
SOFTWARE-PRACTICE .4ND EXPERIENCE, VOL. 20(2), 109-132 (FEBRUARY 1990)

A Structure
Redis play

for Efficient Update, Incremental
and Undo in Graphical Editors

SUMMARY
The design of a graphical editor requires a solution to a number of problems, including how
to (1) support incremental redisplay, (2) control the granularity of display updates, (3) provide
efficient access and modification to the underlying data structure, (4) handle multiple views of
the same data and (5) support Undo operations. It is most important that these problems be
solved without sacrificing program modularity. A new data structure, called an Iternlist, provides
a solution to these problems. IternLists maintain both multiple views and multiple versions of data
to simplify Undo operations and to support incremental display updates. The implementation of
IternLists is described and the use of IternLists to create graphical editors is presented.

KEY w o m s Graphicdl editor Intcrface Incrcmcntal Display Data structure L'ndo

1. INTRODUCTION

An increasing number of programs use a human-computer interface paradigm in ivhich
a visual representation of editable data is continuously presented to the user. These
are often called displayoriented editors because a visual representation of the edited
structure is maintained on the computer display. The first and most common examples
are interactive test editors,', such as Emacsj which maintain a display of the current
state of the text as it is manipulated by the user, Although text editors can use
specialized techniques and data structures optimized for text, there are many other
applications where more general techniques are required. Examples include draLving
editors, computer-aided design systems, music editors, browsers, spreadsheets, visual
programming languages, certain file utility programs, process control and monitoring
systems, and some programming environments. We will refer to all of these applications
as graphical editors. T h e present study concerns a new implementation technique for
graphical editors.

All graphical editors face similar problems of keeping one or more views on the
display consistent with underlying data. We have developed a data structure and an
associated programming methodology for the construction of these editors. Although
we started with a particular application in mind, our techniques are suitable for a wide
range of application areas. In the nest section, we will describe the problems that are
solved by this work. Then, in Section 3 we describe a data structure that supports
graphical editor construction. Section 4 extends the data structure to provide multiple
views. Then in Section 6 we describe the general organization of a graphical editor

0038-0644/90/020109-24$12.00
0 1990 by John Wiley & Sons, Ltd.

Receired 27 Jirly I988
Re.r.ised 2 7 Julie I989

110 R . B . D A N N E N B E R C

based on the data structure. An evaluation of the structure and directions for future
research are presented in Sections 7 and 8, and the last section presents some concluding
remarks.

2. PROBLEhI STATERIENT

We have identified six critical problems in the implementation of a graphical editor.
First, mechanisms must be provided for updating the display to reflect the represented
information. Secondly, it should be possible to control the granularity of redisplay,
not necessarily changing the display after every lowest-level change to the information.
Thirdly, information access and modification should be computationally efficient.
Fourthly, it must be possible to present the underlying data using more than one
representation. I1.e call these representations .ciercs. Fif th , it should be easy and efficient
to ‘undo’ a sequence of operations when the user decides he has made a mistake.
Finally, all of these concerns taken together can place an appreciable burden on the
programmer. We would like a modular program structure in which these various
concerns are compartmentalized and exhibit minimal interaction.

Incremental redisplay
T h e first problem is that of keeping the display consistent with the data. I n many

cases, it is computationally infeasible to recompute the entire display after every
modification to the underlying structure. Therefore, the display must be updated
incrementally.

A simple approach to display maintenance would be to require the programmer to
insert code to update the display at every point in the program where the structure is
modified. Unfortunatelv, this approach would comproniise program modularity because
display management code wwuld be scattered throughout the program. This approach
is also complicated bv the fact that a piece of information may be displayed in
several places. It would be necessary, therefore, for any program module that updates
information to determine how and where that information is displayed.

Granularity
T h e second problem is that i t is often desirable to control the granularity of display

updates. For example, suppose that the editor’s command to move a displayed box is
implemented by assigning a new horizontal value followed by a new vertical value. A
straightforward redisplay implementation might attempt to redisplay the box at its new
horizontal position and then redisplay it at its final position. This could require more
computation than a single redisplay and might result in confusing and aesthetically
undesirable changes to the display when the box is moved diagonally.

Of course, in any specific example such as this one, we could construct an nd hoc
solution, e.g. making two-dimensional position updates an atomic operation. In general,
however, we can always envision combinations of atomic operations where redisplay
after each operation is undesirable. This IS particularly true if the user can define macro
operations from the existing editor operations. Another aspect of the granularity
problem is that i t should be possible to omit or even pre-empt display updates when
user input is pending. T o summarize the second problem, we would like to be able to

A STRUCTURE FOR E F F I C I E N T UPDATE 111

update the display at arbitrary points rather than immediately after each lowest-level
update to the displayed information structure.

Efficient access
The third problem is to support efficient modification of information. In applications

such as computer-aided design, it is often necessary to perform a significant amount
of computation in response to a user’s command. For example, the command might
compress structures in a VLSI design, satisfy constraints through a relaxation algorithm
in an engineering design, or use heuristic search to design a floor plan. It is important
that these computationally intensive tasks do not suffer a heavy performance penalty
because of display mechanisms. Changing an integer in memory may only take a
microsecond, but updating a bar-graph view of that integer may take many milliseconds.
In order to support applications that require intensive computation, we would like to
pay the display penalty only in proportion to the amount of redisplaying that actually
takes place.

One simple approach to achieving efficient access is for computationally intensive
commands to copy data into their own data structures, perform the computation, and
then copy the resulting data back into the data structure for which the display is
maintained. This approach is undesirable because it forces the programmer to
implement two data structures: one to support the display and one to support compu-
tation.

Multiple views
The fourth problem is to allow several visual representations of the data to coexist

on the display. For example, one might show both a histogram and a table of numbers,
or one might show a high-level structural view of a circuit diagram along with a detailed
circuit diagram for one component. Multiple views complicate the consistency problem
since a single piece of data may affect several images on the display.

Undo operations
The fifth problem is the provision of an Undo command that restores a previous

state of the edited information. Although checkpointing techniques are useful for
recovering from catastrophic errors, we would like a way to undo changes in time and
space proportional to the size of the change rather than proportional to the total amount
of information.

Modularity
The final problem is to meet all of the previous goals without giving up a modular

program structure which is easy to develop, maintain, modify and extend. For example,
editing commands which modify data should be isolated from display routines which
update the display. That makes it much simpler to add or modify an editing command.
As another example, modularity implies that the Undo mechanism should not require
commands explicitly to save previous values when modifying information. Otherwise,
command implementation would be made more difficult.

112 R . B . D A N N E N B E R G

Related work
Although there are many graphical editors, very little information pertaining to the

problems listed above has appeared in the literature. One exception is in the area of
programming environments and program visualization. Garlan's thesis work', ' presents
a design for maintaining multiple views of tree-structured data (i.e. programs), but
the problems of Undo are not addressed. Also, view structures must be updated
immediately as modifications are made to the underlying data, although output to the
display can be delayed to a convenient point in time. One of the strengths of this work
is the declarative description of views which allows the system automatically to deduce
dependencies between data and the display.

Brown6 has described the structure of another environment with multiple views of
computer programs. T h e system is concerned with notifying views of changes to the
data, but there is no control over granularity. T h e Smalltalk-80' model-view-controller
mechanism* also addresses the problem of multiple views, but not the granularity or
Undo problems. MacApp" provides support for multiple views but provides little
assistance for incremental update of the display. ILIacApp does manage kvhat might be
called incremental refresh; that is, when windows are rearranged and a portion of a
previously obscured view becomes visible, the system can automatically set up a
clipping region and request the application to redraw a given area. This is different
from helping the application update the display \vhen the underlying data has changed.
In general, Brown's algorithm animation system, the model-view-controller paradigm,
and MacApp assume that the application program provides a data structure and all of
the necessary algorithms to update the displa!.. T h e systems are designed to help
determine what views to update and Lvhen. T h e Garnet system1" manages a collection
of graphical objects and incrementally updates a display when graphical objects are
modified. There is no view or undo mechanism, howeiw. T h e data structure presented
below is designed to provide a flexible structure including views, to help the application
determine which purr of a view to update, and to completely automate the Undo
operation.

3. T H E ItemList DAT.4 STRUCTURE

Our solution to the problems described in the previous section is based upon a fairly
elaborate data structure called an Iternlist. In addition, there is an assumed program
organization that must be used to take advantage of ItemLists. *e will describe this
program structure at the top level in order to motivate the design of ItemLists, and
then we will describe the data structure. Section 6 \ \ i l l cover the program structure
and use of ItemLists in more detail.

Program structure

A program that uses IternLists continuously executes a four-phase cycle. In phase 1,
a command is entered by the user. In phase 2, the command is interpreted and
executed, possibly modifying the ItemList. RIodifications cause additional information
to be inserted as a side-effect, allouing redisplay routines to determine what was
modified. In phase 3, a redisplay routine is called to update views of the Itemlist.
Redisplay routines can efficiently locate the changes in the ItemList since the last

A STRUCTURE FOR EFFICIENT UPDATE 113

redisplay, and redisplay routines can access the previous state of the ItemList as well
as the current state in order to perform an incremental update. In phase 4, a clean-up
operation is performed, removing most of the extra information added as side-effects
in phase 2. This prepares the ItemList for another cycle beginning with phase 1.

Each iteration of the cycle corresponds to a screen update and a new version of the
Itemlist. The Undo mechanism to be described can be used to undo one or more of
these versions. T h e granularity of versions, that is when to update the display (and
form an Undo boundary), is application dependent.

Item List operations
The ItemList data structure supports several operations. The ItemList appears as a

set of entities called items. Each item contains a set of attribute-value pairs called
properties. In the current implementation, attributes are Lisp-like atoms, and a value
can be either an atom, an integer, a floating-point number, a reference to another item,
a list of values, or a special NULL value.

The client can perform the following operations:

putvalue (item, attribute, mode, value);
value : = getvalue (item, attribute, mode);
item: nextltem (item);
item := itemList (item);

The first two operations allow properties to be written and read. T h e mode parameter
is explained below. The third operation allows the programmer to iterate through all
items. Items are linked in a circular list, with a distinguished item serving as a list
header. This header item is a convenient place to store properties that apply to the
ItemList as a whole. It is appropriate to refer to this item as ‘the Itemlist’ since a
reference to it gives access to the entire ItemList structure. The fourth operation takes
any item and locates the corresponding ItemList, that is, the item at the head of the
circular list of items. ItemLists and items are created using the operations createltemList
and createltem. The createltem operation takes a parameter indicating the item after
which the new item should be placed in the Itemlist:

item := createltemList 0;
item : = createltem (previous);

Figure 1 illustrates an ItemList structure with four items (including the Itemlist)
represented by circles, and a number of properties represented by boxes. The ItemList
item is distinguished by a double circle.

Versions
To support Undo and redisplay, the ItemList data structure includes a version number

for each property. The current version number is maintained in the global variable
current-version and the operation

setVersion(version);

114 R . B . DANNENBERG

Circle

is invoked to change the current \version. The rqersioti nionbet- for a g i w n version is
im~uiiuizt m i a s s d l items c r n d pr-ope)?ies, Conceptually, putvalue works by inserting a
new property with the current version number at the head of the list. Old properties
are never removed or modified, even if they have the same attribute. T h e operation
getvalue works by scanning the property list from head to tail for the first property
with a matching attribute and a version that is less than or equal to the current version.
T o avoid complications, if putvalue is invoked at a given current version, then it cannot
be invoked later with a lesser (earlier) version. Thus, modifications are made with non-
decreasing versions. In intuitive terms, ‘you can’t change history’. This strategy puts
the most recent version of any attribute ahead of older versions of the attribute in the
property list. New properties are only added when the value of some attribute changes,
not when a new version is created. Implementation details will be discussed in Section
5.

Undo
Given the version mechanism described above, it is relatively straightforward to

implement an Undo facility. Since previous versions are accessible, we can undo the
last change as follows: first, locate properties that are the results of changes to be
undone. These properties will have a particular version number if we want to undo
only the latest version, or their version number will be a member of a set if we want
to undo multiple versions. For each property to be undone, find the previous value
for the given attribute and perform a putvalue operation of that value at the highest
version.

Note that we can even undo an Undo operation with no additional support. T h e
following example illustrates this process. Suppose we have just completed the construc-
tion of version 10. T o undo version 10, returning the structure to its state in version
9, we begin by finding attributes that were changed, reading their values at version 9,
and writing these values at version 11. Version 11 will now have the same values as
version 9. Now, suppose the user decides to undo his Undo command. This is

A STRUCTURE FOR EFFICIENT UPDATE 115

accomplished by reading version 10 and writing the values at version 12. Using this
technique, we can undo multiple versions, one version at a time.

Deletion and Undo

The presence of versions and Undo operations leads to an unusual treatment of
deletion, both for properties and for items. A property cannot be deleted directly. If
a property with attribute A were removed from a property list, a subsequent access of
attribute A might return an earlier version of attribute A. On the other hand, removing
all properties with attribute A would make a later Undo operation impossible. The
solution is to put a new property with the NULL value.

The deletion of items must also be handled carefully: if deleted items were simply
removed from the ItemList then the Undo operation would fail to restore the item.
Instead, the DELETED property is used to mark items as deleted without actually
reclaiming any storage. When the DELETED property is NULL or not present, the item
‘exists’, but otherwise the item is considered to be logically deleted. The Undo operation,
by treating the DELETED property just like any other, will correctly restore deleted
items.

Incremental redisplay
In addition to Undo operations, versions facilitate redisplay. By comparing the

previous version to the present one, a redisplay program can determine what has
changed, thereby making minimal changes to the display. A simple but effective
technique is to erase the image of any item that has changed, using the previous version
of the item to determine what to erase, and then redrawing the item using the current
version. T o support redisplay more completely, a property with the attribute MODIFIED
maintains a set of attributes of properties that have changed since the previous version.
Thus, if the COLOR and WIDTH properties of an item were modified, then the
MODIFIED property would have the value {COLOR, WIDTH}. (The MODIFIED attribute
itself is always omitted from the set.) A redisplay routine can find out what items have
changed by looking for items with the MODIFIED properties. The nature of the change
can be roughly ascertained by looking at the value of the MODIFIED property, and the
exact nature of the change can be determined by looking at the previous version of
each property whose attribute is on the MODIFIED list.

A very simple redisplay algorithm is the following:

for each modified item
if the MODIFIED property contains an attribute
that affects the display image, then:

set drawing color to white
decrement version
draw the item
set drawing color to black
increment version
draw the item

The idea is to erase old images of modified items by redrawing them in white. Then,
the items are redrawn in black. Notice how the version mechanism is used here. The
version is decremented before drawing items in white so that when the drawing routine

116 R . B . DANNENBERG

accesses the item, it will see the previous version of the item. This will ensure that the
correct image is erased. T h e version is restored in order to redraw the current version
of the item. This mechanism supports redisplay of non-overlapping items where all
items are visible. Typically, neither of these conditions is true and more mechanisms
are needed. More elaborate approaches to redisplay will be discussed in Section 6,
although the general approach will be the same.

.4fter redisplay, the MODIFIED properties are removed. Versions of the MODIFIED
property are not kept and cannot be accessed because they would not be correct if they
were restored by an Undo operation. T o make all of this bookkeeping as efficient as
possible several additional steps are taken. These are described in Section 5.

Even without views, the ItemList structure is quite flexible and general, but there are
applications (including ours) where ha\.ing a single name space per item for properties
proves to be a problem. For example, suppose we Lvanted to represent a mechanical
assembly in a CAAD/CA!lI application, and \ve Lvanted to display two presentations of
the assembly siniultaneously. In one presentation, we would like to display all plastic
parts in green, and in another, we want to display moving parts in blue. It seems
natural to store a COLOR property on each displayed item, but with these multiple
views, conflicts arise (in this particular case, n i th moving plastic parts).

Another example is a music notation system in ivhich musical notes in the conductor’s
part (one view) are not always the same as notes that appear in each instruniental part
(other views) due to transpositions and other conventions of music typography. Again,
view-specific attributes are called for.

Several solutions to this problem \\’ere considered. One is to use more elaborate
attributes, say COLOR-FOR-VIEW-I , but this is clumsy and makes it difficult for \iews
to share attributes. .Another approach is to use more elaborate values, for example the
list structure ((VIEW-1 G R E E N) (VIEW-2 BLUE)). This approach is also clumsy, and it
may not allow new vie\vs to be added without affecting existing ones.

.4 better solution is to have a separate property list for each view, and the resulting
ItemList structure is illustrated in Figure 2. 1j.e will distinguish between a-iezc itetm,
which are items linked into a vietv, and shcrr~cl i tems, which are items in the base level
Itemlist. As indicated by the Figure, each view is similar to the ItemList structure
shown earlier in Figure 1 , except that \,iew items may be linked to a corresponding
shared item, as illustrated by the \-ertical arcs in the Figure. I n our implementation,
the links between view items and shared items are implemented using properties. T h e
ITEM property on a vieby item points to the corresponding shared item, and the VIEWS
property of a shared item contains a list of corresponding \-iew items. T h e links are
automatically updated when new view items are created and \\.hen items are deleted.

Now we can put information that is common to all vie\vs on the shared item, and
information (such as colour for the presentation) that is particular to a single view is
stored on the corresponding view item. T h e mode parameter in the getvalue and
putvalue operations is used to specify where properties are stored and accessed as
follows: if mode is Local, onl!, the view item is modified or accessed. If mode is Any
and the operation is getvalue, then the view item’s property list is searched first. If no
property is found with the desired attribute, and if there is a corresponding shared
item, then the shared item’s properties are searched. If mode is Any, the operation is

A STRUCTURE FOR EFFICIENT UPDATE 117

ItemList

putvalue and a corresponding shared item exists, then the property is placed on the
shared item and any existing property with the given attribute is removed from the
view item. O n the other hand, if no corresponding shared item exists, the view item
is updated as if mode were Local. Views of views are not allowed, primarily because
this would make data structure access more complex and confusing.

T h e support for incremental updates is extended in a straightforward way to handle
views. Changes to shared items can effectively modify multiple view items even though
neither the view items themselves nor their property lists are directly changed. (This
is because getvalue can search the changed shared item if the desired attribute is not
found in the view item’s property list.) T o support incremental redisplay, it must be
possible to locate these effectively modified view items.

Normally, modified items are marked and the attributes of properties which have
changed are maintained on the MODIFIED property. When an item with views is

118 R. B . DANNENBERG

modified, we insert the special name ITEM on the MODIFIED list of each view. The
presence of ITEM in the list of modified attributes means ‘in addition to any local
changes, consult the MODIFIED property of the corresponding shared item for additional
changes’.

When new items are created, they do not automatically become part of every view.
It is up to the application to decide what items should appear in any given view.
Typically, items are first created in the ItemList and view items are created as part of
the display update process. To simplify the job of locating newly created items, a list
of new items is automatically kept on the CREATED property of the header item of the
ItemList.

5. Ih.IPLEILIENT.L\TION DETA41LS

By focusing on the externally visible aspects of ItemLtsts, a number of details have
been omitted from the previous section. This section will describe implementation
details, some of which are referenced in the following section on the application of
ItemLists to graphical editors.

Version implementation details
In order to make versions feasible, we need to address several problems. First, there

is the problem of space. Keeping more than a limited number of previous versions is
not practical for many applications, and storing arbitrarily large version numbers on
each property is also a problem. Secondly, extra computation time due to searching
through many versions and allocating and appending new properties is a potential
problem.

T o avoid the space problem, only a finite number of versions are maintained and
only a small integer z*eisiotl tag is stored within properties. \iTe will assume that a fixed
number, l’, of versions is retained. Table I illustrates how tags are associated with
versions as the highest version number is incremented from I I to ?i t -3 , assuming that
17=4 versions are maintained. By highest z.ersion Iiuvzber, we mean the highest number
ever passed to the setversion operation. Typically, this number will be incremented
by one to create a new version before each command is executed.

Notice that there are tags for only some of the versions. In particular, there is no
tag for versions older than h - (l - - l) , where h is the highest version number. These
old versions are not retained; this allows storage reclamation which is described next.

Table I . .is the highest (most recent) \erston number increases, the correspondence between tags and
version numbers changes as sho\vn

Yersion numbers
r r - 3 11-2 r l - 1 11 ? , + I !1+2 i r + 3

~~ ~~ -~ -~ ~~ ~

Corresponding tag at highest
version 11’ 0 1 2 3

? l + l . 0 2 3 1
11 +2 0 3 1 2
1 1 + 3 ‘ 0 1 2 3

A STRUCTURE FOR EFFICIENT UPDATE 119

As the highest version number increases from IZ - 1 to n, only properties with version
n-(\’-l) = t i - 3 must have their tags changed (to zero). If any property with the
same attribute on the same item already has a zero tag, then this property belongs to
an old version (n-11 which has just become inaccessible. T h e property should never
again be accessed because it is superceded in all newer versions by a new property.
Therefore, the property may be deleted and its storage reclaimed.

Table I illustrates how the mapping of tags to versions changes as the highest version
is incremented. In Figure 3, we illustrate how two property lists must be updated as
the version-to-tag association changes as in Table I .

T h e Figure illustrates the changes that would be made if the current highest version
were IZ and we made the call

setversion (71 + 1).

Notice in the first item at the left of the Figure, the oldest value for X is 6.6 with tag
0, or version n-3. There is also a value for X of 7.1 with tag 1, or version 11-2. At
the right of the Figure, version n-3 becomes inaccessible and is deallocated, and all
properties with tag 1 have their tags changed to 0. Any calls to putvalue at this point
would create properties with tag 1 (version ??+I) .

T h e second item in each half of the Figure illustrates that an item whose properties
are all tagged with 0 remains unchanged when the version is incremented. All items
will reach this condition when the version is increased by 1. over the version of the
last putvalue operation on the item. Note also that these items have at most one
property for any given attribute.

Thus, we can divide the set of items into two classes. ,4ctizle items are those that
have been modified within the last V versions. Actizv items will have at least one non-

Highest Version = R

14.6 , 1 16 I

tag=O 0

Highest Version = n i 1
(tag 1 goes to 0)

7.1 2.1

I

Color k-7
F’igure 3. byec t of im-remetitirig the highest wrsioti 011 tuw itenis

120 R. B . DANNENBERG

zero tag and will eventually need to be modified as illustrated by the first item in
Figure 3. Znactiz*e items have all zero tags and are never changed by version number
changes, as illustrated by the second item in Figure 3.

Active lists

Our implementation maintains a list of actit.e items (called an active list) as the
ACTIVE property of the ItemList header and an Active flag on each item. Each view has
its own active list. L\'hen a new property is inserted on an item's property list, the
item's Active flag bit is tested. If the flag is false (0), then the flag is set to true (1)
and the item is added to the active list. Before the highest version is increniented, we
must scan all properties of all active items, changing the oldest non-zero tag to zero,
and possibly deallocating properties with zero tags as in Figure 3. If this removes the
last property with a non-zero tag from an item, the Active flag is reset, and the item
is removed from the active list.

\Vith this scheme, we do not need to scan all items when the version changes. Only
items that have changed within the last 1- versions need to be checked, and these items
can be located directly using the active list. T h e active list can be a simple linear linked
list without any efficiency penalty. T h e operations required of the active list are to
insert items, enumate all items and delete items. T h e insert operation takes constant
time, and we avoid inserting duplicates bv checking the Active flag of the item to see
whether the event is already in the list. Enumerating all items takes constant time per
item, and items are only deleted from the list during the enumeration. By maintaining
a pointer to the previous list element of the active list as part of the enumeration
process, items that become inactit.e can be rernoi.ed from the list without searching or
maintaining links from items to list elements. If editing activity exhibits locality, then
we can expect that the active items make up a small percentage of all items.

T o enhance the efficiency of computationally intensive operations, the putvalue
operation begins by looking for a propertv bvith a matching attribute and a version tag
corresponding to the current version. If none is found, then a new property must be
added to the propert!' list. Hoir.e\.er, i f such a property is found, the value of the
property can be overwritten, saving the allocation of storage and the initialization of a
new property. This optimization affects computations that perform more than one
putvalue on the same item, attribute and version.

T h e active list also serves to locate items that will be affected by Undo. If editing
activity exhibits locality, then the active list will allow Undo to avoid searching all
items. Nevertheless, the Undo operation may examine many items that do not need to
be modified because the active list will contain items that have not recently changed.
Provided that properties are stored with decreasing versions, only a few properties of
these items need to be examined to discover that no properties need to be undone.
T h e worst-case cost of Undo is proportional to the number of active items in addition
to the number of properties on items modified by Undo. alternative would be to
keep a separate active list for each version. This would increase storage requirements
but make Undo and the version increment step more efficient by keeping pointers to
exactly the needed items. This savings is offset somewhat by the cost of more allocations
and deallocations of active list nodes which will tend to make the putvalue operation
slower (by a constant).

Another use of active lists is to find modified items without searching through all
items. This is important to allow incremental redisplay and to remove MODIFIED

A STRUCTURE FOR EFFICIENT UPDATE 121

properties efficiently after redisplay is complete. For convenience, every item has a
MODIFIED bit that indicates whether or not the item has a MODIFIED property.

Other optimizations
An interesting optimization can be performed on deleted properties. Recall that

properties are 'deleted' by putting a new property with the N U L L value. Eventually,
this NULL-valued property will become the oldest version (with version tag 0). At this
point, the property can be removed because getvalue also returns N U L L if no property
is found. Waiting for the tag to go to zero ensures that getvalue will not find an earlier
property with a non-NULL value,

The DELETED property, which marks logically deleted items, is normallv NULL.
When items are created, the createltem operation automatically places a DELETED
property with a non-NULL value and version tag zero on the new item. A second
DELETED property with value N U L L and the current version tag is also placed on the
item. This ensures that if an Undo operation that restores a previous version is
performed, then the item will be (logically) deleted; that is, the value of its most recent
DELETED property will become non-NULL. Otherwise, the NULL-valued DELETED
property will eventually become the oldest version and be removed. Thus, DELETED
properties are only found on young items and deleted items.

Since testing to see if an item is deleted in the most recent version is a very conimon
operation, a Deleted flag bit is maintained on each item to optimize look-up of this
important property. Eventually, deleted items become inactive because all of the
property version tags become zero. In particular, the only retained DELETED property
will be non-NULL, so any future Undo operation will not affect the value of the DELETED
property. At this point, it is safe to reclaim the storage for the deleted item. In our
implementation, storage reclamation is performed automatically during the clean-up
phase when a deleted item changes status from active to inactive.

Recall that the MODIFIED property maintains a set of attributes of properties that
have changed since the previous version. This set is implemented as a list. To avoid
duplicates in the list putvalue adds an attribute to the list only the first time the
attribute is modified since the previous version. This condition is easy to detect because
on the first modification of an attribute, there will be no corresponding property Lvith
the current version tag. On the other hand, if the property with that attribute already
has the current version tag, then it is known that the attribute is already on the
MODIFIED list. As mentioned in Section 3 , this is also the condition where the new
value can be overwritten without allocating a new property.

T h e views of a shared item are marked as modified when the shared item is first
modified. Further modifications to the shared item do not require any further changes
to the views. This approach will sometimes mark a view as modified when there is no
effective change. This happens when the modified attribute of the shared item is
overridden by the presence of a local view property with the same attribute. The
incremental redisplay routines can check for this condition if necessary.

Multiple versions can lead to long property lists. Most accesses (except for Undo)
will be to the most recent version of any given attribute. It might therefore make sense
to use a move-to-front policy whenever properties are accessed. This approach has
been found to improve the performance of other list-based structures. ' I - With
versions, some care must be taken to incorporate the move-to-front policy. Recall that
getvalue searches to find the first property with the desired attribute such that the

122 R . B . DANNENBERG

version of the property is less than or equal to the current version. This getvalue
algorithm assumes that properties of a given attribute will be visited in order of
decreasing version number. One simple implementation of move-to-front would be to
move a property only if the current version is the highest version; in other words,
when there can be no more recent versions of the accessed property.

T h e Undo command typically searches items for all properties of a particular version
number. Without move-to-front, these properties will be grouped consecutively in
the property list. This convenient property will not hold if move-to-front is used.
Consequently, Undo will have to search every property list entirely rather than to a
particular depth determined by the version number.

Move-to-front might be expected to help when there is a property to move; however,
many accesses could be testing for the presence of certain attributes. This would be a
common case where attributes are used to occasionally override default values. T h e
cost of searching for an attribute which is not present is proportional to the total length
of the property list. I t would be possible to insert a property with the NULL value at
the head of the property list in an attempt to lower the cost of the next getvalue
operation that accesses the same attribute. Storing NULL values explicitly will make
property lists even longer and consume storage, so this technique will not necessarily
lead to performance improvements.

6. APPLIC.4TION

T h e reader has probably observed by now that the ItemList data structure has a very
specific style of intended USC. RIaiiy of these intentions have been alluded to in previous
sections, but it is worth while to describe the structure of an application program more
directly. We will also expand on the methods used for incremental redisplay.

As discussed in Section 3 , the typical application program that uses the ItemList
structure is a graphical editor that operates in a cycle of four phases. Each cycle
corresponds to a new version of the structure.

Command entry and execution
In the first phase, the user enters a command. In the second phase, the command

is interpreted and, as a result, data is modified through calls to putvalue and createltem.
Items that are modified will have the attributes of modified properties stored in the
value of the MODIFIED property. Modified items which were previously inactive have
their Active flags set and are added to the active list. New items are placed on the
created list of the corresponding view. Note that the MODIFIED property, the active
list ‘and the created list are maintained as side-effects of putvalue and createltem, and
in this way, support for redisplay is decoupled from editing operations.

Display update
There is considerable leeway in the design of the display update mechanism and the

details depend upon the organization of the data and the nature of the views to be
maintained. We have already seen a simplistic approach in Section 3 where there were
few if any dependencies among items. In this section, we will consider a more powerful
scheme that handles interdependencies among items and their images.

A STRUCTURE FOR EFFICIENT UPDATE 123

As an example, consider a circuit-diagram editor that displays logic gates and intercon-
necting wires. Editing operations can create, delete, and reposition gates, and these
can be connected by wires. We will use items to represent both wires and gates.
Interconnections will be represented by storing a property on a circuit element item
for each attached wire. The value of the property will be a reference to the wire item
(see Figure 4). To simplify the Figure, only interconnection properties are shown. In
a real editor, other information such as pin numbers, labels, positions, and wire routes
would be present in the form of additional properties.

Drawing model
The drawing model is a simple one that corresponds to drawing on white paper with

black ink. When images overlap, their intersection is black. This corresponds to an ‘or’
operation on pixels where 1 (true) is black and 0 (false) is white. Since ‘or’ is
commutative, there is no notion of drawing order or one image being ‘on top of’
another.

When an item is modified, we want to erase its old image and redraw the current
image. If the item overlaps another, then the erase operation may make it necessary
to redraw the other item as well. In general, we can minimize the amount of redrawing
by first erasing all items to be redrawn. Then, we redraw all the erased items and also
all items thzt overlap the erased images.

T o find overlapping images, we use a map from display areas to items whose images
overlap the area. The map (see Figure 5) is a two-dimensional array corresponding to
a grid of rectangles within the display. Each cell of the array contains a list of items
that have drawn part of their image into the corresponding rectangle. T o simplify the
task of keeping the array up-to-date, insertions and deletions into the array of lists are
handled by the drawing primitives themselves. For example, there is a line-drawing

Class

out

8 Class

U

Figure 4 . Repwsentation of circuits using an ItemList

124 R. B . D A N N E N B E R G

routine called drawTo that takes three parameters: the item being drawn and X and Y
co-ordinates for an endpoint of the line. T h e drawTa routine computes which rectangles
will be touched by the line and inserts the item into the item list of each rectangle.

Several flag bits are used to keep track of the dtakving state of each item:

1. T h e Deleted flag indicates that the item has been deleted, that is, its most recent
DELETED property is true. T h e flag is set and cleared as a side-effect of putvalue
when the DELETED propert! is modified.

2. T h e Erase flag is set by application code to indicate that an item has changed.
T h e item should be erased and redra\vn. If the item is deleted, then it should
only be erased. T h e Erase flag is cleared and the Erased flag is set when the item
has been erased.

3. T h e Erased flag indicates that an item has no on-screen image and is not listed
in the map. T h e flag is set when the item has been drawn in white (erased) and
the flag is cleared when the item is drawn in black.

4. T h e Redraw flag indicates that an item should be redrawn. T h e flag is set when
an object is erased or when an overlapping object is erased. It is cleared when
the object is redrawn.

There are, in fact, three cases in which a drawing primitive can be invoked:

1. An image is being drawn: insert the item into every array cell whose rectangle is
touched by a drawing primitive.

2. An image is being erased: remove the item from every array cell whose rectangle
is touched by the drawing primitive. .Also, mark every other item in the same
rectangle by setting its redraw flag.

3 . An image is being redrasm: no arra! changes are necessary.

T h e current drawing colour (black or white) and the item flags are used to determine
which case applies. Case 1 should be performed if the current drawing colour is black

A STRUCTURE FOR EFFICIENT UPDATE 125

and the erased flag is set on the item. Case 2 is taken if the colour is white. Case 3 is
performed when the colour is black but the erased flag is not set.

Thus, the array is essentially a hash table to detect overlapping images of objects.
Note that the array is also useful for finding the object nearest to co-ordinates provided
by a pointing device such as a mouse.

Items as objects

In order to isolate the overall display update process from the details of various types
of items, we use an object-oriented approach. Every item is treated as an object and
has a CLASS property that references a method dictionary. Objects of the same class,
for example all gates in the circuit editor, share the same method dictionary. T h e
method dictionary provides class-specific implementations for the following methods :
propagate, format, draw.

Redisplay proper is performed in two passes: one to erase changed items and one to
redraw them. However, views often need to be reformatted before redrawing can begin.
For example, if the position of a gate in our circuit diagram editor is moved, then we
will want to reposition and redraw the wires that connect to the gate. We could perform
these sorts of adjustments within editing operations, but it is more modular if editing
operations do not have to perform graphical layout. Therefore, we defer graphical
layout until redisplay time and we use two additional passes for this purpose. This
makes four passes in all, which we will call propagate, fo twat , erase and redi-nec.

Propagate

T h e first two passes implement a constraint satisfaction algorithm in which items to
be changed are first marked and then modified. In the first pass, the propagate method
is called for every item that has been modified. T h e active list and Modified flags can
be used to locate modified items efficiently. T h e propagate method determines which
items must be redrawn and sets the Erase flag on these items. T h e propagate routine
also determines what other items need to be formatted as a consequence of local
changes. These items are marked by setting their Format flag. In the circuit diagram
editor example, the propagate method for a gate that has moved will set the Format
flag of all connecting wires. T h e purpose of this pass is to mark all items that should
be reformatted.

Format

In the second pass, we find all items whose Format flag is set and call the appropriate
format method for each of these items. In the circuit editor, this will cause wires to be
repositioned and the Erase flag will be set on these wires to indicate that they should
be redrawn. In more complicated editors, format routines can perform complicated
layout operations involving many items. T h e way in which items with set Format flags
are found is application dependent. Typically, a list of visible items is maintained by
the propagate methods, and only those items that are visible need to be examined. T h e
order in which formatting occurs is also important and it may be necessary to format
items in some (partial) order.

126 R. B . DANNENBERC

Erase
T h e first two passes deal mainly with the propagation of constraints and deciding

what images are to be updated. T h e remaining two passes erase and redraw the images,
respectively. In the third pass, we examine every visible item checking the Erase flag.
If the flag is set, the version is decremented, the current colour is set to white, and
the item is redrawn. This effectively erases the object. As a side-effect performed by
drawing primitives, overlapping items are marked by setting their Redraw flag. Th i s
pass is presented here for clarity, but it can be eliminated if items are erased immediately
when their Erase flags are set.

Redraw
In the fourth pass, we again visit all visible items, this time checking for the Redraw

flag. These items are redraLvn.

We are now ready to present the redisplay algorithm in pseudo-code form. Before
starting the redisplay proper, new items are moved from the ItemList to views. Each
view has a Filter routine that creates local items that meet certain criteria. After creating
views of items, four passes are performed on each view:

redi8play:
for each v, a m e m b e r of the list of views of the ItemList

viewFilter := getvalue (v, V I W - F I L ~ R , local)
for each e, an event in the ItemList's CREATED list

propagate :
apply (viewFilter, v, e)

for each i, an item on the Active List
if i is modified, call propagate method for i

format :
for each visible item i in v

if i.FormatFlag then call format method for i
set the current color to white
erase :

for each visible item i in v
if i.EraseF1ag then

set i.RedrawFlag
decrement current version
if i is not deleted then

increment current version
clear i.EraseFlag

call draw method for i

set the current color to black
redraw :

for each visible item i in v
if i.RedrawFlag then

clear i.RedrawFlag
if i is not deleted then

call draw method for i
if a is off-acra

(reported by draw method) then
mark i as not visible

A STRUCTURE FOR EFFICIENT UPDATE 127

Clean-up phase
Phase 4 is the clean-up phase in which MODIFIED properties and created lists are

deallocated and the version is incremented. The active list of the IternList and of each
view is traversed and version tags are updated as described in Section 3 . When an item
is encountered with its Modified flag set, the flag is cleared and the item’s MODIFIED
property is removed. The created lists are then traversed, clearing Created flags, and
deallocating the lists. All of phase 4 is an operation of the ItemList structure and is
completely application-dependent .

7. DISCUSSION

One might now ask, how has the ItemList structure made programming easier? Let us
return to the set of six problems outlined in Section 2 and discuss how they are
addressed by the ItemList structure.

The first problem is keeping the display consistent with the data. The ItemList
structure supports incremental display updates by providing the client with information
about what changes were made. In addition, the propagate and format passes are
convenient places to handle inter-item dependencies, although the work is largely left
to the programmer of the application who must write propagate and format methods
for each item class.

The problem of keeping track of where information is displayed is handled in part
by views. For example, if a property of a shared item is modified, and the ItemList has
three views, then the modified flag of each view will be set. Subsequently, the
modification will be discovered three times by display update routines concerned with
the three views, and the appropriate display operations will be performed.

The second problem is controlling the granularity of display updates. The main
control over granularity is through the version mechanism. In phase 2, the application
program is free to make arbitrarily many updates to the structure without any display
changes. Only when the application advances to phase 3 is any display updating
performed.

It is not strictly necessary to update the display for each version. If it is desirable
for pending input to pre-empt a display update in progress, then the redisplay can be
abandoned and a complete refresh can be forced any time later. It should also be
possible to skip the erase and redraw phases of redisplay for up to V-1 versions with
only slight modifications to the algorithm presented. Note that in either of these cases
the array mapping the display to items will not remain current, so some other map
may be needed for pointing device input.

The third problem is efficiency. T o evaluate the efficiency of this structure, it should
be compared to one with similar operations (putvalue and getvalue) but with no support
for display updates or Undo operations. The principal overhead is from the allocation
and deallocation of properties and the maintenance of the MODIFIED properties. It is
interesting to note that this overhead is likely to be small compared to the cost of
graphics operations to maintain the display. There are two exceptions to this statement.
First, if the item is not displayed, then the overhead of maintaining the MODIFIED list
is significant because the cost of graphics operations is zero. In one version of our
system, if the item was not visible, then the MODIFIED property was not maintained,
thus reducing the overhead of the data access operations. This approach can cause

128 R. B. DANNENBERG

problems, however, particularly if changes to invisible items make them visible. or
affect the appearance of other items that are visible.

Another case where overhead might be high is where many update operations occur
for each redisplay. This might happen as a result of search or numerical relaxation
algorithms. Recall, however, that the MODIFIED property maintenance occurs only
when a new property is allocated. This overhead can only be incurred once for each
attribute on a given version. In other words, the overhead is incurred only the first
time an item attribute is modified. Thereafter, the value of the attribute is overwritten
and the MODIFIED property is not inspected or updated. This approaches the efficiency
of a structure with no support for display update and Undo.

The fourth problem is the ability to handle multiple views. T h e view structure
described not only handles incremental update of multiple views of a single item, but
it also provides a separate attribute name space for each view. This simplifies the
problem of storing view-specific information such as screen co-ordinates. T h e view
mechanism allows multiple views to share information about an item through a shared
property list, but views can locally override shared properties.

T h e fifth problem is the provision of an Undo operation. As described in Section 2,
the ItemList structure provides an efficient Undo operation whose cost is proportional
to the number of properties that must be undone and to the number of items that have
been changed in the last \‘-I versions, where 1- is the number of retained versions.
This bound could be tightened at the cost of keeping an active list for each version tag
value. The Undo operation has several interesting properties. First, Undo is completely
independent of the client. Secondly, the Undo mechanism can be applied to itself with
no extra work to provide an ‘Undo Undo’ operation. In fact, the ‘Undo Undo’ operation
can also be undone, and so on. Third, the Undo operation is completely compatible
with incremental redisplay. Performing an Undo has the same effect on the ItemList
structure as calling putvalue to make the necessary changes. Therefore, the MODIFIED
property and version number are changed as usual, and a display update routine can
be called as usual. No special provisions are needed in the display routine to handle
Undo.

The sixth problem is modularity. By using the ItemList data structure to store all
application data, it is possible to achieve a high degree of separation between various
components of a display-oriented editor. First and foremost editing operations by the
client need not include any code concerning the display. This is particularly important
when multiple views are present. This is also important in extensible editors where
the writer of the extension may not understand the editor deeply enough to manage
the display. Because the display routines are completely separate from commands and
because of the version mechanism, no special code need be written by the application
programmer to support the Undo operation. Thus, editing commands, display routines,
and Undo operations are almost completely independent modules in editors based on
ItemLists.

Another advantage of the ItemList is that one can write application-independent
routines to read and write ItemLists to permanent storage. Thus, it is not necessary to
modify code or write new methods to save and restore items when new classes of items
are introduced. This is a consequence of using property lists and a fixed set of
application-independent, typed values.

The ItemList structure solves all of the problems posed in Section 2. These are
significant problems that commonly arise in practical programs. However, no data

A STRUCTURE FOR EFFICIENT UPDATE 129

structure is perfect, and the ItemList structure has some limitations and undesirable
properties. These are discussed in the next section.

8. REMAINING PROBLEMS

T o give the reader a fair assessment of the ItemList structure, we will consider some
potential liabilities of its use. First, there is the obvious point that the structure
organization itself may be inappropriate. The organization is a list of items, each with
a set of properties. Views provided separate name spaces for attributes. Multiple
hierarchies may be encoded in this structure by letting an item represent an instance
of a hierarchy (a node in a tree). Pointers from the hierarchy instance to members can
be stored on a property, and/or pointers from the members to the instance can be
stored as properties of the member items. Random access to items or associative look-up
by properties is not directly supported. Also, it is likely that for any given application, a
more compact representation could be found. Thus the ItemList structure has a restric-
ted set of access methods and is not optimal in its memory requirements. Memory
requirements are even greater considering that many versions may exist for any given
property. This is necessary if the Undo operation is to be kept independent of the
application code. However, many editors opt for an application-dependent Undo mech-
anism in the interest of greater computational or storage efficiency.

Another problem of the ItemList structure is that it only supports incremental update
of discrete structures. There is a hidden assumption that the user only makes fairly
coarse modifications to the structure. A painting program in which the user could
update the display randomly one pixel at a time, with continuous visual feedback,
would not be an appropriate application of the ItemList structure. An example of a
more appropriate application is the circuit-diagram editor in which discrete objects or
structures are manipulated and then redrawn.

Providing fine-grain visual feedback is a potential problem with the ItemList structure.
For example, many editing systems allow the user to ‘drag’ an object (or its outline)
to a desired position on the screen. While it is conceivable to run through the four-
phase editing cycle many times to effect smooth motion required for dragging, this is
computationally expensive and tends to run through many version tags for what is
conceptually one operation. Furthermore, dragging is a case where application- and
operation-specific information is usually required to make the display update within a
short response time. Therefore, the ItemList structure provides no useful support for
dragging and other operations that require relatively continuous feedback to the user.
On the other hand, the ItemList structure can be efficiently updated many times in
phase 2, with operation-specific display updates for feedback. It should not be difficult
to prevent these updates from interfering with the general operation-independent
update in phase 3 .

The drawing model used thus far is not general in that it does not support the
possibility of having overlapped images where one image is obscured by another.
However, it should be straightforward to extend the update method outlined above to
handle overlapping images. For example, one could find a bounding box for all changes
and redraw the contents of the box while clipping all drawing operations to the borders
of the box.

Another problem with the ItemList structure is the increased access time due to the
existence of multiple versions of properties. In a conventional implementation of

130 R . B . DANNENBERG

property lists, the worst-case access time is proportional to the number of distinct
attributes. In the ItemList structure, the worst-case access time is proportional to the
product of the number of version tags and the number of distinct attributes. Since
recent versions tend to be near the head of the property list, the actual performance
degradation is small if the attribute exists. Furthermore, as new versions are created,
old versions are eventually removed, so an item that remains unmodified will eventually
have only one property for each attribute, just as in a conventional property list. The
real problem, if any, arises when getvalue is called with an attribute that does not
correspond to a property. The result is the N U L L value, but this can only be determined
by traversing the entire property list, including all old versions of properties. A trade-
off between space and time can be made by making the following change in the
implementation of getvalue: whenever an attribute for which no property exists is
accessed, insert a new property with the attribute and the N U L L value at the head of
the property list. This strategy, and the ‘move-to-front’ strategy were described more
fully in Section 3.

Another limitation of the ItemList structure is that the space of versions is totally
ordered. That is, a tree- or graph-structured version space is not possible. If such a
flexible version-control system is desired, it might be a better idea to use a two-level
version structure, where ItemList versions are used for editing within a major version,
and where separate ItemList structures are used for each major version.

The final problem we have found with the ItemList structure is its real-time behaviour.
A user might reasonably expect that small operations should take small amounts of
computation. This is the case with the ItemList structure, but some of the computation,
the clean-up in phase 4, is delayed over \.-I versions. For example, if an operation
modifies one million items and creates properties with version tag t , then for the next
V-1 versions, all million items will be on the active list and must be examined in
phase 4. At the last of these version changes, at least one million properties with
version 0 will be deallocated and one million properties with version t will be changed
to version 0. Since phase 4 overlaps with the user’s ‘think time’ this problem is not
normally serious. One can also imagine various ways of softening the performance
disruption, including parallel algorithms that perform phase 4 concurrently with other
phases and distributing the clean-up overhead over a longer period of time.

9. CONCLUSIONS

The ItemList structure was designed to support a flexible and extensible editor. It was
essential that operations be separated from redisplay so that new operations could be
easily added and so that redisplay could be performed once after a collection of low-
level operations. The resulting structure performs these tasks well, and the mechanisms
are cleanly integrated with a powerful Undo facility. The resulting system is quite
flexible and efficient, given these demanding requirements.

The implementation is in the C programming language’” and supports Lisp-like
atoms, integers, floating point numbers, items and heterogeneous lists of values. In
addition, an ‘indirect reference’ type is supported so that many properties can be bound
to one variable. Changing the variable modifies all corresponding properties. This
additional mechanism is completely integrated with Undo and display update facilities.

Another operation is the encoding of ItemLists into byte strings for storage in a file
system, and decoding from byte strings back into internal form. To facilitate application

A STRUCTURE FOR EFFICIENT UPDATE 13 1

programming, a library of higher-level operations is provided for creating hierarchies,
for selecting all items that meet a given constraint, for updating by incrementing, by
appending to lists, and so on. Table I1 lists the size (in lines of C code) of various
parts of the implementation. The ItemList operations include support for multiple
hierarchies. In this particular implementation, hierarchies are kept topologically sorted
so that one always encounters the parent item before any of its children when traversing
the Itemlist. The ItemList operations also include item sets (implemented as single-
level hierarchies) with group operations such as ‘increment the X property of each
member of this set by this amount’. The update code handles the display update
described in Section 6 including the array for detecting image overlap, but does not
include any application-specific methods.

The structure currently provides the foundation for the development of an advanced
music score editing and typesetting system. A simple editor has been created to test
and debug the structure. The editor demonstrates the use of versions, views, incremen-
tal display update, Undo operations, and the practicality of the ItemList data structure
as a tool for building interactive, graphical editors.

Graphical editors exhibit a wide range in the degree of application independence.
Ad hoc application-dependent structures will almost always be the most efficient but
quickly become unwieldy. A very high degree of application independence can be
achieved by avoiding issues of incremental redisplay or by using an object-oriented
graphics library linked to the application’s data structure by constraints. ItemLists stand
between these extremes. IternLists support a separation between editing commands and
display generation, but application-dependent methods are called upon to propagate
constraints and perform display formatting.

Given our experience, we can make some recommendations for other editor imple-
mentors. First, if very high performance is desired, or if memory space is a problem,
application-specific structures can have a significant advantage over a more general
structure such as the Iternlist. On the other hand, application-specific structures should
only be adopted if the problem is well-understood from the outset. Otherwise, changes
in the low-level data structure will lead to difficult program maintenance problems. In
cases where the utmost in performance is not required, where the problem is not well
understood at the beginning of implementation, or where flexible and extensible
structures are required, then the IternList structure provides a very nice foundation for
editor construction. Finally, the separation of operations from display update was found
to be essential for any non-trivial editor, so the designer should take care to address
this problem no matter what data structure is adopted.

Table 11. Implementation size (lines of C code)

Data types
Storage management and file I/O
ItemList operations
Clean-up
Undo and versions
Update
Documentation

66 1
1357
3820

197
354

1208
2301

Total 9898

132 R. B. DANNENBERG

ACKNOWLEDGEMENTS

The ItemList structure evolved over a period of several years. Rob Duisberg, Dean
Rubine, John Maloney and Paul Mc Avinney participated in many fruitful discussions
during the development. This work was supported in part by the U.S. Defense
Advanced Research Projects Agency (DOD), Arpa Order No. 4976 under contract
F33615-87-C- 1499 and monitored by the : Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Aeronautical Systems Division (AFSC) , Wright-Patterson
AFB, Ohio 45433-6543, U.S.A.

REFERENCES

1. Norman hleyrowitz and .Andries van Dam, ‘Interactive editing svstems: part I’, .4[’:\1 Computing

2. Norman hleyrowitz and .indries van Dam, ‘Interactive editing systems: part I l’, ACAI Cbmputziig

3 . R . M . Stallman, ‘ERl.\CS : the extensible, customizable self-documenting display editor’, AC’izI

4. David Garlan, ‘Flexible unparsing in a structure editing environment’, Tech. Repoi? C’.llC’-C‘S-85-

5 . David Garlan, ‘Views for tools in integrated environments’, Ph.D. Dissertation, Carnegie Mellon

6. blarc H. Brown, ‘Algorithm animation’, Ph.D. dissertation, Brown University, April 1987; Published

7. A. J. Goldberg and D. Robson, Snialltalk-80: The l~itiguage and I t s Iiiiple~~ieritatioii, Addison-

8. Glenn Krasner and Stephen Pope, ‘.A cookbook for the model-vie\v-controller user interface paradigm

9. Kurt J . Schmucker, Object-Oiieiited Piogmniniiiig for- the .llacintosh, Hayden, 1986.

Sur-c,eys, 14, (3), 321-352 (1982).

Sumeys, 14, (3) , 353-415 (1982).

SIGPL-LVI.SIGO.4 C’oilfewrirt. 0 1 7 Text .\Ia~iIpulatioii, 1981, pp. 147-156.

129. Carnegie Rlellon University Department of Computer Science, April 1985.

University, May 1987; published as Repoi? (’.\1C--ChS-87-l4i.

as Report CS-87-05,

Wesley, 1983.

in Smalltalk-SO’, Joional of Object-Oiierrted Programniirig, 1, (3), 2-9 (1988).

10. Brad A. Myers, ‘The Garnet user interface development environment: a proposal’, Tech. Report
CMI-CS-88-153, Carnegie AIellon University Computer Science Department, September 1988.

11. Donald E. Knuth, The .41? of Computer Programniiiig, lolunze 3, SorTirzg and Searching, Addison-
Wesley, Reading, hlA, 1973.

12. R. L.-Rivest, ‘On self-organizing sequential search heuristics’, Cbmmunicatzons of the XJI, 19, 63-67
(1976).

13. Brian’M. Kernighan and Dennis hl . Richie, The C P?vgi-nninzirig Language, Prentice-Hall, Englewood
Cliffs, 1978.

