
Published as: Stefano Scarani, Adolfo Muñoz, Jaime Serquera, Jorge Sastre, and Roger
B. Dannenberg, “Software for Interactive and Collaborative Creation in the
Classroom and Beyond: An Overview of the Soundcool Software.” Computer Music
Journal, Vol. 43, No. 4 (Winter), 2019, pp. 12-24.

Software for Interactive and Collaborative Creation
in the Classroom and Beyond: An Overview of
the Soundcool Software

Stefano Scarani1, Adolfo Muñoz2, Jaime Serquera3, Jorge Sastre3, Roger B.
Dannenberg4

1Universitat Politècnica de València and
Centro Superior de Música del País vasco Musikene, Spain
2Universitat Politècnica de València, IDF Institute, Spain
3Universitat Politècnica de València, iTEAM Institute, Spain
4Carnegie Mellon University, School of Computer Science, Pittsburgh, PA

Abstract
Soundcool is a free framework for collaborative creation of interactive and

experimental computer music. Soundcool is designed to fill a gap between rigid
ready-to-use applications and flexible programming languages. Soundcool offers
easy-to-use sound generating and processing elements, much like ready-made
applications, but it enables flexible configuration and control, more like
programming languages. The system runs on personal computers with an option for
control via smartphones, tablets, and other devices using the Open Sound Control
(OSC) protocol. Originally developed to support a new music curriculum,
Soundcool is being used at different educational institutions in Spain, Portugal, Italy
and Romania through EU-funded Erasmus+ projects. In this paper we present our
system and showcase three different scenarios as examples of how Soundcool meets
its objectives as an easy-to-use, versatile, and creative tool.

Introduction
Soundcool (soundcool.org) is a computer music software system for live

performance. It emphasizes the use of mobile devices as controllers, collaboration
through the use of multiple control devices, and configurable high-level software
components for computer music generation and sound processing. Soundcool was
originally designed to support a music curriculum for primary and secondary
school students who collaboratively create experimental computer music (Sastre et
al. 2013, Sastre et al. 2015). The Soundcool design has emphasized ease of use from
the beginning. Soundcool has found application in classroom activities, in student
concerts in auditoriums and other public venues, and for live electronics in a new
opera (themotheroffishes.com). While previous publications have discussed
Soundcool for education, this paper discusses some of the design features of
Soundcool that we believe are of general value, and we also discuss Soundcool as a
tool for advanced compositions and performances.

We believe there is a gap between off-the-shelf, ready-to-use applications and
programming-oriented software development platforms. We will discuss these

Page 2

approaches and then present Soundcool as a compromise that achieves a balance
between these poles. Key features of Soundcool are: self-contained, patchable
modules for audio generation and manipulation, control extensibility supporting a
variety of interface devices and languages, and extensibility through audio plug-ins.
We show the importance of these features in several Soundcool applications.
Ready-to-Use Music Applications

Examples of ready-made applications are audio effects processors, sample
playback systems and sequencers (Manzo 2015). Additionally, a great variety of
music apps have been developed in the past few years for tactile mobile devices
(Dredge 2015). These applications are popular because they provide fully functional
tools for musicians. All of these applications offer the possibility to modify some of
their configurations, but they are, by definition, designed to serve a particular role.

Ready-made applications are convenient when they offer the right solution, but
often the interfaces and options in music software are highly normative, with
narrow assumptions about how music should be structured and performed. This
defeats one of the main attractions of computing, which is the idea of the “universal
machine” that can, through software, accomplish any task and offer any behavior.
To branch “outside of the box,” or simply to achieve extraordinary generality, one
must resort to programming to develop more customized solutions.
Programming-Oriented Music Software Platforms

Software development platforms such as Max/MSP, Pd, Csound, Nyquist,
Supercollider and ChucK offer users free rein to build virtually any musical devices
they can imagine (Dannenberg 2018). Although these systems differ along some
important dimensions (real-time interactivity, textual vs. visual programming, data
structures, abstraction), they have in common the ability to specify computations by
combining lower-level operations. In general, programming-oriented systems are
more technical than ready-made applications, so considerable expertise and
experience is necessary to make the most of these systems.
Power vs. Generality

Borrowing some terminology from early AI research (Newell 1983), we can say
systems are more general when they solve a greater variety of problems, and more
powerful when they are particularly adept at solving a particular problem. Ready-
made applications are powerful, because they require little effort to accomplish tasks,
but because they focus on a specific approach, applications lack generality to address
a wide range of tasks or conditions. At the risk of over-simplifying, offers an
intuitive perspective on the spectrum of computer music systems from ready-made
applications to general-purpose programming languages. For any given task, a user
has the choice of using a ready-made solution (if one exists) or creating a solution
using increasingly more general but more effortful programming languages.

For computer music tasks, specialized computer music languages are often
sufficient, avoiding the need to build everything from scratch. If users benefit from
specialized languages, how much further can we reduce generality in pursuit of still
greater power? What are the interesting points of balance between these two
objectives? Soundcool explores the region approaching maximal power while
remaining quite programmable and configurable. It is not the only example of this
design approach, but it is interesting due to its availability and years of evolution,
mainly in the context of music education.

Page 3

Related Work
Many works point to the pedagogical potential of new technologies and new

human interfaces (Clough et al. 2008, Lloret Romero 2007, Sánchez, Salinas, and
Sáenz 2007, Savage 2007). A number of technologies are presently emerging from
STEAM initiatives within primary and secondary level music education. (STEAM
extends STEM – science, technology, engineering and mathematics – by
incorporating arts into the equation.) It is believed that arts education is
fundamental to foster creativity, and in turn, creativity is key to innovation in every
industrial area. Another trend in educational initiatives is collaborative
environments (Baumann et al. 2011). Regarding music technologies within STEAM
education, EarSketch is a noteworthy development. EarSketch is software along
with a curriculum that motivates learning and applying computer science concepts
through music remixing. As their authors describe, “students learn to code in
JavaScript or Python, tackling learning objectives in the Computer Science Principles
curricular framework as they simultaneously learn core concepts in music
technology. They create music through code by uploading their own audio content
or remixing loops in popular genres created by music industry veterans” (Freeman
et al. 2015). Thus, EarSketch is more oriented toward music production oriented and
algorithmic control, while Soundcool is oriented more toward collaborative music
performance.

Another example of a STEAM-oriented learning system is BlockyTalky (Shapiro
et al. 2017). This system describes a “toolkit for distributed and physical computer
music systems-building and performance.” BlockyTalky encourages young students
to create communicating systems using a block-based language to control software
synthesizers. The authors comment on the hazard that student gravitate toward
writing sequential programs to reproduce linear, note-based non-interactive work,

Figure 1. Ease-of-use, or power, vs. the ability to accomplish a wide range of creative tasks,
or generality. In these terms, the ideal system is both powerful and general (upper right),

but there seems to be a trade-off.

Page 4

missing out on creative opportunities offered by technology. In general, BlockyTalky
instruction seems to emphasize music to motivate programming. BlockyTalky has
more focus on designing control strategies while Soundcool focuses on sound design
and performance.

Soundcool might be compared to AudioMulch (www.audiomulch.com), which
also features high-level processing modules and a graphical, patch-oriented
interface. Both systems emphasize audio configuration by patching while control is
accomplished through built-in graphical interfaces for each module. Flexibility is
provided through external control via MIDI (AudioMulch) or Open Sound Control
(Soundcool). However, Soundcool is generally simpler. For example, Soundcool
modules have pre-defined interfaces to mobile devices that are easily enabled and
immediately usable, while control parameters in AudioMulch must be set up
individually by hand. AudioMulch has a separate detailed control panel for each
module, while Soundcool’s modules are represented directly by their interfaces.

BEAP (cycling74.com/tutorials/a-few-minutes-with-beap-tutorial-series) is a
collection of pre-made Max patches complete with interfaces, which makes BEAP at
least comparable to Soundcool. BEAP is modeled after modular analog synthesizers,
so users must understand the idea of control voltages and must route control as well
as audio signals. Users must also master at least the basics of the Max interface and
cope with Patching and Presentation modes and other details, and BEAP is not
designed for collaborative projects. Hans Tutschku’s 264 Tools
(github.com/mus264/264-tools) is another collection of synthesis modules for Max
similar to BEAP. Automatonism is a comparable system for Pd
(www.automatonism.com).

One could also look to products like Reaktor (www.native-
instruments.com/en/products/komplete/synths/reaktor-6) Guitar Rig
(https://www.native-instruments.com/en/products/komplete/guitar/guitar-rig-
5-pro) and Mainstage (www.apple.com/mainstage) for patchable modules with pre-
made graphical interfaces. In fact, effects chains in digital audio workstations are
another example of patchable modules, and they offer a lot of flexibility. One
drawback, at least from an educator’s perspective, is that commercial products tend
to be loaded with features to attract customers and address a variety of
requirements; therefore, they tend to be too complex for youngsters and beginners.

In addition, few existing products or research systems are explicitly designed
support collaborative performance. One interesting software system is MobMuPlat
(www.mobmuplat.com), with which one can combine graphical interface design
and Pd patches for execution on iOS or Android. This system offers a lot of
interesting functionality, especially for electronic ensembles, but it is intended for
experienced Pd users.

Finally, we should mention libraries as another approach to move up the power-
vs-generality curve: Libraries extend a programming language with reusable
modules, making many tasks easier to accomplish. For example, BEAP is essentially
a library within Max, giving users powerful, high-level modules while retaining
more general capabilities for when they are needed. Libraries certainly add power to
the underlying language, but, ultimately, the use of libraries requires users to write
lower level “glue” code and use more complex development environments, and this
can be especially difficult for young students and casual users.

Page 5

The Soundcool Approach
With all these possibilities and decades of computer music system development,

why would we consider yet another system? Soundcool was motivated by the desire
to create a platform for a new approach to music education for children. In
particular, Soundcool prioritizes the possibilities of digital media as opposed to
traditional instruction and emphasizes creativity and collaboration as opposed to
theory and instrumental performance. We will describe Soundcool’s role in
education in greater detail below.

Soundcool offers a set of modules that run on a central host computer. Figure 1
illustrates a simple Souncool program or patch running on a laptop and a controller
running on a smartphone. Each module can be considered as a musical instrument,
such as a synthesizer, a sampler, a sound effect, etc. Soundcool modules can be
interconnected in different ways allowing users to create their own computer music
systems. Additionally, each module can be controlled both with the mouse on the
host computer or remotely using mobile devices and Open Sound Control (OSC)
over WiFi. Typically, students operate mobile devices in collaborative performances,
with each student in charge of at most one of the sound modules on the host
computer. The OSC component makes Soundcool an open system capable of
receiving control messages from other pieces of programming software as we
describe in the next sections.

Figure 1. A simple Soundcool patch running on a laptop with a touch-screen interface

running on a smartphone.
Although created for primary and secondary school teachers and their students,

Soundcool has proven useful for a variety of other applications. We believe
Soundcool’s success is due to a combination of factors, and a better understanding of
these could benefit the design of other computer music systems. One contributing
factor to generality is support for audio plugins, allowing users to choose among
hundreds of sophisticated audio processors. (Compare this to a fixed set of audio
unit generators even in a computer music programming language.) Another factor is

Page 6

access to control parameters over Open Sound Control (OSC), which allows users to
extend Soundcool using almost any programming language and operating system.
A third factor is a visual programming paradigm in which modules are represented
by ready-made graphical user interfaces, minimizing the effort to create, understand
and manipulate sound processing systems.

Soundcool is not unique to offering high-level modules, audio plugins, or OSC
interfaces. However, we claim that these factors, in combination, lead to an interesting
tradeoff in power and generality that is useful to a wide spectrum of users, from
music teachers to professionals. We support this claim by describing several
applications of Soundcool.

In the next section, we describe Soundcool in more detail. Then, we describe
three Soundcool applications: Music Education, Algorithmic Control of sound
synthesis, and telematic performance. We then offer some insights we have gathered
and make some suggestions for future computer music system design.

Soundcool Overview
One important design constraint was to make Soundcool inexpensive to

incorporate into classrooms. Besides being free, open-source software
(soundcool.org/en/downloads), it works on any Mac or PC computer with its own
speakers or headphones and microphone. Typically, classrooms have at least a
single computer, and students have their own smartphones or low-cost tablets,
which serve as a distributed multi-touch control surface. We use generic Android or
iOS devices so that no specialized equipment is necessary. Soundcool can be used
directly with the mouse and no mobile devices. Another option is gestural control
with a Kinect (Yoo, Beak and Lee 2011). The system can be downloaded from
soundcool.org, which has a collection of links to free resources such as Audacity and
other free applications, VST instruments and effects, sounds, etc. The Soundcool
mobile app, used to control modules over WiFi (see), is also available for free.
Anyone can use Soundcool with their own computer independently of any
classroom.

Figure 2: OSC module control for smartphone/tablet.

Page 7

Modules
Soundcool modules include (see Figure 3): record (from any input device or from

another module); play (at an indicated speed with optional looping and reversing);
feedback delay, pan; transposer and pitch shift; audio routing; mixer with 8 inputs;
spectroscope and oscilloscope to visualize audio signals in the frequency and time
domains; sample player to load and play up to 10 audio samples in one module; direct
input to capture microphone or line-level input; filter, with 10 different filter modes;

Figure 3. Examples of Soundcool modules, which run on a laptop or desktop computer.

Each module is has a corresponding touch screen interface in the Soundcool App. A
running app can be linked to a Soundcool module by entering a port number into the

module interface and the app.

Page 8

signal generator, to create different kinds of waves based on frequency modulation,
amplitude modulation or ring modulation; sequencer, to automate control of the
signal generator module; envelope; and VST host to incorporate VST instruments and
effects. For VST instruments, we provide a virtual keyboard object to receive notes
and controls from the Soundcool mobile app; however, a physical MIDI keyboard
connected to the computer running Soundcool can also be used.

In general terms, modules have audio inputs and outputs, and outputs fan out to
any number of inputs. To make a connection, the user clicks on an output, then
presses an input button. Connections are indicated by color and text; for example, if
Sample Player 1 (which has a red background) is connected to a Delay module, the
input button of the Delay is colored red with the letters “S1” indicating the
connection comes from Sample Player 1. The connected modules are also
highlighted when the user hovers over an output button.

The choice of buttons as opposed to visual “wires” is mainly an implementation
issue, but the absence of wires saves valuable screen and real estate for module
interfaces and their controls.

Implementation
Soundcool is implemented as a Max application, using native objects “send” and

“receive” (and their signal versions “send~” and “receive~”) for patching. By
implementing a patching system for Soundcool modules, we avoid exposing novice
users to the full Max editing environment, and users can run Soundcool free of
licensing fees. We are also creating a browser-based version of Soundcool using
WebAudio.

Normally, a Soundcool system also includes networked mobile devices. Open
Sound Control is used for communication between the host computer and any
number of mobile devices. The mobile devices must be configured manually with
the IP address of the host computer where the modules are being run. Additionally,
each Soundcool module is configured with a different receiving port number that
must match the sending port of the controlling mobile device. This allows many
devices to be used, each controlling a different module. Configuring each device
with an IP address and port number is annoying at least, and we hope to use
Zeroconf (Guttman 2001) to simplify connections in the future.

For the first Soundcool prototype we used TouchOSC
(hexler.net/docs/touchosc), but we now offer a Soundcool-specific app written in
Unity (unity.com) for Android and iOS. One of the features of our app is special
handling of the keyboard to allow glissandi using sliding motions and to send extra
note-off and all-notes-off messages when the last finger is removed from the
keyboard, which helps to avoid “stuck notes” due to lost OSC messages.

We now turn to example applications of Soundcool, ranging from classroom
music education to network performance. We hope to illustrate the versatility and
power of the Soundcool approach.

Soundcool in the Classroom
The original goal of Soundcool was to provide a hands-on creative environment

for classroom music education. Soundcool is in use at different educational

Page 9

institutions in Spain, Portugal, Italy and Romania through EU-funded Erasmus+
projects. Students learn fundamentals of computer music through collaborative and
intuitive creation. Using Soundcool, students discuss creative ideas, experiment with
sound production and manipulation in small groups and perform entire pieces in
larger group concerts (see www.youtube.com/c/soundcoolproject).

Soundcool is designed for usability by young students and teachers who are not
engineers or scientists. Soundcool modules are rather complete and self-contained
units that provide an intuitive process (such as a mixer, sample player, etc.) with
graphical controls, appropriate status display and level meters, OSC interface, and
input/output patching controls. Wrapping so much functionality into each module
allows for a very low learning curve yet great creative potential, especially for
education. The completeness of each module saves users from building their own
interfaces from low-level primitives as seen in common programming languages.

In a typical primary school application, Soundcool provides a means of
expression through a creative project where students develop skills of listening and
reflection (Sastre et al. 2013). Soundcool complements other modes of instruction
through the body, voice, instruments, etc. Students begin with technical instruction
on making sound and gradually learn the connection between control parameters
and resulting sounds. Students are guided to create short pieces of a few minutes,
for example, creating music to accompany a story. At first, students vocalize the
sounds they imagine. Next, they may search the Internet for source sounds or
explore VST plugin sounds. After configuring Soundcool modules, students
rehearse and modify their pieces. The teacher can suggest sounds, rhythms, call-
and-response interactions, etc., to further develop the composition. Then,
performances are recorded, leading to further reflection. Discussion enables the joint
construction of knowledge. Students tend to focus on emotion and feeling at first,
but with practice develop understandings of sounds and their relationships.

An example is a horror story by CEIP Carmelo Ripoll primary school students. In
this work, a girl tells a story, her live video image is blended with a scary image, and
the rest of the students perform live music and ambient sounds, all using Soundcool
(video processing is a 2018 addition to Soundcool modules, but beyond the scope of
this article). The student production (in Spanish) can be seen online
(twitter.com/Soundcool_/status/1061207696815226880). To create this work, the
teacher made the Soundcool configuration. Then, the students selected all the
sounds, rehearsed and performed the sounds with smartphone controllers while one
student narrated.

Soundcool and Algorithmic Control via OSC
One of the advantages of more general programming environments is the ability

to implement sophisticated mappings between controllers and sound processes, as
well as autonomous algorithmic control of parameters. Since Soundcool is intended
for non-programmers, algorithmic mapping and control is not a built-in option.
However, the Open Sound Control interfaces to Soundcool modules provide an
interface for external programmatic control. This allows Soundcool to be viewed as a
sophisticated modular synthesizer and allows the advanced user to focus on control
aspects using any programming language.

Page 10

As an example, the program in Figure 4, written in Serpent (Dannenberg 2002),
works with several Soundcool modules to generate an interesting sound texture. The
Soundcool modules consist of a variable speed sample player with five short noise
sounds connected to a feedback delay module. The program is a simple loop that
runs about 10 times per second. The program uses the function send_afloat (not
shown) to send an OSC message containing one floating point number to a given
address. At each iteration, the program chooses randomly to perform any of 8
actions: (1-5) trigger a sample from the sample player, (6) change the delay time, (7)
change the delay feedback level, and (8) change the player speed (transpose the
apparent pitch of the samples). The time interval between events will approximate a
negative exponential distribution, which is perceptually and musically interesting.
By changing the SPEED parameter, the density of events increases from a sparse
texture with great variety – due to pitch changes and feedback delay changes – to a
dense texture that could be compared to granular synthesis. Interested readers can
hear the results online. (www.cs.cmu.edu/~music/examples/soundcool-
control.html). A similar approach could be taken using Python, Java, C, or even Pd
or Max as the control program language. One could also receive OSC messages from
controllers, for example allowing real-time (human) control of the SPEED parameter
from a touch interface while allowing the algorithm to generate detailed controls for
Soundcool.

SPEED = 1 // if SPEED > 1, things happen more frequently
sounds = ["/4/push1", "/4/push2", "/4/push3", "/4/push4", "/4/push5"]

def sometimes(p) // return true with probability p * SPEED
 return random() > (1 - p * SPEED)

def run()
 while true
 for i = 0 to 5 // trigger sounds occasionally
 if sometimes(0.01)
 send_afloat(sounds[i], 1.0)
 time_sleep(0.01)
 send_afloat(sounds[i], 0.0)
 time_sleep(0.01)
 if sometimes(0.1) // maybe change delay time
 send_afloat("/1/fader2", random() * 1000)
 if sometimes(0.1) // maybe change delay feedback
 send_afloat("/1/fader1", random() * 1)
 if sometimes(0.05) // maybe change playback speed
 send_afloat("/4/fader1", random())
 time_sleep(0.1)

Figure 4. A program to perform algorithmically using Soundcool. The program
randomly triggers sounds and changes delay parameters to create a collage of noise

sounds.
The reader might argue that resorting to an external program illustrates a

weakness in Soundcool as a general-purpose computer music system. If automation
and algorithmic control are essential for computer music, then perhaps they should
be integral to any computer music system. On the other hand, for users as opposed

Page 11

to language designers, the ability to control Soundcool with an already familiar
language might be a feature.

Soundcool in Telematic Performances
Soundcool has been used for telematics performance

(globalnetorchestra.blogs.upv.es). Since Soundcool control is normally through
mobile devices, the control information is inherently a stream of OSC messages. For
a telematic performance, we duplicated the local OSC message stream, transmitted it
to a remote performance site, and fed the messages to a remote duplicate of the local
Soundcool configuration. As a result, the remote site had a “mirror” of the local
Soundcool performance, albeit with some network delay and timing jitter. We dealt
with that up front by designing sound textures that did not have precise timing
requirements.

The configuration is illustrated in Figure 5. The “OSC duplication” program is
both an OSC client and server, receiving from controllers and forwarding to the local
Soundcool. The controllers are set up with different port numbers to connect them to
“OSC duplication” rather than directly to the local Soundcool program. The “OSC
duplication” program uses a TCP connection to transmit to the “OSC forwarding”
program at the remote site. The TCP protocol is used here because the UDP protocol
with its “best effort” delivery is prone to losing messages, while TCP will
automatically detect and retransmit dropped messages (at the cost of holding up
delivery of subsequent messages until retransmission is successful). The “OSC
forwarding” program is also an OSC client. It sends arriving messages locally over
UDP as expected by the remote “Soundcool mirror” process. The OSC duplication
and forwarding programs, written in Serpent, total only 90 lines of code and are
available from the authors.

Figure 5. Telematic performance with Soundcool: OSC messages are duplicated and

relayed to the remote site, creating a “mirror” performance.
Our point here is not that Soundcool is the best tool for telematic performance.

Indeed, many approaches and systems have been created, often exploring particular
ideas about the role of time, distance, synchronization and communication in

Page 12

musical interaction (Mills 2019). Instead, our point is that such a simple tool can be
extended relatively easily to serve a purpose that was not anticipated by the original
designers. Moreover, the design of Soundcool allowed us to completely separate
composition and performance aspects (in Soundcool) from the network transmission
aspects, which greatly simplified the project.

Evaluation
Computer music systems, like other complex languages and systems have no

simple basis for evaluation. However, we can attempt to answer a few questions
through surveys and field tests. We will address the following questions:

- Does Soundcool have potential for adoption in the classroom?
- Is Soundcool powerful and simple enough for use by young students?
- Is Soundcool general enough to be interesting to professionals?

We offer a user study, adoption by schools, and use by professional performers as
evidence that Soundcool meets a range of needs.
 To answer the first question, Soundcool and music technology was
introduced to a group of 66 teachers in a workshop setting (Murillo et al. 2018). After
working with Soundcool, a number of positive outcomes were reported:

- Teachers are highly prone to use computers in education (86%) even though
only 58% reported prior computing experience,

- Teachers feel more positive about Information and Communication
Technology (ICT) (73%),

- Teachers believe Soundcool will increase the generation of ideas by students
(91%).

This study shows that teachers can learn and embrace Soundcool for music
education.

To answer the second question (Is Soundcool powerful and simple enough for
children?), we have extensive experience with Soundcool in schools. Although
outcomes are hard to measure objectively and controlled comparative studies are
even more difficult, we can subjectively see successful student engagement,
creativity, listening, performance, and mastery of digital media. In the majority of
cases, this experience was completely lacking before the introduction of Soundcool
to the curriculum. Soundcool has been used in 25 educational centers, and student
creations include operas, plays, silent film scores, and audio/visual story telling.
Many productions can be seen online (youtube.com/c/Soundcoolproject,
bit.ly/2Vpmyge). Some of these projects are available with instruction manuals in
both English and Spanish and video examples for teachers
(soundcool.org/en/projects).

Finally, a growing list of works and performances suggests that Soundcool has a lot
to offer even to professionals. The opera La Mare dels Peixos (The Mother of Fishes), for
six soloists, children’s chorus, orchestra, and live Soundcool electronics has been
performed in Spain, Mexico and the U.S (themotheroffishes.com). A video excerpt of
the opera is available at A video excerpt of the opera is available at <<URL at
mitpress.edu to be determined>>.
For each performance, children or young adults learn Soundcool, develop sounds
and music, and perform live in a professional setting (bit.ly/tmof-audacity).

Page 13

Soundcool has also been used in a growing list of other contemporary music
performances. A playlist can be found online (bit.ly/2Vpmyge). In general, the
attraction of Soundcool is simplicity and support for multiple effects and sample
playback, all of which can be very quickly configured, adjusted, and controlled. For
example, “Chapitres for Wind Symphony and Soundcool” uses Soundcool to
capture live sound fragments from a voice and vibraphone and process them with
two separate granular synthesis effects (Tom Erbe’s Bubbler, www.soundhack.com,
and INA-GRM tools, inagrm.com). Eighteen (18) modules including three (3) VST
host modules provide a wide range of processing possibilities and parameters
(youtu.be/f_Wt3fKi82E).

Summary
We have presented Soundcool, a system for innovative music education based on

collaborative creation using mobile devices. Soundcool is designed to fill the gap
between off-the-shelf, ready-to-use applications and programming-oriented
software development platforms. Soundcool presents a very low learning curve, yet
high creative potential, especially for education. We have described the design and
rationale of Soundcool including the Soundcool app used for multi-touch control
and collaborative performance.

We have showcased three different scenarios of use as examples of how
Soundcool is powerful yet general enough for interesting and even unexpected
applications. The first scenario describes music education in classroom settings. The
second scenario concerns the algorithmic control of Soundcool from other pieces of
software via the OSC interface implemented in every Soundcool module. The third
scenario describes the use of Soundcool in a telematic performance.

We use surveys and experience to support our claims that (1) Soundcool offers
an interesting basis for expanding music teaching in primary and secondary
education, (2) Soundcool is simple and powerful enough for use by children, and (3)
Soundcool is also sufficiently advanced and general enough for professional
composers and musicians. In the future, we hope to accelerate the adoption of
Soundcool by offering a browser-based implementation and a cloud-based system
for music creation and sharing.

Conclusions
We believe Soundcool is interesting in at least two ways: As an approach to

music education, Soundcool leverages modern technology to motivate collaborative
music creation and an openness toward non-traditional sound and music. As a
system design, Soundcool runs counter to efforts to create “all-in-one” systems that
offer signal processing, control, interfaces, programmability, and more. Soundcool
makes the case that certain features can combine to form a powerful and flexible
system for computer music. From experience, we can identify three essential
features, and we encourage designers to consider the following as important
enablers of creative practice:

First, high-level modules for “standard” processing, such as mixers, sample
players, and filters are so widely used that there is no sense in having users build
their own. Modules include simple, real-time graphical interfaces so that modules

Page 14

are immediately useable. Although more sophisticated systems tend to separate the
audio interconnection interface from the control interface, there is value in putting
all of a module’s information and interactions within a single visual representation.

Secondly, audio plugins vastly expand the availability of interesting and
sophisticated audio signal processors and generators. The VST host module in
Soundcool allows users to incorporate complete synthesizers, high-quality
reverberation effects and a wide variety of signal processors without complicating
the basic framework.

Finally, separating signal processing and control opens many control
possibilities, including multiple touch surfaces, new control devices, telematic
control and algorithmic control using virtually any programming language. Close
coupling between control and audio and even sample-accurate control in computer
music languages is a good thing, but a more distributed and modular approach to
control brings both simplicity and flexibility, hence more power and generality.
Assuming audio modules with substantial functionality, it is important that module
parameters be ready-to-use, avoiding the need to manually connect each parameter
to some control source. For example, Soundcool users merely enter a port number
for OSC messages, and modules become fully connected to the touch controls of the
Soundcool app.

While Soundcool was created for primary and secondary education, it has found
a variety of uses due to its combination of power and generality. We hope that
others will try Soundcool. We also hope that some of the lessons we have learned
will help systems designers to create more flexible and usable systems in the future.

Acknowledgments
This work has been supported by the Generalitat Valenciana (Spain) Grants

GJIDI/2018/A/169 and AICO/2015/120, and the Daniel and Nina Carasso
Foundation grant 16-AC-2016. We would also like to thank Carnegie Mellon
University, The Heinz Endowments, The Greater Pittsburgh Arts Council, and our
students for their support of Soundcool, The Mother of Fishes opera, and participation
in the telematic performance described here.

References
Baumann, A., S. Shams, M. Ross, W. Mass, and G. Grinstein. 2011. “Enhancing

STEM Classes Using Weave: A Collaborative Web-Based Visualization
Environment.” In 2011 Integrated STEM Education Conference (ISEC), 2A-1-2A
– 4. https://doi.org/10.1109/ISECon.2011.6229637.

Clough, G., A.c. Jones, P. McAndrew, and E. Scanlon. 2008. “Informal Learning with
PDAs and Smartphones.” Journal of Computer Assisted Learning 24(5):359–71.
https://doi.org/10.1111/j.1365-2729.2007.00268.x.

Dannenberg, R. B. 2018. “Languages for Computer Music,” Frontiers in Digital
Humanities, 5. https://doi.org/10.3389/fdigh.2018.00026.

Dannenberg, R. B. 2002. “A Language for Interactive Audio Applications.” In
Proceedings of the 2002 International Computer Music Conference. San
Francisco: International Computer Music Association. pp. 509-515.

Page 15

Dredge, S. 2015. “Ten of the best music-making apps for beginners.” In The Guardian
17 Oct 2015, online: https://www.theguardian.com/technology/2015/oct/
17/ten-of-the-best-music-making-apps-for-beginners.

Freeman, J., B. Magerko, D. Edwards, R. Moore, T. McKlin, and A. Xambó. 2015.
“EarSketch: A STEAM Approach to Broadening Participation in Computer
Science Principles.” In 2015 Research in Equity and Sustained Participation in
Engineering, Computing, and Technology (RESPECT), 1–2.
https://doi.org/10.1109/RESPECT.2015.7296511.

Guttman, E. 2001. “Autoconfiguration for IP networking: enabling local
communication.” IEEE Internet Computing 5(3): 81-86.
https://doi.org/10.1109/4236.935181.

Lloret Romero, Nuria. 2007. “Study of Human-Technology Interaction in e-Learning
Platforms Design.” The International Journal of Technology, Knowledge, and
Society: Annual Review 2(6):21–28. https://doi.org/10.18848/1832-
3669/CGP/v03i06/55794.

Manzo, V. J. 2015. Foundations of Music Technology. 1st edition. Oxford University
Press.

Mills, Roger. 2019. Tele-Improvisation: Intercultural Interaction in the Online Global
Music Jam Session. Springer.

Murillo, A., M.-E. Riaño-Galán, and N. Berbel-Gómez. 2018. “Perception of the use
of 'Soundcool' as a proposal for intervention in the creation of sound and in
the development of teaching competences. An exploratory study on pre-
service teacher education” (In Spanish, with English Abstract.) Psychology,
Society, & Education 10(1):127-146.

Newell, A. 1983. “Intellectual Issues in the History of Artificial Intelligence,” in The
Study of Information: Interdisicplinary Messages, F. Machlup and U. Mansfield,
eds., John Wiley & Sons, Inc., pp. 187-227.

Sánchez, J., A. Salinas, and M. Sáenz. 2007. “Mobile Game-Based Methodology for
Science Learning.” In Human-Computer Interaction. HCI Applications and
Services, pp. 322–31. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-73111-5_37.

Sastre, J., J. Cerdà, W. García, C. A. Hernández, N. Lloret, A. Murillo, D. Picó, J. E.
Serrano, and R. B. Dannenberg. 2013. “New Technologies for Music
Education.” In 2nd International Conference on E-Learning and E-Technologies in
Education (ICEEE). Lodz (Poland).

Sastre, J., A. Murillo, E. Carrascosa, R. García, R. B. Dannenberg, N. Lloret, R.
Morant, S. Scarani, and A. Muñoz. 2015. “Soundcool: New Technologies for
Music Education.” In International Conference of Education, Research and
Innovation (ICERI), pp. 5974-5982.

Savage, J. 2007. “Reconstructing music education through ICT.” Research in
Education, 78 78(1):65-77. https://doi.org/10.7227/RIE.78.6.

Shapiro, R., A. Kelly, M. Ahrens, B. Johnson, H. Politi, R. Fiebrink. 2017. “Tangible
Distributed Computer Music for Youth.” Computer Music Journal 41(2):52-68.

Yoo, M.-J., J.-W. Beak, I.-K. Lee. 2011. “Creating Musical Expression using Kinect.”
In Proceedings of the International Conference on New Interfaces for Musical
Expression, pp. 324-325.

