Originally published as: Frances K. Dannenberg, Roger B. Dannenberg, and Philip
Miller, "Teaching Programming to Musicians," in 1984 Proceedings of the Fourth
Annual Symposium on Small Computers in the Arts (October 1984), pp. 114-122.

Teaching Programming to Musicians

Frances K. Dannenberg, Roger B. Dannenberg, Philip L. Miller

Computer Science Department, Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

A new approach has been developed for teaching
programming to musicians. The approach uses personal
computers with music synthesis capabilities, and students
write programs in order to realize musical compositions.
Our curriculum emphasizes abstraction in programming
by the early introduction of high-level concepts and the
late introduction of programming language details. We
also emphasize abstraction by relating programming
concepts to musical concepts which are already familiar to
our students. We have successfully used this curriculum
to teach Pascal to children and we are presently using it in
a university-level course for composers.

We have developed a new methodology, designed
especially to teach programming to music students,
Students are challenged to produce artistic works through
programming skill, using personal computers with music
production capabilities. A key feature of our curriculum
is. that it allows students to use their existing musical
knowledge as a basis for understanding computer
programming. We have used this approach successfully
to teach Pascal to children ranging in age from 9 to 16
years, and we are now using the curriculum as part of a
college-level computer music course.

This approach is unique in several ways: First, it is
designed specifically for artists. Programming is viewed
as a means of creative expression rather than an abstract
skill whose utility may be difficult to justify to an artist.

Secondly, our approach is an inherently multi-media one.
We have found that “listening” to a program’s execution
while reading the program is helpful in learning and
debugging. Finally, we build upon existing musical
knowledge. Musicians are familiar with the concepts of
sequence, repetition, conditional selection, and
procedural abstraction from the domain of music, We
make use of analogy to teach the corresponding
programming structures,

In Section 1, we present the origin and goals of this
project. Then, in Section 2, we describe some earlier
work and experience that guided our curriculum design.
In particular. we wanted to teach what we call the
abstractionist methodology. Section 3 then describes our
specific curriculum design for teaching programming to
musicians. Our experience with this curriculum is
discussed in Section 4, and we present our conclusions in
Section §.

1. Background

We began with the goal of designing the curriculum for
a “Computer Arts Summer Program.” The program was
to be held at the American Center in Paris, and was
aimed at 12- to 16-year-olds. We planned to include
computer music and computer programming instruction
and to provide every student with a personal computer in
the style of many “computer camps” held in the United
States. It was also decided to integrate the music
instruction as much as possible with -tomputer
programming,

We considered two approaches to the use of computers
for music. First, we could present fixed, menu-oriented
programs for drawing, composing, and computer-aided
instruction. Rather than writing their own programs,

students would manipulate parameters in existing
programs. Alternatively, we could write interfaces to
graphics and sound synthesis devices so that students
could create music by writing their own computer
programs, We decided to concentrate on the latter
approach: that is, teaching students how to program in
order io produce music.

2. Previous Work

We know of no work that addresses the needs of
teaching programming to the musician in particular.
However, there is a wealth of ‘literature concerning
programming methodology and pedagogy in general. Of
particular interest are papers by Perlis!, DijkstraZ, and
Hoare?, which discuss the importance of various forms of
abstraction to programming. We call the general
approach advocated by these authors the absiractionist
methodology. Because of its importance to our
curriculum for teaching musicians, we describe it here in
some detail.

2.1. Abstractionist Methodology

We recognize three principal levels of programming
abstraction: the control structure level, the procedure
level, and the data structure level,

Abstract Control Structures. The most familiar level is
that of control structures®. This is essentially the
structured programming movement of the 1960s, with
do-while, if-then-else, etc. In contrast to the goto, which
may be used to create arbitrary flow of control, control
structures should have single points of entry and exit, and
they should indicate the programmer's intention, for

example, to iterate a sequence of statements.

Procedural Abstraction. The second level of abstraction
is abstraction at the procedural level. The idea is that
problems are too complex to be thought about all at once,
so we think about them hierarchically. To illustrate, we
will borrow from a textbook®. Consider the task of
grocery shopping. This high-level task can be divided
into smaller tasks (subtasks) in many ways. Let's say we
decide to decompose it into two subtasks: generating a
shopping list and buying all the items on the list.

We continue now with the subtask of generating a
shopping list. Likewise, it may be decomposed in a
variety of ways. Assume our solution is first to obtain a
pencil and paper, followed by examining the kitchen
cupboards for some idea of what is needed, and finally, to
consult the spouse for a contribution to the list.
Generating the shopping list could be done in other ways.
For example, one might simply delegate the task to one’s
spouse, cook, maid, etc.

With our shopping list firmly in hand, we can consider
the subtask of generating the shopping list completed. We
now turn our attention to the other major subtask, buying
the items on the list. This, of course, could also be done in
a variety of ways. Let's say we wish to do it in the
following manner: go to the grocery store; collect the
items on the list; pay the cashier; and, finally, return
home with the groceries.

This leaves out many details of the acquisition phase.
For example, we named a subtask collect items on list,
however, we have said nothing about how this is to be
accomplished. How are we going to search the store for
the items on the list? Are we going to use a shopping cart,

(:: shop for yroceries }

/

(:j Yeneirate shopping list

guet pencil examine consuly
and paper cupboards spouse

/(::buy items on shopping list

4yo to collect pay
store 1tems cashier

taky home \'
groceries

Figure 2-1: Figure Showing The Tree Structure Of
Problem Decomposition

or perhaps just a shopping basket? We named another
subtask of paying the cashier. This might be done with
cash. It might also be done with a personal check, or with
manufacturers’ coupons, a charge card or some
combination of these methods.

We see that this technique generates a hierarchical
solution to the overall task. Although we've expanded
only two levels, it gives enough of the idea for you to see
how it is done. In programming, tasks are similarly
divided into components which are then written
separately.

Data Abstraction. Data abstraction is the business of
thinking of a problem as a set of objects and the
operations that are performed on those objects. Consider
a payroll system. The problem is to maintain information
on the employees of a company. The information that is
kept on each employee includes such items as name, rate
of pay, hours worked, whether or not the employee is
participating in the company’s group insurance plan, We
can think of this information as an index card of
information. Because the company has a number of
employees, the index cards are arranged alphabetically
into a shoe-box of index cards. Thus the abstract
structure for the payroll problem is a shoe-box of index
cards.

The second aspect of data abstraction concemns the
operations on the structures. There must be a way to
thumb through the cards, searching for a particular one.
There must be way to copy information from a card and a
way to change the information that is on a card. A card
must be added when a new employee is hired. A card
must be removed when an employee is terminated.

In programming, the box of index cards would be
represented by a data-structure. It is desirable, in order to
reduce program complexity, to confine the details of this
data-structure to only a small part of the overall program.
This is accomplished by writing procedures for each of
the desired operations. [f an operation is complex, it
might be implemented by a package of procedures.

We find these three levels of abstraction to be at the
core of good programming practice. They facilitate
design of software that is at once verifiable,
implementable, debuggable, and extendible. They dove-
tail neatly with the ideas of information hiding and strong
typing. They represent current thought in software
engineering.

2.2. Abstractionist Pedagogy

Recently, a few educators have begun to adopt a
pedagogical style that is designed specifically to teach the
abstractionist methodology. This style does not have a
name in computer science, but we will call it the
abstractionist pedagogy. Among the people with whom
we are familiar, Bob Floyd is credited with the idea,
which has since been applied in several textbooks® 7+ > 8,

Among the key features of the abstractionist pedagogy
are the early introduction of high-level concepts and the
late introduction of programming language details. This
encourages a hierarchical approach to problems,
beginning with the highest level. Programming
instruction begins with the introduction of a handful of
pre-written procedures. The student writes his first
program simply by calling these procedures sequentially.
Next, the student is given a technique for writing new
procedures, built from sequences of the primitive
procedures mentioned above. Control structures are then
introduced, and finaily, a full programming language is
presented to the student.

Standing head and shoulders above the rest in
successfully executing this pedagogy is Richard Pattis, In
the marvelous little book, Karel the Robot; A Gentle
Introduction to Programming, students learn to
manipulate a robot, Karel, using primitive procedures
such as Move and Turnleft. The robot is simulated on a
standard CRT. Tasks are designed for the student, such
as programming Karel to step over a hurdle or to escape a
maze. As the student learns more powerful techniques of
programming, successively more general and elegant
programs that control the robot are written.

We believe that this task domain, one that is visual and
tactile, is a good one for introducing programming
methods. Unlike the domain of numeric calculations (the
unfortunate standard fodder for beginning programmers)

the Robot world introduces no intellectual barriers to the
student. It provides an environment that is at once
intuitive and rich with analogies that can be exploited for
introducing and fixing the rudiments of sound
programming methodology. The book and the approach
are now being adopted in a number of high schools in the
U.S. and abroad, in part due to the positive
recommendations of the College Board's Advanced

Placement Computer Science Development Committee?,

10

2.3. Assumptions and Prejudice
We designed our curriculum for musicians with several
assumptions in mind:

e«The first is that the abstractionist
methodology is sound and should be taught
to beginning programmers.

The second assumption is that there is a best
way to teach this methodology. The
abstractionist pedagogy has been used
successfully at Carnegie-Mellon and
elsewhere in programming courses.

The third assumption is that musicians can
learn the programming methodology. It is
sometimes held that the mathematically-
oriented students (engineering and science)
are able to learn programming methodology,
while artists are either unable or much less
able to do so. [t is clear, however, that some
musicians are excellent programmers. Some
are respected computer scientists, We
decided that the best approach was to assume
that for the purposes of programming,
musicians as beginning programming
students are no different from any other
group of beginners.

e The fourth assumption, as suggested in our
description of the course, is that the best way
to introduce the concepts of programming
methodology is to tie these concepts closely to
a knowledge base that is familiar. In
introducing a new concept, a successful
teaching method is often to explain it by its
analogy to some more familiar concept. In
our course, we apply this to teaching
programming abstraction, explaining
programming structures to students by
analogy to similar hierarchical organizations
in music, with which they are familiar.

Thus far, we have introduced a number of important
ideas. We have specified a programming methodology as
the correct one to teach. We have talked about how to
teach that methodology in terms of subject matter, texts,
and software. How this all manifests itself in terms of
teaching programming to musicians is the subject of the
next section.

3. The Abstractionist Approachin a
Musical Setting

When we began to design our programming course for
musicians, we looked for musical analogues to the
concepts we wanted to teach: sequential execution,
procedural abstraction, and control structure abstraction,
We were quite pleased. to find musically meaningful
analogies for all of these concepts. Below, we describe
how each concept was presented (0 our
musician/programmers.

For the introduction of procedural and control
abstraction, we wanted to keep programs as simple as
possible, avoiding issues such as parameters,
input/output, and synthesizer interfaces. Taking Karel
the Robot® as a model, we defined a set of parameterless
procedures to play the notes of an octave scale and to
produce silencel. A few more procedures were added to
produce sound effects, and an include file mechanism was
used to hide the definitions of all of these procedures.
The use of personal computers made it possible for each
student to have a machine that could edit, compile, and
execute programs using these procedures. Each machine
could also synthesize appropriate sounds.

3.1. Sequence/Melody

The first programming lesson consists of a simple
melody and an explanation of how to translate the
melody into a program. For example, the following
melody:

Ihe procedures arc PlayDo, PlayRe, PlayMi, PlayFa, PlaySol,
PlayLa, PlaySi PlayDo2 (an octave higher than PlayDo), and Rest.
The names of these procedures were chosen to avoid a clash between
the Pascal reserved word “do™ and the solfege syllable “Do™,

$ L 1) | 1
+ S N 1 T — 7K
{ P e e e e S e &
would be translated to:

program Melody;
{include definition file here}
begin
PlaySol;
PlayLa;
PlaySi;
PlayLa;
PlaySol;
PlaylLa;
PlaySol;
Rest
end.
Students are encouraged to compose their own melodies

and to program the computer to play them.

3.2. Procedures/Phrases

For the next lesson, an example is chosen that includes
several occurrences of a musical phrase. The example is
translated into Pascal, and it is observed that the program
contains a duplicated sub-sequence of commands,
Students are shown how to build a named procedure
from the sub-sequence. For example, the following

melody:
Lesson2 1 ,
p— I I Y 2 T T I 7
o) - 1 < < Y] Py] I 1 < <
Vo uy. | | A A 1 | - .. 1 R r 4 T4 Pl i
¢ 1 1 1]) W~ 1 T | S S &
|] LI

could be rendered as follows, using a procedure to
implement measures 1 and 3:

program Lesson2;
{include definition file here}

procedure DoSiLa;
begin

PlayDo2;
PlaySi;
PlayLa

end;

begin
DoSil.a;
PlaySi;
Rest;
Rest;
DoSiLa;
PlaySol

end.

3.3. Loops/Repetition

After programming a composition using procedures, we
turn to basic control constructs. The loop is the first
construct considered; its musical analogue is the repeat,
At this point, we consider only the for loop. The next
example illustrates the use of the for loop to program a
musical repeat;

Arpeggio
| 3 imes
———— | ——~—
: B o e
e e B
- -

program Arpeggio;
var i: integer;
{include definition file here}
begin
for i := 1to 3 do
begin {repeated measure}
PlayDo;
PlayMi;
PlaySol;
PlayMi
end;
PlayDo {the last note}

For this lesson, Pascal requires a declaration for the
loop control variable. Since variables have not yet been
introduced, we avoid the issue by describing the
declaration as a “magic incantation” to be explained later.
A loop construct that implicitly declares its control
variable!! would be preferable for teaching purposes,

Perceptive students will realize that a musical repeat
can be implemented by programming the repeated music
as a procedure and calling it several times. An interesting
work to discuss at this point is Vexations, by Erik Satie,
which consists of a short musical statement to be repeated
840 times!

3.4. Conditionals/First and Second Endings

The next lesson concerns conditional execution. The
analogue in music is the first-and-second ending notation.
Consider the following example:

Conditional

4 i t IT 1

L

b
| YR

.- —T)

b
bt

L

SSESEESS

program Conditional;
var i; integer;
{include definition file here}
begin
for i ;= 1to 2 do
begin
PlayDo2;
PlaySi;
PlayLa;
PlaySol;
if i = 1 then
begin {first ending}
PlayFa;
PlaySol;
PlayLa;
PlaySi
end
else
begin {second ending}
PlayDo2
end
end
end.
Students should be encouraged to experiment with
conditionals in non-traditional musical structures. For
example, conditionals could be used to introduce

variations at several points in a repeated note sequence.

3.5. Parameters

Until now, no procedures have been parameterized.
This simplifies the presentation of control constructs and
procedures, but imposes rather severe limitations on the
variety of sounds that can be programmed. [n the next
several lessons, students are taught how to «call
parameterized procedures and how to declare them. By
this time in the course, students recognize the need for
more subtle control over sound, and welcome the
introduction of parameters.

Predefined procedures called Note and Rest are used to
introduce parameters. The Note procedure takes
“arguments for frequency, amplitude, and duration; for
example Note(440, 100, 50). The Rest procedure has one
argument, duration; for example Rest(90).

L
..:-il_.
fl
o
¥

Students are then taught how to define their own
parameterized procedures. At this point, they have the
programming skills necessary to create interesting pieces.

Advanced students will want more direct access to the
sound generation hardware than that provided by the
Note procedure. In our case, we use a fairly sophisticated
synthesizer interface capable of independent time-varying
frequency, amplitude, and waveform control over 16
oscillators. The synthesizer interface illustrates data
abstraction. Procedures are used to manipulate some
underlying structure (the synthesizer) in order to hide
irrelevant details of the structure. Students are
encouraged to develop their own data abstractions at the
next higher level in order to obtain a control interface
that is appropriate for their composition. For example, a
procedure named Gliss could be written in terms of
primitive frequency controls in order to implement a
musical glissando.

4. Results and Discussion

We taught a 15-day course, where students had a total
of 4 hours per day for instruction and access to
computers. Although the course was intended for 12- to
16-year-olds, the actual range was 9 to 16 years. All of the
students were able to develop programs that used
procedural abstraction, loops, and conditionals. For
example, one student, who had no previous computing
experience, wrote an 83-line program to perform a piece
with the structure 4B 4 (see the appendix). The A section
was implemented as a procedure with an internal
structure of the form abaca. This was accomplished using
a for loop to iterate 3 times, with a conditional to insert b
after the first iteration, and ¢ after the second iteration.
This program used a variation of the Note procedure to
give control over the rate of attack and decay of each
note.

4.1. Music as a Concrete Programming Task

As expected, students understood the programming
tasks immediately since they came from familiar
intellectual territory. This allowed students to
concentrate on the solutions to the problems rather than
trying to understand the problems themselves.

4.2, "Listening" to Program Behavior

As with the domain of Karel the Robot, which can be
simulated on a CRT, we found music to be attractive for
programming because it was possible to follow program
behavior quite closely. This was true in part because
program behavior was slowed to a musical pace. Also,
one could hear the result of each program step;
consequently, one did not often need to deduce a
program’s behavior from its final output. Rather, the
entire program execution was transparent, and problems
could be isolated without a painful debugging process.

In addition, we found that the music domain has
specific advantages over Karel. First, music is an ideal
medium for transmitting large amounts of information
about program behavior to our musicians. It is also
possible to read a program listing visually while
simultaneously following program execution aurally.
This was valuable in helping students to learn the
association between program statements and their actions.

4.3. Motivational Factors

Qur students discovered that making music with
computers is also fun and exciting. As students
completed their assignments, they would perform their
pieces for the class, often receiving applause and
compliments. Students were highly motivated to finish
their assignments!

4.4, Extension to Other Domains

Based on our experience, we feel that other domains
could serve as an excellent basis for the abstractionist
pedagogical style, The style is appropriate for various
types of music synthesizers2 . but it might also be
considered for the new, low-cost speech-synthesis devices.
Another interesting domain is that of computer graphics.
The “turtle graphics” interface is an example of an
appropriate set of primitivesu. In another application,
Harry Holland at Carnegie-Mellon University is using
our approach to teach Pascal to artists. His students use a
color graphics display and program in terms of primitives
like Box, Circle, and Line. Architectural drawing is
another possible domain, Finally, a mechanical robot is
being constructed at Carnegie-Mellon University, based
on Karel, to make the programming task more exciting.

2For this reason, we do not describe our lowest Icvel synthesizer
interface in greater detail here.

At Carnegie-Mellon University, the programming
pedagogy is reinforced not only by the Pattis text and the
Miller and Miller text, but also by software that was
written with an eye to the abstractionist methodology.
GNOME software is built so that procedural and control
abstraction are the natural form of program construction.
Details of syntax and some details of semantics (e.g. the
order of procedure declaration) are issues for the
programming environment, not for the programmer. !3

We are currently using the abstractionist pedagogy as
part of a computer-music course for college students. In
this course, however, we introduce parameterized
procedures at the beginning so that students have more
music-making capabilities from the start.

5. Conclusions

We have presented our view of the proper pedagogical
style for teaching the abstractionist methodology. The
approach has been used successfully at Carnegie-Mellon
University and elsewhere. '

It was gratifying to discover that the approach can be
adapted quite well to the musical domain and that
musicians can indeed learn to program with the
abstractionist methodology. In fact, music has specific
advantages, including familiarity with the domain,
program behavior that is audible, and a strong motivation
to “compose” programs,

It is interesting to compare our experience teaching
grade-school level students to that of teaching university
students. Qur goal with the grade-school students was
primarily to teach programming, while in the university
course, programming skills are primarily a means of
realizing a composition. One conclusion is that there are
limits as to how far one can integrate the teaching of
music and programming. For example, the programming
tasks described in this paper have little musical value to a
university-level course in computer music, but the
programming concepts are an important foundation for
more sophisticated tasks. The problem is that a “toy"”
domain like Karel the Robot is ideal for teaching
programming, but toy music domains are not attractive to
serious musicians. We believe part of this problem can be
solved by a better choice of synthesizer interface, and we
intend to experiment further in future courses.

The number of musician/programmers is small, but the
field of music has already felt their impact. It will be
interesting to watch what musicians do with programming
skills as they become more widespread.

6. Acknowledgements

It our pleasure to acknowledge a number of people and
organizations whose contributions made this project a
success. Raj Reddy deserves credit for the concept of a
computer arts camp for children. Colette Wilkins was
indispensable in teaching as well as in a multitude of
other tasks essential to the success of the course. Judith
Pisar, Henry Pillsbury, Alex Mehdevi and the staff at the
American Center obtained equipment and handled
innumerable problems in preparation for the course,
Computer equipment was loaned to us by Atari France
and Apple. Carnegie-Mellon University’s Summer
Studies funded the courseware development, which was
programmed by Linda Isaacson, Richard Sean Keegan,
Robert Rose, Peter Shell, and Mark Wilkins.

10.

1L

12.

13.

References

Perlis, Allan, “"A First Course in Computer
Science,” , 1965.

Dijkstra, EW., Structured Programming,
Academic Press, 1972, ch. Notes on Structured
Programming.

Hoare, C.A.R., “Proof of a Program: FIND,”
CACM, Vol, 14, No. 1, January 1971, .

Dijkstra,E.W., "GOTO Statement Considered
Harmful,” CACM, Vol. 11, No. 3, March 1968, .

Philip L. Miller and Lee W.Miller, Computer
Science, The First Course, Random House, 1985.

D. Cooper and M. Clancey, Oh Pascal, Norton,
1982.

Arthur Keller, A First Course in Computer
Programming Using Pascal, McGraw-Hill, 1982,

Pattis, R., Karel the Robot, A Gentle Introduction
lo the Art of Programming, John Wiley and Sons,
1981.

The Advanced Placement Computer Science
Committee of the College Board, “Advanced
Placement Course Description: Computer
Science,” , 1984,

The Advanced Placement Computer Science
Committee of the College Board, “Teacher’s
Guide to Advanced Placement Courses in
Computer Science,” , 1984.

William Wulf, D.B. Russell, and A. Nico
Habermann, “Bliss: A Language for Systems
Programming,” CACM, Vol. 14, No. 12,
December 1971, .

Harold Abelson and Andrea diSessa, Turtle
Geometry: the computer as a medium for exploring
mathematics, MIT Press, 1980.

David B. Garlan and Philip L. Miller, “GNOME;
An Introductory Programming Environment
Based on a Family of Structure Editors,”
Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical
Software Development Environments, ACM, May
1984, Published as SIGPLAN Notices 19(3) and
Software Engineering Notes 9(3).

Appendix

Listing of a Student Program

program Param;

var

{note: this is the interface include Sile: }
(‘SIDZ:INTER.DEF"‘)

procedure Note(Pitch, Attack, Decay,
Amplitude: integer);

const Voice = 0;
begin

WaitVoice(Voice);

FDelay(Pitch, 0, Voice):

ARamp(Attack, Amplitude, Voice);
ARamp(Decay, 0, Voice)
end;

procedure Bizarre;

var C: integer;

begin

for C:= 1to 3 do
begin

Note(700, 100, 100, 100);
Note(750, 97, 97, 97);
Note(800, 94, 94, 94);
Note(850, 91, 91, 91);
Note(900, 88, 88, 88);
Note(950, 85, 85, 91);
Note(1000, 100, 100, 90);
Note(1250, 90, 90, 100);
Note(1500, 100, 110, 100);
Note(2000, 90, 89, 79);

if C = 1 then

begin
Note(850, 75, 77, 75);
Note(825, 78, 77, 78):
Note(800, 76, 79, 78);
Note(4000, 70, 120, 110);
Note(4700, 120, 70, 110);
Note(800, 89, 70, 75);
Note(730, 95, 84, 77);
Note(888, 100, 110, 95);
Note(2540, 127, 71, 120);
Note(1700, 120, 120, 90);
Note(990, 110, 127, 75);
Note(4000, 90, 89, 97);
Note(4500, 85, 90, 100);
Note(4700, 90, 110, 100);
Note(5000, 100, 75, 89);
Note(500, 120, 75, 100);
Note(700, 90, 90, 100);
Note(1000, 85, 90, 86):

end

elseif C = 2 then

begin
Note(5000, 100, 100, 90);
Note(9000, 127, 127, 90);
Note(8500, 127, 127, 90);
Note(8000, 127, 127, 90);
Note(7500, 127, 127, 90);
Note(7000, 127, 127, 90);
Note(2700, 95, 90, 100);
Note(2000, 90, 99, 110);
Note(900, 85, 90, 90);
Note(700, 85, 80, 95);

end

end
end;

begin

Muslini;

Bizarre;

Note(350, 65, 65, 70);
Note(325, 65, 65, 74);
~ote(300, 65, 65, 77);
Note(375, 127, 127, 90);
Note(400, 120, 120, 95);
Note(385, 100, 100, 85);
Note(300, 95, 95, 85);
Note(250, 90, 87, 94);
Note(215, 70, 78, 66);
Note(207, 50, 56, 90);
Note(200, 80, 76, 88):
Note(189, 79, 87, 85);
Note(206, 80, 75, 76);
Note(200, 76, 47, 69);
Bizarre;

ARamp(0, 0, 0)

end.

