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ABSTRACT 
Modern real-time media-processing systems increasingly 
rely on software processing. Increasing speed and paral-
lelism in multi-core and graphics processors has opened 
the possibility of interconnecting and running multiple 
applications to process audio, video, graphics, and other 
data. However, latency can accumulate as media move 
through multiple stages of processing, timing can be un-
predictable, and synchronization is difficult. One solution 
to many of these problems is explicit and precise timing 
in which data and sample streams are organized and 
coordinated by logical time. This decouples media con-
sistency and synchronization from real time. We call this 
“time flow” by analogy to data-flow systems, and de-
scribe several levels of sophistication and capability in 
time-flow architectures. 

 

1. INTRODUCTION 
Time and synchronization are critical for music, video, 
and other media. In the early days of computer music, 
building even one real-time system was an achievement; 
so synchronizing multiple systems was not a common 
problem. Often, synchronization problems in early tech-
nologies were solved with synchronization signals such 
as MIDI clock, SMPTE, and sample clock, all running 
directly over copper for low-latency. These are simple 
solutions for simple systems. 

Today’s systems are dominated by software applica-
tions, distributed and/or parallel computing, and packet-
based networks. Synchronization is more complex, the 
types of media are more numerous, and systems are mov-
ing from experimental labs and performances to high-
budget venues including Broadway, opera, stadiums, and 
the like. 

One particular problem in synchronization that has 
emerged is buffering and the resulting latency. In earlier 
times, memory and computing were both expensive, so 
many processes were analog with no storage and very 
low latency.  Now consider a modern software-intensive 
system. Control might involve network transmission with 
associated packets and latency. Output will appear in the 

form of digital audio buffers that add latency. Additional 
processes might process the audio.  Even modern conver-
sion to analog implies delay for oversampling converters 
and interfacing. There are many opportunities for delays 
caused by scheduling and buffering that simply did not 
exist in more hardware-based systems. 

The same arguments apply to video and computer 
graphics. We have pipelines for software encoding, de-
coding, processing, rendering, and mixing. Projectors and 
flat-screen displays may have additional frame buffers for 
frame-rate conversion, interlacing, de-interlacing, and 
interpolation. GPUs put teraflops of compute power into 
our hands, making live interactive software video pro-
cessing more attractive. Video scheduling, timing, buffer-
ing, and synchronization now require careful thought. 

Not even experimental systems are solving synchroni-
zation and timing problems in a disciplined way. Moreo-
ver, the lack of solutions or even proposals has affected 
the design of APIs that often lose important information 
needed to solve synchronization problems. This paper 
aims to describe and analyze systematic solutions to the 
delivery of synchronized, interactive media using modern 
software-intensive computer systems. The ideas in this 
paper are not fully implemented, and our goal is to pro-
mote discussion and future designs.  

After describing some related work in the next section, 
we describe four approaches to synchronization in in-
creasing levels of sophistication. We call these Synchro-
nization Levels 0 through 3. This is followed by a discus-
sion of input, an example and conclusions. 

2. RELATED WORK 
Synchronization has been widely discussed. Of particular 
interest are specification schemes and frameworks [1]. 
(This reference cites a wealth of additional work.) One 
could view this work as “top-down,” telling us what we 
want to deliver, but very little has been done on the “bot-
tom-up” problem of implementation. The traditional view 
of devices – as responsive, dedicated, low-latency hard-
ware – is outdated and must be addressed. 

Anderson and Kuivila’s work on FORMULA [2] pro-
vides an excellent model for thinking about latency and 
synchronization in software. In FORMULA, timing is 
specified by scheduling and computing within a logical 
time system that runs in advance of real time. Output ac-
tions and data are tagged with the current logical time 
and delivered to a high-priority thread or interrupt han-
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dler for accurately timed delivery. This is essentially the 
same mechanism as “strong timing” in ChucK [7], was 
discussed specifically in Liang, Xia, and Dannenberg [6] 
and inspired time-stamps in OpenSound Control [8]. 
Brandt and Dannenberg [3] considered logical time and 
forward-synchronous timing in the face of distributed 
systems with varying output latency and varying tempo. 

Still, this is not enough, because: (1) systems are not 
necessarily composed of only two layers (e.g. client and 
server) and may have more (e.g. control, synthesis, mix, 
spacialization) and/or multiple media (audio, MIDI, vid-
eo, animation), and (2) current systems, APIs and proto-
cols are not written to share the underlying latency of 
media synthesis and delivery. When you change a filter 
parameter or press “go,” when does that take effect? If 
you plug an effects processor into your audio chain, does 
that change the latency and upset the synchronization? 

The PortAudio API (http://portaudio.com/docs/v19-
doxydocs/) hints at how useful information might be pro-
vided to applications. The audio callback function pro-
vides the time corresponding to audio input time, the cur-
rent real time, and the time corresponding to the audio 
output time. In principle, this information can be derived 
from hardware, e.g. USB audio devices can report inter-
nal processing delays [9]. 

3. LEVEL 0 SYNCHRONIZATION 
One approach to synchronization is simply to eliminate 

as much latency as possible, assume that latency is zero, 
and operate in real time. MIDI is an example of this ap-
proach we call “Level 0.” MIDI has no layer of timing 
specification, logical time, or even time-stamps. When 
you want something to happen, you send a message, and 
devices perform the command as quickly as possible. 

While Level 0 minimizes latency, synchronization be-
tween multiple devices or media is lost when the various 
output channels have different latencies. In addition, if 
there are variations in the amount of time it takes to com-
pute or communicate control information, the timing jitter 
that results is passed along to the output. 

4. LEVEL 1 SYNCHRONIZATION 
The next level of sophistication in synchronization is to 
apply time-stamps to events, computing the events in 
advance within a “control stage.” The computed events 
are delivered with time-stamps to a “rendering stage.” 
There, events are delayed according to time-stamps in 
order to produce accurately timed output. 

Level 1 employs this “forward synchronous” [3] timing 
to mask the timing jitter that arises during the computa-
tion of control information and also from communication 
delays. In addition, if control information is delivered in 
advance, rendering stages with different latencies can 
adjust time-stamps to compensate and produce synchro-
nized outputs as long as the latencies are known. 

Where networks are involved, time-stamps only have 
meaning if both systems agree on the time. This problem 
can be solved with clock synchronization protocols, and 
previous work has shown that very accurate clock syn-
chronization can be obtained with low overhead [3].  

Level 1 synchronization does not address the problems 
of audio delivery except in the simple case of directly 
rendering audio from control information and delivering 
the audio with a fixed, known latency. Moreover, Level 1 
does not deal well with any situation in which real-time 
data propagates through multiple stages of processing. 

5. LEVEL 2 SYNCHRONIZATION 
In multi-stage media processing, software modules accept 
control information and media streams as input, process 
them, and pass control and media along through further 
stages and ultimately to output devices. The paths of data 
may vary, may hop from one software application to an-
other, and may stream across local networks to take ad-
vantage of additional computing resources or I/O devices. 
We would like to consider all digital media including 
audio, video, computer animation, and even robots. 

The guiding principle of this approach will be the sepa-
ration of timing specifications (when data should ulti-
mately be delivered) and real time (the current time re-
ported by a clock synchronization protocol). We use for-
ward synchronous timing as in Level 1, but carefully 
manage and forward time-stamps through many stages. 

Level 2 introduces some new problems to solve: 
1. We do not restrict computing to two stages, 
2. We consider “continuous” audio and video streams 

along with discrete, time-stamped control infor-
mation, and 

3. We need to combine control information and media 
streams from different sources. 

Each of these problems is considered in the following 
subsections. 

5.1 Handling Multiple Stages 

In the simplest case of multiple stages, consider a single 
source, a single sink, and a multi-stage pipeline in be-
tween. In Figure 1, we see a source, three stages of pro-
cessing, and a sink (the output). Control information is 
computed by the source at time t−L, where t is the logical 
time and L (for Latency) is the time advance – how early 
to compute things relative to their output times. Since t is 
the desired real output time, t is the time-stamp, but since 
the logical time system runs L seconds ahead of real time, 
the message is delivered to the first stage at approximate-
ly t−L. Each stage adds some delay (Δ1, Δ2 and Δ3), so the 
data (or data derived through processing) is forwarded to 
successive stages at times t−L+Δ1 and t−L+Δ1+Δ2. Since 
the final stage is the output stage, it holds and delivers 
output according to the time-stamp at time t. Note that 
this assumes L ≥ Δ1+Δ2+Δ3, otherwise the output would 
be late and should be delivered as soon as possible. 

We do not assume processing stages or communica-
tions take fixed amounts of time, so information could 
arrive at the last stage as early as t−L (assuming no delays 
whatsoever) or as late as t−L+Δ1+Δ2+Δ3. The key is that 
the time-stamp allows the final stage to compensate for 
any delays encountered along the way. 

How can the source discover the overall latency (which 
among other things is the basis for determining L)? We 
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propose that protocols for sending timed events can offer 
this information through messages when connections are 
made. As shown by the dashed lines in Figure 1, each 
stage computes and sends the overall output delay to its 
immediate upstream stage(s). In practice, these delays 
might include expected, recommended and worst case 
delays, allowing the source to make the tradeoff between 
eliminating all late output (large L) and achieving lower 
latency (small L). 

 
Figure 1. Forward-synchronous time-stamped data in 
multiple stages. x@y means data is time-stamped with x 
and delivered at real time y. The dashed lines show de-
lay information passed upstream. 

5.2 Audio and Video Streams 

Now suppose the data in Figure 1 is sampled data, either 
audio samples or constant frame-rate video frames. Be-
cause the data is “synchronous,” we do not place time-
stamps on the data. Instead, we expect samples to emerge 
from the output at exactly the sample rate. Current sys-
tems essentially use Level 0, attempting to solve syn-
chronization problems by lowering latencies and control-
ling timing at the source. (The output time will only be a 
short time interval later, and we ignore the difference or 
adjust timing at the input after estimating the latency). 

Our approach is different: we start the stream in a 
known relationship to real-time (and recall that we can 
have synchronized clocks across all stages even if they 
are on separate computers). A simple way to synchronize 
the stream is to specify the starting time (t) in the future, 
start producing samples L seconds ahead (at t−L) and rely 
on the output stage, e.g. the device and device driver, to 
deliver the first sample at the correct time. 

As with event synchronization, each audio stage in this 
example might run with lower latency than the anticipat-
ed Δi. Because samples are synchronous, this would lead 
to samples accumulating in buffers in the output stage, 
but this is good because additional buffering will lower 
the likelihood of underflow in the event that some up-
stream stage is delayed. Regardless of actual delays and 
buffer sizes, each stage keeps track of the logical time of 
the stream, i.e. when each sample is due to be output. 
This information will be used when combining streams as 
described in the next subsection. 

5.3 Combining Streams from Different Sources 

The third problem mentioned earlier is combining data 
from multiple streams. Consider Figure 2, where data 
from a single source is routed to two different processing 
stages A and B, then mixed together. For now, refer to 
the solid lines and ignore the dashed lines. If A has high 
latency and B has low latency, then without some com-
pensation, the data processed by A will effectively be 
delayed relative to the data processed by B. This could 
cause unwanted phasing effects in audio, or in more 

complex situations, a loss of synchronization between 
video and audio that derive from a common source. 

 
Figure 2. A simple example illustrating the combina-
tion of synchronized streams. The source is processed 
by two stages A (top) and B (bottom) and combined in 
the output stage (right). 

This problem is solved using the Level 2 scheme of start-
ing streams with a known timing state and keeping track 
of stream times. Assuming audio streams, when samples 
arrive from B at the output stage, they are held in buffers 
until the intended output time t. Thus, even if A has high 
latency, the samples from B will not yet be consumed, 
their intended timing is known, and they can be aligned 
with A’s samples and combined properly. 

Notice that Processes A and B do not need any infor-
mation about the overall configuration. Thus, we preserve 
the idea that audio processing systems can be constructed 
modularly from independent software components. Also, 
the same idea of reporting cumulative delay upstream to 
source stages applies here (although not shown in Figure 
2). Where streams split (as in the source connecting to 
both A and B), the cumulative delay seen by the upstream 
stage is the maximum of all the downstream stages to 
which the upstream stage connects. 

5.4 Combining Streams of Discrete Timed Events 

Control updates, note-on messages or messages that trig-
ger some kind of processing are not quite as simple in 
this architecture as sampled streams. Timed “events” 
delivered at discrete times cause the stream time to ad-
vance by arbitrary jumps, and we cannot know when the 
next event will occur. Thus, there is some danger that – in 
an effort to process events as quickly as possible – events 
from two sources will be processed out of order. 

Referring again to Figure 2, if B delivers an event with 
time-stamp t to the output stage, it may be safe to process 
the event right away (for example, this might result in 
inserting the event into a time-stamped FIFO output 
queue). On the other hand, at that moment, stage A might 
deliver an event with time-stamp t−ε, in other words, just 
before the event from B. This is possible because A has 
greater latency and simply took longer to produce an 
event, even though the event has an earlier time-stamp. 

Assuming no other information is available, the stage 
combining events from A and B should wait long enough 
to ensure any events from A for time <t have been re-
ceived before processing any events from B for time ≥t. 
How long is that? In this case, A has latency ΔA, so we 
expect to receive events from A at time t−L+ΔA at the 
latest. Thus, it is safe to process events from B after 
t−L+ΔA. The latency after which we can expect all input 
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to be available is shown as dashed lines in Figure 2. 
Thus, in addition to communicating data upstream about 
latency (dashed lines in Figure 1), Level 2 protocols 
should communicate the maximum allowable time ad-
vance for discrete timed data to downstream processes 
(dashed lines in Figure 2). 

5.5 Time-Flow Systems 

Throughout this discussion, we are building upon the idea 
of timed data. If all information is time-stamped and pro-
cessed in time order, we have a conceptually simple 
model that leads to specifiable and predictable computa-
tion. A key feature of this overall model is that if we 
know all the input in advance of real time, we can per-
form the computation immediately. Just as “data-flow” 
systems permit computation to proceed as soon as input 
data is available, we coin the term “time-flow” to de-
scribe systems where computation can proceed as soon as 
the next logical time of all inputs has been reached, and 
where logical time can be ahead of real time. 

This idea that computation can run ahead of real time is 
not just an optimization but an absolute requirement in 
the case of audio samples and video frame buffers – data 
must be pre-computed and buffered before the output 
takes place – so the model fits nicely with reality. 

6. LEVEL 3 SYNCHRONIZATION 
An interesting development in the direction of modular 
software-intensive audio processing systems is the JACK 
Audio Connection Kit (www.jackaudio.org), which al-
lows multiple applications in separate address spaces to 
exchange audio in real time. What are the latency impli-
cations of spreading computation across multiple applica-
tions? JACK takes the view that latency is most critical, 
and originally, JACK serialized audio computation. In a 
pipeline configuration like Figure 1, JACK would send 
input to stage 1, run it, send stage 1 output to stage 2, run 
it, send stage 2 output to stage 3, etc. This means that 
each stage effectively adds no additional buffers or delay 
to the total audio processing chain. 

6.1 Concurrency vs. Latency 

Concurrency was added to JACK [12] so that if the sig-
nal graph has parallel paths, such as A and B in Figure 2, 
JACK can deliver samples to both A and B together, al-
lowing them to run in parallel. In principle, parallelism 
can also be achieved in a pipeline configuration like Fig-
ure 1, provided that pipeline stages are working on differ-
ent logical times within the audio stream. This requires 
additional buffers and increases latency, and therefore is 
not supported in JACK. 

6.2 Allocating Latency 

In Level 3 synchronization, we address the problem of 
trading off concurrency with latency. Unfortunately, a 
truly independent, modular solution does not seem to 
exist. Instead, we need some sort of planning and coordi-
nation to optimize the “allocation” of latency, in other 

words the placement of buffers to meet overall latency 
and performance requirements. 

For example, imagine that stages 1 and 2 in Figure 1 
run on separate computers. Due to communication costs, 
it might not even be possible to take the JACK approach 
of running stages sequentially, waiting to send data to the 
remote computer, processing the data, and returning it, all 
before continuing. Instead, we need some buffers to allow 
computation and communication to run in parallel. The 
added latency here might preclude additional buffers to 
allow for concurrency elsewhere in the pipeline. 

We define Level 3 synchronization as a network of pro-
cesses using time-flow techniques – time-stamped data 
and sample streams that offer precise timing – with the 
addition of global optimization of buffers and processors 
to find a computationally feasible configuration that ei-
ther minimizes latency or produces an acceptable latency.  

As with all real-time systems, performance guarantees 
depend upon an accurate characterization of resources 
and the workload, but often in music and creative appli-
cations, information is limited and requirements change 
rapidly during the creative process. While optimal con-
figuration might not be possible, we can at least build 
systems that can measure performance, spot the most 
time-critical elements, and assist us in tuning to get the 
best performance even if it is not completely predictable. 

7. SYNCHRONIZING WITH INPUT 
One apparent disadvantage of time-stamp-based synchro-
nization is that, to hide variations in latency, output is 
intentionally delayed. Almost by definition, input and 
output cannot be synchronized due to delay. However, 
time-stamps and synchronization techniques are not the 
real problem here. Even Level 0, with no time-stamps or 
explicit synchronization, exhibits delay from input to 
output. In audio-input-to-audio-output systems, the delay 
is normally constant, just as in a time-stamped forward-
synchronous approach. In event-input-to-event-output 
systems, the delay is minimized in Level 0 systems by 
running as fast as possible, but at the expense of greater 
jitter. In contrast, time-stamped forward-synchronous 
(Level 1 and 2) systems can reduce jitter through precise 
timing. However, they can also achieve minimal delay on 
each event by setting the time advance (L) to zero. Zero 
time-advance makes time-stamps rather pointless, but by 
adjusting time-advance upwards, one can achieve a com-
promise: events that can be delivered within the time ad-
vance (L) are delayed, eliminating jitter, while events that 
are delayed longer are delivered as soon as possible. 
There is no absolute requirement to eliminate all jitter by 
adding excessive delay. 

What can be done to synchronize output to input? There 
are at least two possibilities, both forms of prediction. 
The first is anticipation of musical timing, which is nec-
essary even for humans to perform together. Humans 
require more than 100ms to react physically to sound 
[10], so clearly we must anticipate future actions. Simi-
larly, software systems can schedule events in the future 
based on (1) models of tempo, (2) timed sequences 
(scores), (3) tracking human gestures, e.g. using position 
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and velocity to predict when a drum stick will hit the 
drum [11].  

The second possibility, introduced in FORMULA, is to 
“launch” sequences with no time advance. Imagine that 
you want to press a key to launch a musical sequence in 
time with a live drummer. (And assume that matching 
tempo is not a problem.) Ideally, you would just press the 
key in time with the drummer, and your music would 
begin with zero latency and be synchronized. In reality, 
let’s say there is a 40ms latency to produce output, so 
your music will be 40ms late. Within our synchronization 
framework, if the key is pressed at t, we would schedule 
the output as early as feasible: at t+40ms. Alternatively, 
we could schedule the output at time t, in which case the 
first note would begin late but would start as soon as pos-
sible. Subsequent note events in the sequence are sched-
uled more than 40ms in advance, and therefore the musi-
cal sequence will “catch up” and be synchronized. 

In practice, none of these approaches offers a full solu-
tion, but with time-stamps and the synchronization tech-
niques proposed here, various methods can be combined. 
For example, we can play fixed sequences or smoothly 
adjust parameters with enough time advance to mask high 
latency, and we can simultaneously manage more interac-
tive, low-latency streams, using precise time-stamps to 
coordinate and synchronize everything. 

8. A DEMONSTRATION OF CONCEPTS 
To illustrate concepts further, we describe some real ex-
amples. In 2016, we created an extensive implementation 
for an “Internet Drum Circle.” Successful group drum-
ming has very low latency requirements compared to 
wide area network latency, so we accurately record and 
time-stamp drumming (as events, not as audio), send the 
data to remote sites, and reproduce the drumming accu-
rately after exactly one cycle (usually 8 beats)1. In princi-
ple, this approach, similar to [5], can ensure millisecond-
level accuracy. It is also a good illustration of a Level 1 
time-flow architecture: compute and send data with time-
stamps, potentially with high-latency, then render the 
data precisely according to the time-stamps. 

Unfortunately, in our system, rendering took place in a 
variety of different laptops with different software syn-
thesizers and different latencies, some of which were 
quite high. This illustrates the shortcomings of Level 1 
architectures when working with multiple processing 
stages. Level 2 offers a solution (although not supported 
in current applications and APIs): First, the synthesizers 
should accept not just MIDI events but time-stamped 
messages.2 Second, the audio output from the synthesizer 
should be timed so that the synthesizer can introduce 
sound events into the audio stream according to stream 
logical time rather than real time to ensure output is heard 
at the right time. Ultimately the variability in audio laten-

                                                             
1 We make no claims about this as a mode of telematic music 
performance, and we hope to report on musical and social as-
pects of this project in the future. For now, we merely present it 
as a source of technical challenges. 
2 In fact, on Mac OS X, MIDI events are time-stamped, and 
many AU and VST plug-ins interpret them. 

cy across different computers interfered with the sense of 
pulse and entrainment, so we are working on an improved 
lower latency audio version also using Level 2 concepts. 

In a more recent distributed performance implementa-
tion, we modified our software to give every laptop a 
100ms “rendering latency budget.” Even though we can-
not know through software and APIs what will be the 
synthesis latency, we can adjust a slider on the user inter-
face by listening in order to synchronize with other lap-
tops. 3 In this more successful performance, which was 
based on synchronized compositional algorithms in a 
laptop orchestra, we used O2 [4] for clock synchroniza-
tion and communication. A central control “conductor” 
sent tempo, meter, harmony, style and play/rest parame-
ters to about 20 connected laptops. There, human per-
formers controlled additional parameters interactively as 
algorithms generated precisely timed MIDI and audio. A 
video is posted at https://youtu.be/icLUJMM-11M. 

To summarize, in the distributed system, a clock syn-
chronization protocol gives a common time reference to 
every machine. Time-stamped control data are delivered 
to different machines well in advance of the time-stamps. 
Rather than waiting for the time-stamp to expire, the lap-
tops subtract the synthesis latencies and deliver the data 
ahead of the time-stamp by that amount. Potentially, eve-
ry laptop sends information to their synthesizer at a 
slightly different time to obtain synchronized output. 
Thus, we achieve end-to-end synchronization through 
multiple processing stages and across multiple output 
devices. 

9. SUMMARY AND CONCLUSIONS 
Current systems for media processing seem to have been 
developed with hardware and analog models in mind. 
Rather than treat latency as something to reduce, elimi-
nate or simply ignore, we should treat timing as a funda-
mental property of our data and manage time, scheduling, 
and buffering throughout our systems and applications. 

To encourage new approaches to timing and synchroni-
zation in creative multimedia systems, we describe sever-
al levels of sophistication. We define Level 0 as “best 
effort” low-latency systems that do not keep track of 
time. Level 1 systems are 2-stage “forward synchronous” 
systems where control information and media streams are 
computed with time-stamps that specify the delivery 
time. Even Level 1 is an advance over most current sys-
tems because precise timing can help to coordinate con-
trol updates and coordinate the delivery of audio, video, 
and other media. 

Level 2 extends Level 1 by considering multiple stages 
of processing, addressing the needs of modern software-
intensive, modular media processing systems, where mul-
tiple applications might be employed together. In Level 2, 
applications propagate information about latency to both 
upstream and downstream stages, allowing applications 
to synchronize and merge multiple input streams and 
                                                             
3 This is similar to Ableton’s External Instrument Hardware 
Latency control; see https://help.ableton.com/hc/en-us/articles/ 
209774265-Using-external-hardware-with-Live, except we are 
synchronizing multiple stages from “conductor” to “performer” 
to synthesizer. 
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events, predict the total end-to-end latency, and synchro-
nize multiple media output devices. 

Level 3 describes systems that globally optimize and 
configure in order to obtain adequate performance while 
minimizing latency (or maximize performance while 
keeping latency to an acceptable level). We discussed 
some of the problems and motivation for Level 3 sys-
tems, but leave a detailed design to future work. 

9.1 What Does This Work Suggest? 

One of the main results we offer is the possibility of 
much better timing and synchronization using a systemat-
ic approach. In particular, our Level 2 model offers some 
very nice properties including: 
1. Synchronized delivery of multiple media streams, 
2. Modular design supporting inter-operation of applica-

tions even across multiple operating systems, 
3. Feedback to users/composers/designers about latency 

and performance, 
4. Coordination of timed events with timed media 

streams as opposed to asynchronous updates. 
Achieving all this requires a re-thinking of the API’s and 
models used in current software. There are many indica-
tions that software designers are concerned and aware of 
these problems. For example, the USB protocol for audio 
offers latency information from hardware to device driv-
ers [9], and JACK allows audio applications to inform 
JACK if they insert delay into the audio stream. 

9.2 Future Work 

While this paper has discussed principles and architectur-
al considerations, there is much more work to be done. 
One way to proceed would be to create an experimental 
system embodying these concepts and demonstrating 
end-to-end synchronization across media and applica-
tions. The lessons learned could be useful in creating 
future Audio API’s. 

It would also be interesting to see how some existing 
APIs such as Core Audio, JACK, PortAudio, PortMidi, 
etc. could be extended to support time-flow systems. 

Another concern is how will programmers build real 
systems around time flow? It is a lot to ask a DSP coder 
to correctly perform scheduling, manage time-stamps and 
track logical time in a time-flow network. However, lan-
guages like FORMULA and ChucK already encapsulate 
explicit timing into very usable computational frame-
works, as have many toolkits, so it should be possible to 
integrate a more complete Level 2 approach into existing 
software frameworks. 

These concepts also have implications for streaming 
protocols and web delivery, where time-stamps and time 
flow might help with synchronization, especially as au-
dio, MIDI, and video begin to be incorporated as both 
inputs and outputs in web applications. 
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