
Time in Distributed Real-Time Systems
Eli Brandt and Roger B. Dannenberg

School of Computer Science,
Carnegie Mellon University
feli , rbd g@cs.cmu.edu

Abstract

A real-time music system is responsible for decidingwhat happens when, when each task runs and each
message takes effect. This question becomes acute when there are several classes of tasks running and intercom-
municating: user interface, control processing, and audio, for example. We briefly examine and classify past
approaches and their applicability to distributed systems, then propose and discuss an alternative. The shared
access to a sample clock that it requires is not trivial to achieve in a distributed system, so we describe and assess
a way to do so.

1 Existing approaches

The goal of a real-time music system is to produce cer-
tain time-structured data. Ideally, this output’s timing
would be exactly as specified by the musician. In prac-
tice, the timing is imprecise: the system’s tasks can’t
all run when they ought to, nor can they communicate
with perfect timing. The music system’s job is to mini-
mize the consequent harm to its output, through its con-
trol over how tasks are run and how they communicate.
Broadly speaking, there are several approaches to this
problem: synchronous, asynchronous, and ourforward-
synchronous.

Groups of tasks having the same timing require-
ments can be formalized aszones(Dannenberg and Ru-
bine, 1995); a system might have audio, MIDI, and
user-interface zones. Any zone can send data to any
other: for example, UI controlling audio, audio ren-
dered on the screen, or audio abstracted to MIDI and
echoed to disk. For concreteness we’ll talk about one
particularly common path, from a sequencer to a syn-
thesizer.

What we call the synchronous approach is exem-
plified by MAX (Puckette, 1991). This approach inter-
leaves the control and audio zones into a single thread of
control, runningeach to completion. Therefore control
updates always apply atomically and to the proper block
of audio. Unfortunately, long-running control compu-
tation causes audio to underflow. One might prefer to
defer this computation, delaying an event onset but pre-
serving audio flow.

The asynchronous approach permits this by running
audio and control in separate threads, audio having ei-
ther priority or the use of an independent processor.
They communicate through messages or shared mem-
ory, updates taking effect immediately. As a result,
events may be early or late, depending on what points
of execution the two threads have reached. MIDI en-
sembles and the IRCAM 4X (Favreau et al., 1986) are

examples of this approach. It extends to distributed sys-
tems, whereas the synchronous approach does not.

2 Forward-synchronous

The proposed forward-synchronous approach is so
called because it has synchronous timing for events in
the future, and asynchronous for those in the past. It
permits events to be late, but not early.

Control messages are stamped with a time when
they are to take effect. Those arriving with a fu-
ture timestamp are queued, and later dispatched syn-
chronously with audio computation; those with a past
timestamp are dispatched immediately.

The timestamp refers to a particular sample, be-
cause time is based on the DAC clock:

time=
�
samples written+ samples buffered

�
=fnom

wherefnom is the nominal clock frequency. Though the
system clock is quite likely more accurate, it must not
be used directly: its very accuracy constitutes a lack
of synchronization with the DAC, precluding sample-
precise timing.

A sequencer can request precise timing (at the price
of added latency) by sending with an offset into the fu-
ture. If the synthesizer runs a little late, the messages
are still in the future, still precisely timed. If it runs
so late as to overrun the offset, the events start to hap-
pen late. The sequencer sets its own tradeoff between
latency and the chance of jitter; it can rule out jitter if
the synthesizer’s zone has a hard scheduling bound. An
accompaniment system, on the other hand, would more
likely choose minimal delay and take its chances with
jitter.

This approach offers for every message the choice
of synchronous or asynchronous behavior, with grace-
ful degradation under uncooperative thread scheduling.



Distributed operation requires a distributed shared time-
base, discussed below.

Anderson and Kuivila (1986) also augment the
asynchronous model with timestamps, but in a less flex-
ible way. Their approach introduces a fixed latencyL
between the control and audio zones. Each control mes-
sage is generatedE milliseconds early, which the appli-
cation cannot schedule but can bound between 0 andL.
It is then sent timestamped forE ms into the future,
canceling the scheduling jitter.

Think of this as running the control zoneL ms
ahead of the audio zone. In this way we can view all
of the timestamps within a globally consistent time-
line. (Without this, events areacausal and time becomes
deeply confusing.) Each zone is offset into the future by
a different amount. Notice that this view requires that
zone connectivity be all ‘downhill’, from higher offset
to lower. In particular, there can be no cycles. This can
be problematic, as when a system hopes to both receive
from and send to the outside world.

ZIPI messages are timestamped, and the forward-
synchronous approach is one option discussed by its
inventors (McMillen et al., 1994). They also discuss
yet another model in which time-stamped messages are
processed and forwarded early for timely arrival at a
final destination. This is not allowed in the forward-
synchronous model, which (except for late messages)
always processes messages synchronouslyaccording to
timestamps. ZIPI does not seem to assume sample-
precise timing and synchronization.

2.1 Implementation

We have applied the forward-synchronous approach
to our sound synthesis system Aura (Dannenberg and
Brandt, 1996). Its system-specific audio layer provides
an estimate of the DAC’s read pointer into the buffer.
There is a periodic message which triggers computa-
tion of an audio block; buffering the block advances
time by one block’s worth, up to and just past the next
trigger message. (Time starts a fraction of a sample ad-
vanced from zero, to bootstrap the process.) This results
in block-precise timing. Sample-precise timing would
be achieved by having every message cause audio com-
putation up to the point of its timestamp.

3 Distributed music systems

Networked computers can form a distributed system
with impressive aggregate signal-processing power and
I/O. We discuss configurations with multiple A/D/A de-
vices; those with only one or none at all are ready sim-
plifications. Ideally, these multiple devices are synchro-

nized, driven by a master word clock through AES/EBU
or the like. This is essential for communicating with
most multi-channel digital devices, such as a tape deck
or a mixer. It also makes it simple for nodes, by basing
time on sample clock, to maintain accurate and consis-
tent global time.

We treat the cases where this is not possible,
when sample-synchronizable devices are not available
or when nodes are networked but not wired for word
clock. This situation is too common to be dismissed as
intractable, tempting though it may be. Note that we
have all for years made use of devices with less than
sample-accurate synchronization: MIDI synthesizers,
or recording devices driven by SMTPE or MIDI Time
Code. Multiple computers are just another example.
The degree of synchronization depends on parameters
discussed below, but can easily be better than SMPTE
quarter-frame resolution, 1/120 sec.

In this model, events cannot be triggered with sam-
ple precision between nodes, and nodes’ sample rates
differ slightly. This rules out, for example, playing an
eight-channel sound file over four stereo sound cards.
But these four nodes can play independent audio tracks,
or generate quadruple the polyphony of a single node.

Our goals for a distributed audio system are the syn-
chronization and the stability of time. Formally, be-
tween all pairs of nodes we constrain the maximum
difference in local time, and the maximum difference
in rates of local time flow, with the addendum that lo-
cal time is monotonic. We propose a particular way to
achieve these goals (space does not permit exploration
of the many options in design), and give a timing anal-
ysis. We assume throughout that nodes’ sample clocks
are constant and identical to within a small fraction of
one percent.

4 Clock synchronization

Exact and observable variables
master’s slave’s
true obs. true obs.

global time tg tgjm tgjs

sample count nm nmjm ns nsjs
sample period pm ps
sample rate fm fs

The obstacle to distributed forward-synchronous
operation is maintaining suitably synchronized clocks.
We designate one node as the master and defineglobal
timeas a linear function of the master’s sample count.
Each slave node has a local clock, a mapping to global
time from local sample count. Periodically these map-
pings are updated to maintain synchronization.



Assume that the master sample rate is exact, e.g. a
constantfnom= 44:1 kHz. If nm is the master’s sample
count, andpm its sample period1=fm, then global time
tg is

tg = pmnm

The slave, whenever it needs the time, makes an ap-
proximate predictiontgjp:

tg � tgjp =

Z
pcn

0
s dt

Notice that the period used is not the slave’s actual sam-
ple periodps— it is pc, a signal controlled so as to keep
tgjp trackingtg . In practice, the equation in use is the
backward-difference discretization

�tgjp = pc�ns

4.1 Observational errors

The slave’s task, maintaining a properpc, is compli-
cated by limitations of measurement. The master may
not know its sample count exactly; it might for ex-
ample update it only at DMA transfer interrupts. Its
measured estimatenmjm differs from the exactnm by
an error"(nmjm), which we model as a uniform ran-
dom variable with range�E(nmjm). The slave like-
wise has error"(nsjs) in measuring its sample count.
The master then estimatestg as tgjm = pmnmjm, so
E(tgjm) = pmE(nmjm).

The slave doesn’t have direct access even to this
estimate. Instead, it measures the local sample count
n0js and queries the master fortgjm; upon reply it mea-
sures the new sample countn1js. For minimax error,
we decide that thistgjm corresponds to the midpoint
nsjs = 1

2
(n0js + n1js). So this repliedtgjm becomes

the slave’s estimatetgjs for nsjs.
If the machines and the network were infinitely fast,

n1 would equaln0 andtgjs would equaltgjm. In prac-
ticen1 is greater thann0. Knowing the system charac-
teristics, we can set a feasible threshold�n01; the slave
retries until the difference is below this threshold. This
lets it disregard packet collisions. It also ensures on suc-
cessive attempts that the master’s responding code was
running and in thecache, for fast and deterministic re-
sponse time. These techniques are related to those used
in NTP (Mills, 1985) and SNTP (Mills, 1996).

The repliedtgjm was measured somewhere in the
interval, so we err by at most1

2
�n01 in assigning it to

the midpointnsjs. We err by the query jitterJqueryin as-
signing the quotedtgjm to the midpoint of the interval.
Our error in locating the midpoint is

1

2

�
E(n0js) + E(n1js)

�
=

1

2
2E(nsjs) = E(nsjs)

Therefore the total error is

E(tgjs) = E(tgjm) + E(nsjs) + Jquery

4.2 The controller

controller predictor
ep cg|st tp

+-

Figure 1: a PI control system

g|p

To generate the signalpc we apply techniques from
control theory (Franklin et al., 1994; Messner and Till-
bury, 1996). The slave’spredictor generatestgjp. The
controller observes the prediction’s errorep versus the
observedtgjs, and updatespc to be used in the next
prediction. We use a discretization of a proportional-
integral controller:

pc = Kpep +Ki

Z
ep dt (ep = �tgjs ��tgjp)

Coefficients for the controller were found by trial and
error aided by simple-minded optimization routines.

Synchronization steps happen nominally at the rate
fsync. The actual times will vary due to OS scheduling
behavior, and to the necessity of retrying slow queries
for tg . Within reason, these variations do not matter, as
the controller looks only at deltas.

4.3 Extension: synthetic sample clocks

If a node suffers high sample-count error but hasaccess
to a low-jitter local clock such as CPU cycle count, it
can run another PI controller (with coefficientsKyp and
Kyi) predicting a low-jitterestimate of its sample count.
This controller can run at a multiple offsyncwithout
adding any network traffic or time-query overhead on
the master.

In an extension to our system, we apply this tech-
nique to both master and slave sample clocks.

4.4 Results

We can saya priori that tgjp is continuous, though
fc = 1=pc is not. Whilefc can in principle be nega-
tive, this only happens in implausibly extreme parame-
ter ranges.

Specific numbers are of course dependent on the
regime the controller is running under. A/D/A clocks
come in many grades, but even many cheap sound cards
use crystal oscillators, whichaccording to a review of
manufacturers’ specifications are ordinarily stable to



�100 parts per million and better. We do not know
the time course of the clock drift. Our simulation as-
sumes that each crystal independently swings from one
extreme to the other several times in an hour; we expect
that this is pessimistic for warmed-up machines.

Network propagation delay determines�n01. An
Ethernet can support a�n01 of 1 ms or less. (Wide-area
networks would have longer delays, but synchroniza-
tion is beside the point once nodes are out of earshot.)
The network and the master both contribute toJquery;
we use a value of 200�s.

The critical quantities turn out, because we make
time depend directly on the sample clock, to be
E(nmjm) andE(nsjs) — for simplicity, say they’re the
same. We consider two cases: sample-accurate sample
counts, and errors of�5 ms. The larger number, imply-
ing a block size of 10 ms, should be more than generous
for real-time work.

For each regime we give the controller coefficients
used. With them we simulate a master and one slave for
24 hours, synchronizing once a second, and report the
largest desynchrony seen in time and in frequency. For
the highE(n) we also simulate with the synthetic-clock
extension.

Controller coefficients
E(n) Kp Ki Kyp Kyi

MkI 1

2
=fnom 0.1 0.01

5 ms 0.1 0.01

MkII 5 ms 0.1 0.01 0.02 0.0002

Maximum simulated errors
E(n) �time �frequency

MkI 1

2
=fnom 0.16 ms 34 ppm

5 ms 12 1900

MkII 5 ms 1.1 80

4.5 Assessment

Notice that if two slaves are each�0.16 ms away
from the master, they may be 0.32 ms from one other.
This doubled number is still quite satisfactory, being
well below the perceptible jitter for non-simultaneous
events (Michon, 1964; Lunney, 1974). The�34 ppm
frequency variation is a fraction of that inherent in us-
ing crystal-based time at all.

The highE(n) causes severe problems for the stan-
dard model. A jitter of 24 ms is easily audible. The
frequency variation, almost 2000 ppm, is also too high.

The extended model, however, can tolerate high
E(n). It delivers synchronization to within�1.1 ms and
�80 ppm. This time shift corresponds to moving one’s
head about a foot between speakers, and the frequency
difference to varying a 120-bpm tempo by 0.01 bpm;
we find both acceptable.

5 Conclusions

The forward-synchronous model supports precise tim-
ing, graceful degradation, arbitrary connectivity, and
distributed operation. A master/slave system based on
PI controllers solves the problem of distributed clock
synchronization, without the need for special SMPTE
or MIDI Time Code connections and processing.

References

Dannenberg and Rubine (1995). Toward modular,
portable, real-time software. InProc. Interna-
tional Computer Music Conference, pages 65–72.
ICMA.

Dannenberg, R. and Brandt, E. (1996). A flexible real-
time software synthesis system. InProc. Inter-
national Computer Music Conference, pages 270–
273. International Computer Music Association.

Favreau, E. et al. (1986). Software developments for
the 4X real-time system. InProc. International
Computer Music Conference, pages 369–373.

Franklin, G. F., Powell, J. D., and Emani-Naeini, A.
(1994). Feedback Control of Dynamic Systems.
Addison-Wesley, Reading, Massachusetts.

Lunney, H. M. W. (1974). Time as heard in speech and
music.Nature, 249:592.

McMillen, K., Wessel, D., and Wright, M. (1994). The
ZIPI music parameter description language.Com-
puter Music Journal, 18(4):52–73.

Messner, B. and Tillbury, D. (1996). Control tutorials
for MATLAB. Via WWW. http://www.me.
cmu.edu/matlab/html/ . On CD-ROM with
ISBN 0-201-36194-9.

Michon, J. A. (1964). Studies on subjective dura-
tion 1. differential sensitivity on the perception of
repeated temporal intervals.Acta Psychologica,
22:441–450.

Mills, D. L. (1985). Network Time Protocol (NTP).
IETF RFC 958.

Mills, D. L. (1996). Simple Network Time Protocol
(SNTP) version 4. IETF RFC 2030.

Puckette, M. (1991). Combining event and signal pro-
cessing in the MAX graphical programming envi-
ronment.Computer Music Journal, 15(3):68–77.


