
Multimedia Systems (1993) 1:77-86 Mul t imed ia  Systems 
 9 Springer-Verlag 1993 

Tactus: toolkit-level support for synchronized interactive multimedia 
Roger B. Dannenberg*, Tom Neuendorffer, Joseph M. Newcomer, Dean Rubine, and David B. Anderson** 
Information Technology Center, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA 

Received January 1993/Accepted April 1993 

Abstract. Tactus addresses problems of synchronizing and 
controlling various interactive continuous-time media. The 
Tactus system consists of two main parts. The first is a server 
that synchronizes the presentation of multiple media, including 
audio, video, graphics, and MIDI at a workstation. The sec- 
ond is a set of extensions to a graphical user interface toolkit to 
help compute and/or control temporal streams of information 
and deliver them to the Tactus Server. Temporal toolkit objects 
schedule computation events that generate media. Computa- 
tion is scheduled in advance of real time to overcome system 
latency, and timestamps are used to allow accurate synchro- 
nization by the server in spite of computation and transmis- 
sion delays. Tactus supports precomputing branches of media 
streams to minimize latency in interactive applications. 

Key words: Interface - Toolkit - Multimedia- Synchroniza- 
tion - Interactive - Real-time 

1 Introduction 

Recently, many proposals have emerged for extending graph- 
ics systems to support multimedia applications with sound, 
animation, and video (Ripley 1989; Wayner 1991; Digital 
Equipment Corporation 1992; Yager 1992). Other research 
has been directed toward real-time transmission of multime- 
dia data over networks (Anderson and Homsy 1991; Little and 
Ghafoor 1991; Rowe and Smith 1992) and standards for the 
representation and exchange of multimedia data (Newcomb 
et al. 1991). New capabilities for real-time interactive multi- 
media interfaces (Blattner and Dannenberg 1992) create new 
demands upon application programmers. In particular, pro- 
grammers must manage concurrent processes that output con- 
tinuous media. Timing, synchronization, and concurrency are 
among the new implementation problems. 

* Present  address: School of Computer Science, Carnegie Mellon 
University, Pittsburgh, PA 15213, USA 
** e-mail  addresses:  R.B. Dannenberg: dannenberg@cs.cmu.edu 
T. Neuendorffer: tpn+@andrew.cmu.edu 
J.M. Newcomer: newcomer@cs.cmu.edu 
D. Rubine: dandb+@andrew.cmu.edu 
D.B. Anderson: dba+@cs.cmu.edu 
Correspondence  to: Roger B. Dannenherg, at his present address 

Traditionally, object-oriented graphical interface toolkits 
have presented a high-level programming interface to the 
application programmer, hiding many details of underlying 
graphics systems such as X or Display Postscript. However, 
timing is usually overlooked in these systems. Programmers 
usually add animation effects by ad-hoc extensions, and syn- 
chronization at the level of milliseconds needed for lip-sync, 
smooth animation, and sound effects is not generally possible. 

We have extended an existing toolkit with new objects, ab- 
stractions, and programming techniques for interactive mul- 
timedia. We also implemented a synchronization server that 
supports our toolkit extensions. Intuitively, our synchroniza- 
tion server does for time what a graphics server does for (im- 
age) space. In our terminology, the application program is the 
client, which calls upon the server to synchronize and present 
data. We call the combined toolkit and server the Tactus sys- 
tem. 

The Tactus system has a number of novel and interesting 
features. It works over networks with unpredictable latency, 
and it can maintain synchronization even when data under- 
flows occur. The techniques are largely toolkit-independent, 
and the Tactus Server is entirely toolkit-independent. Data are 
computed ahead of real time to overcome latency problems, 
but the initial latency of a presentation is due only to compu- 
tation and bandwidth limitations. Tactus is organized so that 
pre-existing graphical objects acquire real-time synchronizing 
behavior without changes to the existing code. The Tactus sys- 
tem also offers a new mechanism called cuts, which allows for 
user interaction by selecting among precomputed media with 
very low latency. 

1.1 A s s u m p t i o n s  

Before describing Tactus, we will present some assumptions 
and ideas upon which it is based. First, we are interested in 
distributed systems, and thus we assume that there will be 
significant transmission delays between servers and clients. 
Second, we assume that multimedia output will require the 
merging of multiple data streams; we want more than just 
"canned" video in a window. By data stream, we mean any 
set of timed updates to an output device. Data streams include 
video, audio, animation, text, images, and MIDI. 



78 

The assumption that delays will be present imposes limi- 
tations on the level of  interaction we can expect. Network me- 
dia servers may take seconds to begin presenting video even 
though the presentation, once started, is continuous. We in- 
tend to support applications where media start-up delays and 
latency due to computation of  10 to 1000 ms are tolerable. This 
includes such things as multimedia documents, presentations, 
video mail, and visualizations. It also includes more interac- 
tive systems such as hypermedia, browsers, and instructional 
systems where user actions determine what to view next. Al- 
though we rule out continuous feedback systems such as video 
games and artificial reality, we want to support rapidly altering 
the presentation at discrete choice points. 

1.2. Principles 

To deal with transmission and computation delays, it is neces- 
sary to start sending a data stream before it is required at the 
presentation site. Because of variance in computation, access, 
and transmission delays, it is also necessary to have a certain 
amount of buffering in the Tactus Server at the presentation 
site. When multiple streams are buffered, it is necessary to syn- 
chronize their output. With Tactus (see Fig. 1), all data streams 
are timestamped, either explicitly or implicitly, so that Tactus 
can determine when each component of a stream should be for- 
warded to a device for presentation. We assume a distributed 
time service that can provide client software with an accurate 
absolute time, with very little skew between machines (Kol- 
stad 1990), although this assumption is not critical for most 
applications. 

Fig. 1. The Tactus system. Clients send timestamped data (heavy 
lines) to the server ahead of real time. Data are buffered and then 
delivered to various presentations devices. Some presentation de- 
vices (e.g., MIDI as shown here) may accept data early and provide 
fuither buffeting and more accurate timing than can be provided by 
the Tactus Server. The clock on the left shows logical time as seen 
by the client, while the clock on the right shows real time as seen by 
the Tactus Server 

Multiple presentations may be buffered at the Tactus 
Server. At any time, one is being presented while the others 
are potential responses to user choices. This avoids the latency 
of transmitting a presentation over the network after the user 
makes a choice. Transition points are marked so that smooth 
cuts are possible (see Sect. 5). 

Input is handled in mirror image to output. Input events are 
timestamped so that they can be related back to the output that 

was taking place at the time of the input. Since applications 
compute ahead of real time, it is up to the application to deal 
with the skew between input and output. For example, output 
can be "rewound" to an indicated stop point, or input might be 
applied to future output only. 

The task of  synchronizing output in a distributed environ- 
ment is simplified by pre-computing or pre-transmitting data 
streams and timestamping them. Without additional support, 
however, this would complicate the work of  the application, 
which then must compute data streams in advance of real time. 
One way to reduce this problem is to schedule application ac- 
tivity by a clock that is ahead of real time. A good analogy is 
that if you set your watch ahead by 5 min, you are more likely 
to show up on time for meetings. 

In summary, the three most important principles of Tactus 
are (1) compute data streams in advance of real (presentation) 
time, (2) use a server at the presentation site to buffer and 
synchronize data streams, and (3) buffer all possible responses 
to user choices to minimize response times. Buffering data at 
the presentation site can greatly increase the timing accuracy 
with which data are presented. 

1.3 Previous work 

Few of these principles are original, but their integration and 
application are new. Tactus was inspired by Anderson and 
Kuivila's work on event buffering for computer music systems 
(1986, 1990). This work is in turn related to discrete-event 
simulation. Later, Anderson et al. (1990) applied these ideas 
to distributed multimedia, but not to interface toolkits. Rowe 
and Smith (1992) developed a system similar to Tactus. Their 
system implemented sophisticated network protocols for con- 
tinuous media, but their client toolkit does not offer the features 
implemented in Tactus. Active objects (see Sect. 3.1) have long 
been used for animation (Kahn 1979) and music (Cointe and 
Rodet 1984) systems, but have only recently gained attention 
in multimedia circles (Gibbs 1991). The Cognitive Coproces- 
sor (Robertson et al. 1989) manages computational latency by 
adapting animation rate and detail according to principles of 
human perception. This approach could be used in conjunction 
with the Tactus architecture. 

To our knowledge, we are the first to extend an object- 
oriented application toolkit with support for managing latency 
through precomputation and event buffering. CD-ROM-based 
video systems have used buffering of  images at choice points to 
allow for seek time. Our work focuses more on the implications 
of all these techniques for application toolkits. 

Recently, many commercial multimedia systems have been 
introduced, including Apple's Quicktime (Wayner 
1991), IBM's MMPM/2 (IBM 1992), Microsoft's MPC (Yager 
1992), and Dec's XMedia (Digital Equipment Corp. 1992). 
These systems emphasize storage, playback, and scalability. 
HyTime (Newcomb et al. 1991) provides a standard repre- 
sentation for hypermedia, but no implementation is specified. 
These systems could benefit from the synchronization and la- 
tency management techniques we propose, and our work sug- 



79 

gests how a graphical interface toolkit might be extended to 
take advantage of commercial multimedia software. 

Although this area is relatively new, efforts to establish 
standards are already underway. The Interactive Multimedia 
Association has published an RFT (IMA 1992) for multimedia 
system services that sketches out an architecture for interac- 
tive, distributed multimedia and gives some indication of how 
synchronization and timing services like those in Tactus may 
fit into future industry standards. Active Ob ects 

2 The Tactus Server 

The Tactus Server provides buffering, resource management, 
timing, and synchronization to its clients. It can be thought of 
as analogous to a display server, such as Xl  1, with two impor- 
tant differences. First, the Tactus Server is a real-time server; 
all data are buffered until the appropriate output time. This sup- 
ports the smooth uninterrupted flow of continuous-time media 
to hardware presentation devices. Input data are also times- 
tamped. Second, the Tactus Server manages multiple media, 
including audio, video, and MIDI in addition to graphics. It is 
the job of the Tactus Server to present each stream according 
to a specified time offset. 

An important point here is that all the latencies in the sys- 
tem are handled by the Tactus Server in a fashion that is largely 
transparent to the application. The server handles this adap- 
tively, being able to compensate for transient worst-case de- 
lays and to take advantage of any transient improvements. A 
drawback is that the server must be extended to handle new 
media and devices, but in practice, only a small amount of  code 
is needed to support a new device. For the most part, Tactus 
merely forwards data to indicated devices at the correct time. 

The server is responsible for the timely delivery of media to 
devices, so it places certain real-time requirements on the oper- 
ating system. First, the server should have an accurate source 
of time. Not only should the server clock be synchronized 
with the client(s), but corrections for drift should not impact 
multimedia presentations. For example, if the local clock is set 
ahead by 100 ms, a noticeable jump may occur in the presenta- 
tion. Therefore, the local clock should advance smoothly with 
respect to allowable media jitter. It should be synchronized 
to the client within a small fraction of  the time that media is 
buffered in the server. In the future, low-cost atomic clocks 
(Creedy 1993) may eliminate clock drift and synchronization 
problems. 

A second requirement for the operating system is that the 
server must wake up at times indicated by timestamps and de- 
liver output to devices with low latency. An interesting prop- 
erty of the server is that wakeup times are aperiodic, but known 
in advance, offering the possibility of online pre-scheduling. 
The upper bound on latency for some media, such as MIDI, is 
in the millisecond range, which may not be possible in some 
systems. An alternative used by the Tactus Server is to forward 
data to devices ahead of time (just as clients forward data to 
the server ahead of time) and let the device driver provide ac- 
curately timed output. Device drivers can often provide more 

Fig. 2. A Clock Tree. Objects, including clocks, request a wake-up 
message from their parent in the clock tree. RealTirae is at the root 
of the tree and interfaces with the operating system timing facili- 
ties. S t r eam is a subclass of C l o c k  and manages connections to 
the Tactus Server. The leaves of the tree are subclasses of Act  i r e ,  
which produce and control multimedia data (see Sect. 6). Kick mes- 
sages flow in the direction of the a r r o w s ,  while R e q u e s t K i c k A t  
messages are sent in the opposite direction 
Fig. 3. Active Object Class Hierarchy. A c t i v e  objects, which an- 
swer Kick  (to perform the action) are specialized to create media 
presenters such as VidActive and AudioActive. Clock ob- 
jects answer Reque s tK i  c kAt (to schedule a kick) and send Ki c k 
messages to their children at the appropriate times. RealTirae and 
S t r earn are specializations of C 1 o c k 

accurate timing by processing at the interrupt level, by using 
a co-processor, by using DMA, or by running within the oper- 
ating system kernel. However, this approach adds complexity 
and reduces the fine-grain control of  devices, so it should be 
used only when necessary. A hybrid approach is sometimes 
possible where Tactus sends control information only. Devices 
then access precomputed media data directly from storage. 

If  the final timing is left to device drivers, there must be a 
feedback path to notify the Tactus Server when timing prob- 
lems arise. For example, if a graphics pipeline falls out of real 
time, the Tactus Server must be informed so that other media 
output can be delayed as well. More details on device control 
will follow in Sect. 4.4. 

3 The Tactus Toolkit Extensions 

The Tactus Toolkit Extensions augment a graphical user in- 
terface toolkit such as ATK (Palay et al. 1988) or Interviews 
(Linton et al. 1989). The Tactus Server could be used without 
the toolkit extensions, but this would require the clients to com- 
pute data in advance of real time, implement various protocols 
(described in Sect. 4), and interleave computation for various 
streams. The toolkit simplifies these programming tasks. Our 
toolkit extensions to ATK include clock objects for scheduling 
and dispatching messages, active objects that receive wake-up 
messages and compute media, and stream objects that manage 
Tactus Server connections and timestamping (see Fig. 2). The 
class hierarchy is illustrated in Fig. 3. 



80 

3.1 Active objects 

Active objects form the base class for all objects that handle 
real-time events and manage continuous time media in the Tac- 
tus extensions. Each active object uses a clock object (set via 
the U s e C l  9  method) to tell time and to request waKe-up 
calls. The R e q u e s  t K i e k  method schedules the active object 
to be awakened at some future time by sending R e q u e s t -  
Ki c k A t  to the object's clock. The object's K i c k  method will 
then be called by the object's clock at the requested time. 

Active objects are intended to take the place of tight-weight 
processes, and often perform tasks over extended periods of 
time. This is accomplished by having each execution of the 
Ki c k  method request a fnture K i c k .  For example, we have a 
software video active object whose K i c k  method is roughly 
as follows: 

Kick(self, time) { 
if (read(!nputFile, Buffer, 

ImageSize)) { 
XPutImage(Buffer .... ); 
RequestKick(self, time 

+ InterFrameTime); 

In this example, XPut  I m a g e  is the standard X11 call to dis- 
play a raster image, but it is implemented by a special library 
that adds a timestamp and sends the message to the Tactus 
Server. The Tactus Server is then responsible for forwarding 
the message to the real X server at the proper time. (Since 
we have not modified the X server to process timestamped 
events, we have found it helpful to run X at a higher priority 
in order to help ensure that the display is updated soon after 
the Tactus Server sends the graphics commands.) Note how 
R e q u e s t K i c k  is used after each video frame to schedule 
the next one. During a video presentation, the computations of 
many other active objects may be interleaved with this one. 

Rather than develop a special timed graphics library, we 
support the ordinary x l i b  calls with a substitute library 
t x ! i b ,  which makes a connection to the Tactus Server rather 
than the X l l  server. The txlib sends the timestamp along 
with each Xt  1 message. The advantage of this approach is that 
pre-existing graphics code can be used without modification. 
This point wilt be further explained in Sects. 3.3 and 6.3. While 
t x l  i b  handles output for X11, similar libraries are used for 
audio and other media. 

3.2 Clock objects 

Clocks are a subclass of A c t i v e .  Each clock object keeps 
track of all the active objects (children) that have attached 
themselves via the U s e C l o c k  method. Since clocks are ac- 
tive objects, the 5, too can be attached to other clocks. Clocks 
are useful not only for their wake-up service, but also because 

they manage mappings from one time system to another. Map- 
pings are linear transformations, meaning that a clock can shift 
and stretch time as seen by its children. When a change in 
the mapping of time occurs, children of the clock are noti- 
fied (whether or not they are waiting for a Kick) .  We call the 
time seen by children of clocks logical time, as opposed to 
the real time. Logical time allows active objects to compute in 
"natural" time coordinates. Meanwhile, clocks can be adjusted 
to achieve "fast forward" "rewind" "pause"  and "continue" 
effects. 

The basic duty of a clock is to keep track of the times at 
which to kick child objects and tO issue K i c k  messages at 
the appropriate times. A clock keeps a list of children sorted 
by their local requested kick times. The clock maps the ear- 
liest local wakeup time into parent time and issues its own 
R e q u e s t K i c k  so that it will be kicked by its parent. When 
the clock is kicked, it maps from parent time to local time and 
kicks the appropriate child. 

Clocks form a "clock tree" whose leaves are active objects, 
whose internal nodes are clocks, and whose root is a special 
subclass of clock called RealTime. A RealTime object 
serves as the true sonme of time for the entire clock tree. It 
should be noted that the clock tree is entirely independent 
of the graphical view tree typically found in gi~phical user 
interfaces (Cox 1987). 

3.3 Stream objects 

Stream objects are a subclass of C 1 o c k. In addition to schedul- 
ing and kicking child objects, stream objects communicate 
with the Tactns Server and establish timestamps for Tactus 
messages. Stream objects also schedule their children ahead 
of real time by the worst-case system delay called Latency, a 
number which is presently determined empirically. 

Recall that the Tactus Server expects all messages to have 
timestamps which serve as the basis for synchronization of 
multiple media. It might seem logical to use the kick times of 
active objects, but because kick times are the composition of 
perhaps several mappings at different levels for the clock tree, 
the active object kick time may have no simple relationship to 
real time or to the kick times of other active objects. 

Rather than use active object kick times, timestamps are 
based on the idealized real time of the kick, that is, the re- 
quested kick time mapped to real time. Before a kick, the clock 
tree is inactive. When the kick time arrives, a K i c k  message 
is propagated fi'om the R e a l T i m e  object through the tree to 
an active ot~iect at a leaf of the tree. On the path from root 
to leaf, exactly one stre0ma object is kicked. The stream sets 
a globally accessible timestamp and stream identifier before 
propagating the K i c k  message. If the active object performs 
an output action, the output function called accesses the times- 
tamp and stream identifier in order to compose a message for 
the Tactus Server. In this way, timestamps are implicitly added 
to dient output. 

Together, these classes and their specializations serve to 
insulate the application programmer from the detailed proto- 
cols n e c e s s ~  to send streams of data to the Tactus Server. The 



extensions do such a fine job of hiding details that existing pro- 
grams can use Tactus without modification. (Tactus libraries 
are linked dynamically.) Although this provides no benefits to 
existing applications, it means that existing application com- 
ponents can be given real-time synchronization capabilities. 
For example, objects that formerly displayed text or images 
can now be called upon to deliver output synchronously with 
other media. 

4 The Tactus system 

As described in the introduction, the Tactus system consists of 
a Tactus Server and a set of extensions to an object-oriented 
toolkit. In this section, we will describe how the two work 
together. 

4.1 Steady-state media delivery 

Steady-state on the client side consists of active objects waiting 
for wake-up messages. At each wake-up, an object computes 
data such as a packet of audio or a frame of animation and sends 
it to the Tactus Server. The wake-up message is scheduled by 
a stream object that forces the computation to happen ahead of 
real-time. When no more computation is pending, the stream 
object computes when the next wake-up will occur and sends 
a null message to the Tactus Server with that timestamp. This 
tells the Server not to expect more messages until that time. 

As discussed earlier, Tactus may deliver the data to the 
presentation device slightly ahead of time, relying on the hard- 
ware or device driver to delay the presentation until a given 
timestamp. For example, our MIDI driver maintains buffers of 
timestamped packets of MIDI data and outputs data at the des- 
ignated time. ha contrast, X1 t (our "graphics device driver") 
has no buffering or timestmnping capability yet, so Tactus pro- 
vides all timing control for graphics. These differences are 
invisible to clients. 

Time is used to regulate the flow of data from clients to 
Tactus, thus alleviating the need for explicit flow-control mes- 

sages.  The client simply produces "one second of data per 
second" and sends it to Tactus. When the client is behind, it 
computes as fast as possible in order to catch up. If the client 
falls too far behind, the Tactus Server buffers will undertow 
and a recovery mechanism must be invoked (see below). 

4.2 Stream start-up 

We anticipate that the worst-case delay from client to device 
will be quite large (perhaps seconds). This is too large to be 
acceptable for the normal stream start-up time. Tactus clients 
typically will start streams with the goal of delivering media to 
the user as soon as possible. Therefore, the stream object ad- 
vances logical time, causing the client to run compute-bound 
until it catches up. To further facilitate rapid start-up, each 
device has a minimum amount of buffering (measured in sec- 
onds) required before it can start, and the Tacms Server rather 
than the client determines when to start a presentation. 

81 

Presentations start with the stream in the starting phase, 
The Tactus Server waits for data to be hnffered. During the 
low-water phase, the data are generated and sent as fast as 
possible from the client to the Server. Packets are accumu- 
lated until a low-water mark is met for each device opened in 
the starting stream (the low-water mark may differ between 
devices). When the low-water criteria are met, the Server starts 
delivering data to devices, and we are in the running phase. At 
the phase transition, a message is sent to the client(s) indicat- 
ing how much time elapsed in the starting phase. This time is 
called Glitches. 

4.3 Synchronization 

Synchronization is achieved by atIaching timestamps to data. 
Temporal data are thus synchronized to a clock (as opposed 
to synchronizing directly to other data, such as video frames). 
Multiple streams may be grouped for synchronized presenta- 
tions. It is up to device drivers either to present data at speci- 
fied times or to report timing failures back to the Tactus Server. 
Timing failures in devices are treated just like undertow, which 
is described next. 

4.4 Underflow 

An underflow is caused by the stream buffer running out of  
data, More precisely, underflow occurs when it is time to dis- 
patch a data packet at time T, but there is no packet containing 
data at a time greater than T. Since data arrive in time order, 
a timestamp greater than T is desired because it indicates that 
all data for time T have an'Ned, k is the cmTent policy of Tac- 
ms to halt all media presentation at time T until all media for 
time T can be updated, but we believe other policies could and 
should be supported as well (Anderson et al. 1990). 

If  data have been sent ahead to devices, Tactus can reset the 
logical time in the device (setting it back), so that the device 
immediately pauses. If  this is not possible, the stop and restart 
may be somewhat staggered in time across devices. Eventually, 
all device output is stopped and a low-water phase is entered. 
This phase resembles the start-up protocol described above, 
and the same steps are taken. 

No immediate feedback to the client is necessal~" upon 
undertow (presumably, the client is already compute-bound 
trying to catch up). When Tactus resumes data output, it sends 
a message to the client indicating the amount by which the pre- 
sentation was delayed. This information can be used to control 
the total delay between computation and presentation. The de- 
fault behavior is for the client to keep a constant presentation 
latency; if the Tactus Server stops the presentation for 2 s, then 
the client holds off ou computation for 2 s as well. 

Generally, tNs protocol takes place only at the stream level, 
and the clocks and active objects beneath the stream remain 
oblivious to the time shifts. On the other hand, active objects 
can attempt to avoid undertow by noticing or wedicting when 
computation falls too far behind real time. For example, our 
animation object drops frames, maintaining a constant number 



82 

of frames per second, when the logical time rate (playback 
speed) is increased. 

4.5 Device drivers 

Tactus has some interesting implications for presentation sub- 
systems and device drivers. Devices should start continuous 
media output at precisely stated times and should synchro- 
nize data to the system clock. Devices should also monitor the 
delivery of output and report exceptions back to Tactus. 

A condition similar to underflow arises when a device fails 
to meet its expected timing requirements. For example, a CD- 
ROM player might fail to seek within an allocated time. In this 
case, the device should recognize that timely delivery of media 
has (or will) fail, and the Tactus Server should be notified. The 
server treats this condition as a form of underflow and enters 
the low-water phase. The running phase is reentered when the 
failing device reports that it is ready to continue, e.g., the seek 
completes. Another example would be a graphics accelerator 
that is unable to complete a frame of  animation in time. 

5 Cuts 

Because of various latencies, multimedia systems are often 
unable to respond to input without obvious "glitches" where, 
for example, the video image is lost, digital audio pops, and 
graphics are partially redrawn. This usually happens because 
there is a time delay between taking down one stream and 
starting up another. These annoying artifacts could be hidden 
if the new stream could be started before the the old one is 
stopped. Tactus supports this model, and a switch from one 
stream to another is called a cut. 

In Tactus terminology, a cut is made from a primary stream 
to a secondary stream. To minimize latency, cuts are performed 
by the Tactus Server on behalf of  its client. The client requests 
a cut, but the request may or may not be honored, depending 
upon whether the secondary stream is ready to run. 

There are two attributes that describe a cut (see Fig. 4). 
The first determines whether a cut may be taken at any point 
in time or only at certain time points, and the second describes 
whether the cut is made to the beginning of a secondary stream 
or to the current time. 

Cuts must be anticipated by the application. Since the ap- 
plication runs ahead of  the real presentation time, it will natu- 
rally come to choice points before the user has a chance to make 
a choice. For example, a driving simulator application will 
generate graphics or video for an intersection before knowing 
whether the user will say "turn left" or not. While comput- 
ing ahead, the application will create a cut object to arbitrate 
between the current (primary) stream and a new "turn left" 
(secondary) stream. 

Within the Tactus Server, the secondary stream will per- 
form a normal stream start-up. If  the user requests "turn left," 
the application (user-cut requests are processed by the applica- 
tion, not by the Tactus Server; this requires a round-trip mes- 
sage to the application, but keeps the input-processing model 

C u t  R e q u e s t  T i m e  
Choice Points I 

r SeCOndary Stream 

~[i; ca r'd e d" sl r e a-m" da t'a . . . . . . .  presented stream da?a 

? T [ : : : : : "  + ::}-;::' . . . . .  

i 2 " . 2 : - - - 2 ~ .  

e . . . . . . . . . . . . . . .  

i ~---;7.2E;.~ 

T i m e  ~ I 

I 

Fig. 4. There are four (4) types of cuts. The top two cuts are restricted 
to discrete time points, whereas the lower two can take place at any 
time. The first and third cuts here cut to a stream already in progress 
while the second and fourth types cut to the beginning of a stream 

uniform) sends a cut message with a timestamp to the Server. 
If  the message arrives before the time indicated by its times- 
tamp, and if the secondary stream is ready to run, then Tactus 
switches to the secondary stream at the designated time. A 
message is returned to the application indicating success or 
failure. If  the cut was a success, then the objects generating 
the no-longer useful primary stream will be freed. 

6 An example application 

It is now time to see how clocks, streams, active objects, and 
the Tactus server work together to produce a synchronized 
multimedia presentation. We will describe an application we 
have actually built: a time-line editor for sequencing video and 
animation. 

6.1 The editor 

As far as this discussion is concerned, the function of the edi- 
tor (see Fig. 5) is merely to produce a data structure consisting 
of a list of  animations to run and video segments to show. 
We will call this data structure the cue sheet. An animation 
sequence represented by the editor consists of  a file name, 
a starting frame, an ending frame, and a duration. An active 
object of class F a d A c t i v e  takes these parameters and gen- 
erates a sequence of display updates showing the sequence of 
frames and some number of interpolated frames, depending 
upon the duration. Similarly, a video segment is represented 
by a starting frame, an ending frame, and a duration. An ob- 
ject of class V i d A c t  i r e  generates control commands for a 
laser videodisc player (an all-digital video object has also been 
implemented) to generate the appropriate sequence of video 
frames. 



Cue Sheet 

Client's Kick 
Time 

Server's Presentation Tst~+ T +  Glitches 
Time 

6 

83 

~ a m  

~ i ~ , .  Tirnestamped messages 
~...J-~'to Tactus ~erver 7 

5 
Fig. 5. The Editor Application. The top window is a time-line for animation, video, and music. The presentation below shows a video image 
and an animated graphical overlay, in this case highlighting the Lunar Excursion Module as it lifts off from the moon 
Fig. 6. Timing. The top line shows times as specified in a cue sheet. The middle shows the timing of k i c k  messages, and the bottom shows 
presentation times. The cue sheet is effectively shifted forward in time from zero to rstart. All kicks are advanced in time by the amount 
Latency so that output can be delivered to the server and buffered. The presentation then corresponds exactly to the time-shifted cue sheet. If 
underflow occurs, Glitches will become non-zero, and both the client computation and the server presentation will move later in time 
Fig. 7. Creating timestamped messages. Scheduled computations are initiated by Rea lTime.  The S t r e a m  computes a timestamp for later 
use by t x l i b .  Control then passes to an A c t i v e  object, which produces output via a View object, which in turn calls a G r a p h i c s  object. 
X-window calls from Graphic objects are handled by t x l  2b, which adds timestamps and sends messages to the Tactus Server 

6.2 Active objects and the clock tree 

The structure of the application was shown in Fig. 2. An 
editor creates three active objects: F a d A e t i v e  for graph- 
ical animation control, V s - d A c t i v e  for video control, and 
E d i t A c t  i v e  for sequencing through the editor data struc- 
ture. All three of these use a stream object as their clock, and 
the stream object uses R e a l T i r a e  for its clock. 

6.3 Generating a timestamped message 

Let us trace how the first message of a presentation is gen- 
erated. When the user selects the Start menu item, the editor 
sets the stream to logical time 0. This happens at real time 
Tstart. The editor also sends the E d i t A c t  i v e  object a mes- 
sage which causes it to request a kick at logical time Tcue, 
the time of the first cue on the editor's cue sheet. For now, let 
us also assume that the first item is well beyond the Latency. 
Thus, a kick request will be registered with the Re a 1 T 5_me ob- 
ject at some time in the future, after which the Start command 
completes, and the user interface becomes idle. 

To summarize so far, the editor has requested that the 
stream kick it to produce the first action at logical time Tc~.  

The stream will actually kick the editor's active object ahead 
of time by Latency, a programmer-specified time advance (in 
the future, time advance may be estimated automatically on 
the basis of system and network loads). Also, the kick is de- 
layed by Glitches, the total time by which presentation has 
been delayed in the tow-water phase. This variable still has its 
initial value of 0. 

Figure 6 illustrates timing in Tactus. The middle line of 
the figure shows the real time of kicks. At T~ta~t + T ~  - 
Latency + Glitches, the realtime clock will send a K i c k  mes- 
sage to the stream. Figure 7 shows the sequence of calls that 
lead from the realtime clock to a timestamped message. The 
stream object constructs a timestamp ofTstart +Tcue and kicks 
E d i t A c t i v e ,  which in turn sends a start message to the 
F ad A c  t i r e  object. E d i  gAe t i v e  also schedules itself for 
the next cue in the cue sheet. 

The FadAct ive object initializes its state and prepares 
to generate a sequence of animated drawings and calls upon a 
V i e w  object to update the screen with the first image of the 
animation and returns [this is a slightly simplified description; 
in reality, the FadAct ive does not know who sent the start 
message and cannot assume that the stream has properly corn- 



84 

puted a timestamp. As a precaution, it schedules itself for a 
kick at the current logical time (according to its clock)]. The 
kick to E d i  t A c t  i v e  returns, and a new kick to F adAc  t i r e  
immediately follows. The V i e w  object calls upon its associ- 
ated Graphic object to perform graphical operations, and the 
Graphic object makes standard calls to x l  i b ,  the X11 client 
interface library. 

When the update is finished, the F a d A c t i v e  object 
schedules itself for its next update and returns. At this point, the 
F a d A c t  i v e  object is scheduled to wake up on the next ani- 
mation frame, and E d i  t A c t  i r e  will wake up to send the next 
cue from the cue sheet. Whenever the stream reaches a state 
where it will actually suspend until there is another kick from 
R e a l T i m e ,  the stream computes the stream time at which it 
will wake up and sends that time to the Tactus Server. This 
tells the server how far ahead of realtime the computation has 
progressed. This information (or rather, the lack of  it) is in turn 
used to detect undertow. 

On the server side, messages arrive with timestamps and 
commands for X11 and a videodisc player. The messages are 
placed in a buffer until the dispatch time arrives. The dispatch 
time is: 

Tdispatch : Timestamp + Glitches 

where Glitches measures the total elapsed time in the low- 
water phase. The bottom line in Fig. 6 shows the server pre- 
sentation time. Notice from this example, that the active ob- 
jects can all operate in the relative time of the cue sheet; for 
example, presentations can start at logical time zero. 

Also notice that because timestamps are passed directly 
from the stream to t x l  i b ,  no modification to complex graph- 
ical objects (the view object in Fig. 7) is needed. Even the full 
ATK text editor runs under Tactus without modifications. If  
text were to be scrolled by an active object, the scrolling would 
be synchronized with other stream elements. Any X applica- 
tion, when linked with the Tactus library, should also run under 
Tactus, and it is possible to modify other toolkits to use Tactus 
synchronization. 

6.4. Adding an animated cursor 

Suppose we want to modify the timeline editor to display a 
vertical cursor that travels across the timeline during play- 
back. The change is trivial since during playback, any graph- 
ics commands are automatically synchronized with other me- 
dia, and the active object architecture supports interleaving the 
cursor computation with other output. The changes required 
are: Subclass EditActive to create a CursorActive ob- 
ject and add it to the clock tree as a child of the stream. The 
C u r s o r A e t  i r e  object will automatically be notified when 
the stream starts and stops. When the stream starts, use the 
R e q u e s t K i c k  and K i c k  messages to wake up every 50 ms 
or so and redraw the cursor according to the current logical 
time. 

7 Current  status 

Tactus currently exists as a working prototype on Unix work- 
stations; it supports synchronized digital video, digital audio, 
animation, and the full range of ATK graphics and text objects. 
The Tactus Server runs directly on the Mach 3.0 Microkernel 
(Accetta et al. 1986), and another version runs as an ordinary 
user process under AIX. Typically, both the client and server 
run on one machine using a choice of  shared memory, Mach 
IPC, or Unix socket interfaces. We are studying performance 
issues and porting Tactus to Real-Time Mach (Tokuda et al. 
1990) should provide even better predictability. Even though 
applications remain as Unix processes, the latency manage- 
ment of Tactus allows them to generate accurately timed out- 
put. 

8 S u m m a r y  and conclusions 

Tactus is a system for synchronizing multiple digital media in 
a distributed environment where latency is an important factor. 
In Tactus: 
- Data are computed ahead of  real time. 
- An object-oriented system is used to schedule computation 

and compute timestamps. 
- The data are delivered to a synchronization server and 

buffered. 
- The data are dispatched to presentation devices according 

to timestamps. 
- Latency management is carefully hidden from application 

programs, which benefit from a simple-to-use interface. 

Important considerations in the design of  Tactus have been: 
- The system should support interactivity by helping clients 

compute multimedia information. 
- The server should handle synchronization at the point of 

presentation. 
- Both discrete events and continuous media should be sup- 

ported. 
- Existing graphics libraries should be usable with a minimal 

amount of  change. 

Consequently, a large effort has gone into designing the client 
side of Tactus as well as the server. This has paid off by sim- 
plifying the task of  writing multimedia applications. 

There are problems Tactus does not address. In particular, 
we have attempted to mask rather than solve network prob- 
lems. We assume that enough network bandwidth is available 
on average for multimedia presentations. The amount of  pre- 
computation and buffering can be tailored to actual network 
parameters. Even if communication is not a problem, Tactus 
can mask computational and storage latency. 

Tactus also does not address issues of resource allocation. 
We assume that adequate bandwidth and processor resources 
are available on average. If  this is not the case, no other ap- 
proach will be successful. Ideally, Tactus should be used in 
conjunction with network protocols and operating systems that 
can make some resource guarantees. It is up to the application 
programmer to specify requirements or reserve resources. One 



area for future research is to examine how secondary streams 
for cuts should be scheduled when resources are limited. 

Tactus has important implications for the design of multi- 
media systems. Few device drivers or devices support times- 
tamped data, yet this seems to be a useful technique for solving 
current synchronization problems. For example, MIDI data 
should be transmitted within about 1 ms of  the specified time. 
This may be difficult even for the Tactus Server. Thus, we 
adopt a multi-level approach. The Tactus Server buffers the 
high-latency (100-1000 ms) connection from the client to pro- 
duce synchronized low-latency (e.g. 10 ms) data for devices. 
In the case of MIDI, Tactus dispatches data slightly ahead of 
real-time to enable the very low-latency (less than 1 ms) device 
driver to provide the final timing. 

One could argue that if all device drivers supported timing, 
the Tactus Server would not be necessary. However, the Tactus 
Server performs other important functions. It performs local 
synchronization failure detection and recovery across multiple 
media and devices. (This could also be performed by the client, 
but only with many round-trip messages to a potentially over- 
loaded client.) In the case of  a remote client, the Tactus Server 
provides the logic and buffers for cuts. The Tactus Server also 
supports the synchronization of multiple distributed clients. 
Finally, the server is a logical place to provide for resource 
management. 

Designers of network time protocols should keep in mind 
that abruptly setting clocks ahead or behind can cause prob- 
lems for multimedia and other real-time systems. It seems that 
network time systems are designed to minimize clock skew 
at the expense of  jitter caused by local clock adjustment. For 
multimedia synchronization, this jitter should also be mini- 
mized. 

Tactus uses global clocks for flow control between client 
and server. Clients know when data will be output, so they send 
data just before the data are needed. No explicit flow control 
messages are necessary. 

Media delivery subsystems should be designed with facil- 
ities for external control and synchronization, whereas most 
current designs are closed and self-regulating. For example, a 
video playback sub-system can be integrated with Tactus if it 
accepts absolute start times, has the potential to pause when 
other media undertow, and can report to Tactus when a pause 
due to under tow is about to occur. In contrast, the practice of  
synchronizing digital video to a local audio device makes it im- 
possible to synchronize to external systems or other channels 
of  audio. 

Finally, Tactus raises some interesting and unaddressed 
scheduling problems (Dannenberg 1989) not solved by tradi- 
tional periodic scheduling models. Tactus events are aperiodic, 
but the precise time and content of  a Tactus event dispatch are 
known significantly in advance. 

Acknowledgements. A shorter version of this paper appeared in the 
Third International Workshop on Network and Operating System 
Support for Digital Audio and Video, IEEE Computer and Com- 
munication Societies, 1992. The work was entirely sponsored by the 
IBM Corporation. We would also like to thank Jim Zelenka, and 

85 

Kevin Goldsmith for implementation assistance, and Carol Krowitz 
and Joy Banks for work on this manuscript. 

References 

Accetta M, Baron R, Bolosky W, Golub D, Rashid R, Tevanian A, 
Young M. (1986) Mach: a new kernel foundation for UNIX de- 
velopment. In: Proceedings of Summer Usenix. Usenix 

Anderson DR Kuivila R (1986) Accurately timed generation of dis- 
crete musical events. Comput Mus J 10(3):48-56 

Anderson DR Kuivila R (1990) A system for computer music per- 
formance. ACM Trans Comput Syst 8(1):56-82 

Anderson DR Govindan R, Homsy G (1990) Abstractions for contin- 
uous media in a network window system. Tech Rep UCB/CSD 
90/596, Computer Science Division (EECS), U.C. at Berkeley 

Anderson DR Homsy G (1991) A continuous media I/O server and 
its synchronization mechanism. Computer 24(10):51-57 

Blattner MM, Dannenberg RB (ed) (1992) Multimedia interface de- 
sign. ACM Press, New York 

Cointe R Rodet X (1984) Formes: an object and time oriented system 
for music composition and synthesis. In: 1984 ACM Symposium 
on LISP and Functional Programming. ACM, New York, pp 85- 
95 

Cox BJ (1987) Object~oriented programming: an evolutionary ap- 
proach. Addison-Wesley, Reading, Mass 

Creedy S (1993). Time is right for atomic ticker by Westinghouse. 
Pittsburgh Post-Gazette, April 24, 1993, pp. 1-2 

Dannenberg RB (1989). Real-time scheduling and computer accom- 
paniment. In: Mathews, MV, Pierce RJ (eds) Current directions in 
computer music research. MIT Press, Cambridge, Mass, pp 225- 
262 

Digital Equipment Corporation (1992) XMedia tools, version 1.1A. 
Software Product Description SPD 36.55.02 

Gibbs S (1991). Composite multimedia and active objects. In: 
Paepcke A (ed) OOPSLA '91 Conference Proceedings, ACM/- 
SIGPLAN. ACM Press, New York, pp 97-112 

IBM (1992) The OS/2 multimedia advantage. IBM Corp 
IMA (1992) RFT: multimedia system services version 2.0. IMA 
Kahn K (1979) Director guide. Technical report, MIT AI Laboratory, 

Memo 482B. MIT Press, Cambridge, Mass 
Kolstad R (1990) The network time protocol. UNIX Rev 8 (12): 58-61 
Linton MA, Vlissides JM, Calder PR (1989) Composing user inter- 

faces with interviews. Computer 22(2): 8-22 
Little TDC, Ghafoor AS (1991) Spatio- temporal composition of dis- 

tributed multimedia objects for value-added networks. Computer 
24(10):42-50 

Newcomb SR, Kipp NA Newcomb VT (1991) The HYTIME 
multimedia/time-based document structuring language. Com- 
mun ACM 34(11):67-83 

Palay A J, Hansen M, Kazar M, Sherman M, Wadlow M, Neuendorffer 
T, Stern Z, Bader M, Peters T (1988) The Andrew Toolkit - an 
overview. In: Proceedings of the USENIX Technical Conference, 
Winter 1988. USENIX, pp 9-21 

Ripley GD (1989) DVI - a digital multimedia technology. CACM 
32(7):811-822 

Robertson GG, Card SK, Mackinlay JD (1989) The cognitive copro- 
cessor architecture. In: Proceedings of the ACM Symposium on 
User Interface Software and Technology. ACM Press, New York, 
pp 10-18 



86 

Rowe LA, Smith BC (1992) A continuous media player. In: Third 
International Workshop on Network and Operating System Sup- 
port For Digital Audio And Video. IEEE Comput Commun Soc 
pp 334-344 

Tokuda H, Nakajima T, Rao P (1990) Real-time mach: toward a pre- 
dictable real time. In: Proceedings of the USENIX Mach Work- 
shop. USENIX 

Wayner P (1991) Inside Quicktime. Byte 16(12): 189 
Yager T (1992) The multimedia PC: high-powered sight and sound 

on your desk. Byte 17(2):217 

DAVID B. ANDERSON has been a 
member of the research staff of the 
School of Computer Science at Car- 
negie Mellon University since 1988, 
where he is also a Ph.D. candidate. He 
received B.S. degrees in Mathematics 
and Computer Science from Brigham 
Young University in 1981. He has 
previously worked as an architect 
and manager of the Andrew Toolkit 
project and enjoys doing user-oriented 
systems work. His research interests 
include user interface toolkits, oper- 
ating systems, and compound docu- 

ment architectures. 

JOSEPH M. NEWCOMER received 
his PhD from CMU in 1975 in com- 
piler technology. Since then he has 
participated in compiler research and 
product development, personal com- 
puter software, MIDI software prod- 
ucts, and realtime systems. He has 
numerous articles on programming 
methodology published in major mi- 
crocomputer technical magazines, in- 
cluding one on techniques for debug- 
ging real-time embedded systems. 
He is currently a consultant and soft- 
ware developer in Pittsburgh, Penn- 

sylvania. He participated in the design of Tactus in 1991. 

DEAN RUBINE is currently a re- 
search faculty member at the School 
of Computer Science at Carnegie 
Mellon. His interests include conti- 
nuous-time multimedia systems and 
applications, human-computer inter- 
action techniques, user interfaces for 
non-programmers, audio digital sig- 
nal processing, pattern recognition, 
real-time control systems, and com- 
puter music. Rubine holds B.S. and 
M.D. degrees from MIT and a Ph.D. 
from Carnegie Mellon, all in com- 
puter science. His Ph.D. thesis ad- 

dresses the problems of training computers to understand human 
gestures. In addition to his work on the Tactus system, Rubine 
co-invented the VideoHarp, a new music instrument controller, re- 
searched algorithms for the analysis and synthesis of musical tones, 
implemented programming languages for the real-time control of 
synthesizers, and created a system for developing multimedia appli- 
cations by direct manipulation. He is also an amateur musician, sound 
engineer, and video producer. 

TOM NEUENDORFFER has been 
working on multimedia user inter- 
faces since 1985. One of the primary 
developers of the Andrew Toolkit, he 
worked on many facets of the de- 
sign and implementation of its em- 
bedded object architecture. He was 
also responsible for the Andrew De- 
velopment Environment Workbench 
(ADEW), the first publicly distri- 
buted X-based graphical interface 
builder. Other accomplishments in- 
clude the FAD animation editor, the 
GLO interface builder, and what was 

probably the first working electronic keyboard ever sent via electronic 
mail. Prior to 1985, he worked for the Information Science Depart- 
ment of the University of Pittsburgh, where he received an M.D. in 
1980. 

ROGER B. DANNENBERG is a Re- 
search Computer Scientist on the fac- 
ulty of the Carnegie Mellon Univer- 
sity School Computer Science De- 
partment. He received a Ph.D. from 
Carnegie Mellon in 1982 after re- 
ceiving a B.A. from Rice Univer- 
sity (1977) and an M.D. from Case- 
Western Reserve University (1979). 
His research interests include pro- 
gramming language design and im- 
plementation, and the application of 
computer science techniques to the 
generation, control, and composition 

of computer music. Dannenberg's current work in addition to Tac- 
ms includes research on music understanding, the automated accom- 
paniment of live musicians, and the design and implementation of 
Nyquist, a very high-level, functional language for signal process- 
ing and control. He was co-director of the Piano Tutor Project which 
applied music understanding and expert system technology to music 
education. Dr. Dannenberg is a member of Phi Beta Kappa, Sigma 
Xi, Tan Beta Pi, Phi Mu Alpha, ACM, IEEE, and the International 
Computer Music Association. 


