant. Alternatively, we can make
scheduling take constant time by not sorting and have
the dispatcher take time proportional to the number
of list elements.

In any case, if N is larger than the number of pend-
ing tasks, and the scheduled times of those tasks is
random, then the expected time for scheduling and
dispatching is constant. The worst case, however, is
quite bad. Suppose all tasks are scheduled at some
multiple of N ticks. Then only one list will be used

I The technique I am about to describe is a specialized use of
hashing. The technique could also be referred to as a modified
bucket sort.

and the scheduler/dispatcher degenerates to the sim-
ple (and expensive) one described in the introduction.
The tree-based system would work better.

3 Improving the Worst Case

Once again, can we do better? As before, the answer
1s a qualified “yes.” To do better, we must spend some
additional processing time in a low-priority back-
ground task. The total time spent by the background
task will be (in the worst case) proportional to the log
of the number of pending tasks at each scheduling op-
eration. Thus, the processing time is proportional to
that of the tree-based implementation, but all of this
processing is done in the background. The real-time
processing required for scheduling and dispatching is
constant, even in the worst case.

To achieve this performance, a combination of the
tree-based and table-based implementations is used.
The basic scheduling operation simply puts a task on
a list of tasks to be scheduled. A background process
takes tasks from the list and inserts them into a bal-
anced binary tree. As tasks become almost ready to
run, they are moved from the binary tree into a table
as in the table-based implementation. The dispatcher
advances through the table on each clock tick and per-
forms all the tasks it encounters. This approach works
for tasks that are scheduled far enough into the future
to allow the background process time to handle them.
To schedule a task in the near future, the scheduler
bypasses the background processing and puts the task
directly into the table. Having outlined the basic ap-
proach, I will now present a more detailed description
of the implementation.

The most important aspect of this design is to make
sure all scheduling and dispatching operations take
only a constant amount of time. No time-critical
operations can be required of the background task.
Scheduling, background processing, and dispatching
naturally lend themselves to a pipelined implementa-
tion as shown in Figure 1.

At time interval? i, the scheduler inserts tasks into
a list which is passed to the background process at
the beginning of time interval 1i+1. During interval
i+1, the background process must insert the entire
list into the tree structure and also remove any items
in the tree scheduled for period i1+2. These items are
inserted into a table as in the table-based implemen-
tation. During period 142, the tasks are performed
by the dispatcher. In practice, all three stages of the

2 Assume that a pipeline time interval takes many clock ticks.



i+1 i+2

Schedule

AR

Tree Insert
And Remove

|

\

|

\\

N

/

table

N

\\

N

table

N

Dispatch

time =—>

Figure 1: The pipelined implementation.

pipeline are run concurrently; that is, during inter-
val i4+1 the scheduler begins to create another list of
tasks for the background process, and the dispatcher
handles tasks that were previously scheduled.

There must be two active lists at any given time:
one to accumulate new tasks from the scheduler and
one with tasks to be moved into the tree. The latter
will be empty at the end of each interval and can be
reused by the scheduler.

There must also be two tables at any given time:
during interval i, the dispatcher must read from one
table holding tasks scheduled for interval i while the
background process inserts tasks scheduled for inter-
val 1+1 into another table. Meanwhile, the scheduler
takes any task scheduled in time interval 1 or i+1 and
inserts it directly into the proper table. Tasks for in-
tervals 1+2 and beyond are stored on a list and passed
on to the background process.

Tables can also be reused. At the end of interval 1,
the table being used by the dispatcher will be empty.
This table can be used for tasks scheduled for interval
1+2. Thus, only storage for two tables is required.
The table size must equal the number of ticks in an

interval.

4 Conclusion

Scheduling and dispatching can be performed in con-
stant time even in the worst case, provided a small
amount of time is available in the background. This
compares favorably to list-based implementations (lin-
ear in the number of scheduled tasks), tree-based im-
plementations (logarithmic in the number of tasks),
and table-based implementations (constant time only
in the expected case, linear time in the worst case).
The dispatcher is extremely fast in that it does not
even need to compare the current time with the sched-
uled time.

The background process must, in each interval, in-
sert tasks scheduled in the previous interval and move
tasks for the next interval from the tree structure to
a table. The only time constraint is that the back-
ground process must complete all of its work within
each interval. Bursts of scheduling activity can place
extra load on the background process, but this load is



spread evenly across the interval, which can be made
as large as memory permits. (Memory requirements
are essentially two pointers per tick of interval size
because there are two tables of task lists.)

5 Acknowledgments

This scheduler was conceived in conversations with
Ron Kuivila at the Second STEIM Symposium on In-
teractive Composition in Live Electronic Music. A
more extensive presentation of this algorithm and a
few related ones will appear in a forthcoming book [4].
This research was partially sponsored by the Defense
Advanced Research Projects Agency (DOD), ARPA
Order No. 4976 under contract F33615-87-C-1499 and
monitored by the: Avionics Laboratory, Air Force
Wright Aeronautical Laboratories, Aeronautical Sys-
tems Division (AFSC), Wright-Patterson AFB, Ohio,
45433-6543.

References

[1] Adel’son-Vel’skii, G. M. 1962. “An Algorithm for
the Organization of Information.” Dokl. Akad.
Nauk SSR 146: 263-6 (in Russian). English trans-
lation in (1962) Soviet Math. Dokl. 3:1259-62.

[2] Anderson, D. and Kuivila, R. 1986. “Accurately
Timed Generation of Discrete Musical Events.”
Computer Music Journal 10(3): 48-56.

[3] Horowitz, E. and Sahni, S. 1987. Fundamentals
of Data Structures in Pascal. Computer Science
Press.

[4] Matthews, M. and Pierce, J., editors. (to appear).
System Development Foundation Computer Mu-
sic Benchmark. M.1.T. Press.

[5] Varghese, G. and Lauck, T. 1987. “Hashed and
Hierarchical Timing Wheels: Data Structures for
the Efficient Implementation of a Timer Facil-
ity.” Proceedings of the Eleventh ACM Sympo-
stum on Operating Systems Principles pp. 25-
38, published as Operating Systems Review 21(5),
ACM Order No. 534870.



