
A Machine Learning Approach to Musical Style

Recognition

Roger B. Dannenberg, Belinda Thom, and David Watson

School of Computer Science, Carnegie Mellon University

frbd,bthom,dwatsong@cs.cmu.edu

Abstract

Much of the work on perception and understanding of music by computers has focused on low-level
perceptual features such as pitch and tempo. Our work demonstrates that machine learning can be
used to build e�ective style classi�ers for interactive performance systems. We also present an anal-
ysis explaining why these techniques work so well when hand-coded approaches have consistently
failed. We also describe a reliable real-time performance style classi�er.

1 Introduction

The perception and understanding of music by com-
puters o�ers a challenging set of problems. Much
of the work to date has focused on low-level percep-
tual features such as pitch and tempo, yet many com-
puter music applications would bene�t from higher-
level understanding. For example, interactive perfor-
mance systems [3] are sometimes designed to react
to higher-level intentions of the performer. Unfor-
tunately, there is often a discrepancy between the
ideal realization of an interactive system, in which
the musician and machine carry on a high-level musi-
cal discourse, and the realization, in which the musi-
cian does little more than trigger stored sound events.
This discrepancy is caused in part by the di�culty of
recognizing high-level characteristics or style of a per-
formance with any reliability.

Our experience has suggested that even relatively
simple stylistic features, such as \playing energeti-
cally," \playing lyrically," or \playing with syncopa-
tion," are di�cult to detect reliably. Although it may
appear obvious how one might detect these styles,
good musical performance is always �lled with con-
trast. For example, energetic performances contain
silence, slow lyrical passages may have rapid runs
of grace notes, and syncopated passages may have
a variety of confusing patterns. In general, higher-
level musical intent appears chaotic and unstructured
when presented in low-level terms such as MIDI per-
formance data.

Avoiding higher-level inference is common in
other composition and research e�orts. The research
literature is �lled with articles on pitch detection,

score following, and event processing. There are also
interactive systems that respond to simple features
such as duration, pitch, density, and intervals, but
there is relatively little discussion of higher-level mu-
sic processing.

In short, there are many reasons to believe that
style recognition is di�cult. Machine learning has
been shown to improve the performance of many per-
ception and classi�cation systems (including speech
recognizers and vision systems). We have studied the
feasibility of applying machine learning techniques to
build musical style classi�ers.

The result of this research is the primary focus
of this paper. Our initial problem was to classify an
improvisation as one of four styles: \lyrical," \fran-
tic," \syncopated," or \pointillistic" (the latter con-
sisting of short, well-separated sound events). We
later added the additional styles: \blues," \quote"
(play a familiar tune), \high," and \low." The exact
meaning of these terms is not important. What really
matters is the ability of the performer to consistently
produce intentional and di�erent styles of playing at
will.

The ultimate test is the following: Suppose, as an
improviser, you want to communicate with a machine
through improvisation. You can communicate four
di�erent tokens of information: \lyrical," \frantic,"
\syncopated," and \pointillistic." The question is, if
you play a style that you identify as \frantic," what
is the probability that the machine will perceive the
same token? It is crucial that this classi�cation be
responsive in real time. We arbitrarily constrained
the classi�er to operate within �ve seconds.

Begin new
 style.

6 overlapping
training examples
extracted from 10-sec
segment.

Begin new
 style.

Recorded data. time

Figure 1: 6 overlapping training examples are derived
from each 15 seconds of performance.

2 Data Collection

To study this problem, we created a set of train-
ing data recorded from actual performances. So
far, our experiments have used trumpet performances
recorded as MIDI via an IVL Pitchrider 4000 pitch-
to-MIDI converter for machine-readable data, and
DAT tape for audio data. We also devised software
to help collect data. The performer watches a com-
puter screen for instructions. Every �fteen seconds,
a new style is displayed, and the performer performs
in that style until the next style is displayed. Be-
cause the style changes are abrupt, we throw out the
�rst four seconds of data, allowing for a \mental gear
shift" and a new style to settle in. For each style we
retain 10 seconds of good data. (The 15th second of
data is also discarded.)

We want our classi�er to exhibit a latency of 5
seconds, so it must only use 5 seconds of data. There-
fore, the MIDI data is divided into six overlapping
intervals with durations of �ve seconds, as shown in
Figure 1. Since we are using supervised training, we
need to label each interval of training data. Rather
than use the labels that were displayed for the per-
former during the recording, we decided to have the
performer rate the data afterward to make sure each
sample realizes the intended style. These ratings also
give a richer description of the data; for example, a
performance might be both \frantic" and somewhat
\syncopated," and this additional information can be
used in some machine learning approaches.

We recorded 25 examples each of 8 styles, result-
ing in 1200 �ve-second training examples. Ideally, we
would rate each �ve-second example on each style,
but this would require 9600 separate ratings. To re-
duce the number of ratings, we rated ten-second seg-
ments and assigned the rating to each of the six de-
rived training examples. Thus, each individual rating
is shared by six training examples. The training data
was presented for rating in random order.

3 Classi�cation Techniques

We constructed several classi�ers using naive
Bayesian, linear, and neural network approaches. We
will describe the basic ideas here. To build a classi-
�er, we �rst identi�ed 13 low-level features based on
the MIDI data: averages and standard deviations of
MIDI key number, duration, duty factor, pitch and
volume, as well as counts of notes, pitch bend mes-
sages, and volume change messages. (Pitch di�ers
from key number in that pitch-bend information is
included. Duty factor means the ratio of duration to
inter-onset interval.)

3.1 Bayesian Classi�er

The naive Bayesian classi�er [1] assumes that the
features are uncorrelated and normally distributed.
(Neither of these is true, but this approach works
well anyway.) Given a vector of features, F , we would
like to know which classi�cation C is most likely. Us-
ing our assumptions and Bayes' Theorem, it can be
shown that the most likely class is the one whose
mean feature vector has the least \normalized dis-
tance" to F . The \normalized distance" is the Eu-
clidean distance after scaling each dimension by its
standard deviation:

�C =

vuut nX
i=1

�
Fi � �C;i

�C;i

�2
;

where C indexes classes, i indexes features, �C;i are
means, and �C;i are standard deviations.

3.2 Linear Classi�er

Linear classi�ers compute a weighted sum of features,
where a di�erent set of weights is used for each class.
The linear classi�er algorithm we used [4] also as-
sumes features are normally distributed, but not that
they are uncorrelated. A linear classi�er tries to sep-
arate members of the class from non-members by cut-
ting the feature vector space with a hyperplane. De-
pending on the features, this division may or may not
be very successful.

3.3 Neural Networks

Of the three approaches we tried, neural networks
are the most powerful because they incorporate non-
linear terms and they do not make strong assump-
tions about the feature probability distributions. [1]
We used a Cascade-Correlation architecture [2] which
consists initially of only input and output units

Number of Bayesian Linear Neural
Classes Network

4 98.1 99.4 98.5
8 90.0 84.3 77.0

Table 1: Percentage of correct classi�cations by dif-
ferent classi�ers.

(equivalent to a linear classi�er). During training,
hidden units are added with connections to inputs,
outputs, and any previously added hidden units. Ef-
fectively, there are many hidden layers, each with one
node. Every hidden unit applies a non-linear sigmoid
function to a weighted sum of its inputs. There is one
output per class; outputs are regarded as boolean val-
ues that predict membership in a given class.

4 Results

All three classi�ers produced excellent results with
4 classes and impressive results with 8 classes. We
measured performance by training a classi�er on
4/5 of the data and then classifying the remaining
1/5. (Since the data is in groups of 6 overlapping|
and therefore correlated|training examples, entire
groups went into either the training or the validation
sets.) This was repeated 5 times with di�erent parti-
tions of the data so that each example was classi�ed
once. The classi�er outputs Yes or No for each of 4
or 8 classes, and we report the total percent of cor-
rect answers. We were surprised by the reliability of
the classi�ers. Table 1 shows the numerical results.
Training time for the Bayesian and Linear classi�ers
occurred in seconds, but the neural net took hours.

We implemented a real-time version of the naive
Bayesian classi�er. A circular bu�er stores the last
�ve seconds of MIDI data, and every second, features
are computed and a classi�cation is made. A �fth
classi�cation, \silence," was added for the case where
the number of notes is zero. The execution time is
well under 1 ms per classi�cation, so computation
cost is negligible.

Note that many of the misclassi�cations in the 8-
class case involve the \quote" style, which one would
expect to require knowledge of familiar melodies and
some encoding of melody into the features.

5 Discussion

Our work has demonstrated that machine learning
techniques can be used to build e�ective, e�cient,
and reliable style classi�ers for interactive perfor-

Number of Notes

T

ra
in

in
g

E
xa

m
p

le
s

0

20

40

60
80

100

120

140

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Figure 2: Histogram of the number of notes in each
sample for a given style.

Number of Notes

A
ve

ra
g

e
D

u
ty

 C
yc

le
(%

)
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80

Figure 3: Average duty cycle versus number of notes
(scatter plot).

mance systems. However, we wondered why these
systems worked well when hand-coded approaches
have failed. We also wondered under what circum-
stances these machine learning systems would also
fail.

To answer the �rst question, we have attempted
to visualize the data by constructing histograms and
scatter plots. Since there are 13 features, one can
only look at projections onto one or two dimensions.
Figure 2 shows a histogram of the number of notes
feature. The number of notes per second is a common
input parameter in performance systems because it
has a high correlation with the concept of \frantic"
or \fast." However, as Figure 2 shows, there is con-
siderable overlap among the histograms even though
the class ratings are almost all mutually exclusive.
Other histograms show similar overlap, so classi�ca-
tions based on a single feature are not very useful.

Figure 3 shows a scatter plot of two dimensions:
average duty cycle and number of notes. Here, the
four classes almost separate. Given Figure 3, can we
still argue that machine learning is necessary? To
build a good classi�er without machine learning, one
would �rst need to identify good features. Individ-

Confidence Threshold

P
er

ce
n

t

0
10
20
30
40
50
60
70
80
90

100

1 1.1 1.2 1.4 2 4

Correct/Total

Correct/Classed

Misclassed/Total

Figure 4: As the con�dence threshold increases, the
total number of classi�ed examples decreases, but the
number of misclassi�ed examples decreases faster, so
the ratio of correctly classi�ed to all classi�ed exam-
ples increases.

ual features do not work well, and in our study there
are 132 di�erent pairs of features one might consider.
Most pairs of features will not lead to good classi�ers,
and even if a good pair is known, parameters must be
chosen accurately. Casually guessing at good features
or combinations, plugging in \reasonable" parame-
ters and testing will almost always fail. In contrast,
machine learning approaches that automatically take
into account a large body of many-dimensional train-
ing data lead to very e�ective classi�ers.

It is worth noting that we never hand-tuned the
original 13 features; rather, we allowed the inference
algorithms to determine the e�ective use of the data.
The classi�cation of stylistic intent is relatively simple
for machine learning algorithms (at least in the 4-
class case), which allows one to spend less time on
problems of representation.

5.1 Live Performance

Experience with the 4-class classi�er in live perfor-
mance has provided a new subjective evaluation. The
classi�er is fast and e�ective, but not as reliable as the
data would predict. Experiments have shown that
the performer's \style," or feature vector distribution,
changes when the performer interacts with computer-
generated music. Thus, training examples should be
captured in context. In other words, a \syncopated"
style in isolation di�ers from a \syncopated" style
performed in an interactive composition.

Another problem with live performance has been
the \false positives" (misclassi�cations which erro-
neously imply the performer is playing a particular
style). It may be better to report nothing than to
make a wrong guess.

An experiment with our naive Bayesian classi�er
suggest that simple con�dence measures can dramat-
ically reduce false positives. Recall that this classi�er
makes decisions based on normalized distances from
means. If the distance to the means of two classes are
nearly equal, our con�dence in the decision should be
reduced. Therefore, we simply reject classi�cations
when the least distance is not less than a given frac-
tion of the next-to-least distance. This type of anal-
ysis is one of the beauties of a statistical approach.
Figure 4 illustrates the reduction of false positives
using this technique.

6 Summary and Conclusion

Machine learning techniques are a powerful approach
to music analysis. We constructed a database of
training examples and used it to train systems to clas-
sify improvisational style. The features used for clas-
si�cation are simple parameters that can be extracted
from MIDI data in a straightforward way. The styles
that are classi�ed consist of a range of performance
intentions: \frantic," \lyrical," \pointillistic," \syn-
copated," \high," \low," \quote," and \blues." The
�rst four of these styles are classi�ed with better than
98% accuracy. Eight classi�ers, trained to return
\yes" or \no" for each of the eight styles had an over-
all accuracy of 77% to 90%. Con�dence measures can
be introduced to reduce the number of false positives.

Further work is required to study other classi�-
cation problems, feature selection, and feature learn-
ing. We believe this work has applications in music
performance, composition, analysis, and education to
mention just a few. We expect much more sophisti-
cated music understanding systems in the future.

References

[1] Bishop, C. M. Neural Networks for Pattern

Recognition. Clarendon Press, 1995.

[2] Fahlman, S. E., and Lebiere, C. The
Cascade-Correlation learning architecture. Tech.
Rep. CMU-CS-90-100, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA,
Feb. 1990.

[3] Rowe, R. Interactive Music Systems. MIT Press,
1993.

[4] Rubine, D. The automatic recognition of ges-
tures. Tech. rep., School of Computer Science,
Carnegie Mellon University, 1991.

