
Published as: Roger B. Dannenberg, “Time-Flow Concepts and Architectures For Music and Media Synchronization,” in
Proceedings of the 43rd International Computer Music Conference, International Computer Music Association, 2017, pp.
104-109.

104

Time-Flow Concepts and Architectures For Music and
Media Synchronization

 Roger B. Dannenberg

 Carnegie Mellon University
rbd@cs.cmu.edu

ABSTRACT
Modern real-time media-processing systems increasingly
rely on software processing. Increasing speed and paral-
lelism in multi-core and graphics processors has opened
the possibility of interconnecting and running multiple
applications to process audio, video, graphics, and other
data. However, latency can accumulate as media move
through multiple stages of processing, timing can be un-
predictable, and synchronization is difficult. One solution
to many of these problems is explicit and precise timing
in which data and sample streams are organized and
coordinated by logical time. This decouples media con-
sistency and synchronization from real time. We call this
“time flow” by analogy to data-flow systems, and de-
scribe several levels of sophistication and capability in
time-flow architectures.

1. INTRODUCTION
Time and synchronization are critical for music, video,
and other media. In the early days of computer music,
building even one real-time system was an achievement;
so synchronizing multiple systems was not a common
problem. Often, synchronization problems in early tech-
nologies were solved with synchronization signals such
as MIDI clock, SMPTE, and sample clock, all running
directly over copper for low-latency. These are simple
solutions for simple systems.

Today’s systems are dominated by software applica-
tions, distributed and/or parallel computing, and packet-
based networks. Synchronization is more complex, the
types of media are more numerous, and systems are mov-
ing from experimental labs and performances to high-
budget venues including Broadway, opera, stadiums, and
the like.

One particular problem in synchronization that has
emerged is buffering and the resulting latency. In earlier
times, memory and computing were both expensive, so
many processes were analog with no storage and very
low latency. Now consider a modern software-intensive
system. Control might involve network transmission with
associated packets and latency. Output will appear in the

form of digital audio buffers that add latency. Additional
processes might process the audio. Even modern conver-
sion to analog implies delay for oversampling converters
and interfacing. There are many opportunities for delays
caused by scheduling and buffering that simply did not
exist in more hardware-based systems.

The same arguments apply to video and computer
graphics. We have pipelines for software encoding, de-
coding, processing, rendering, and mixing. Projectors and
flat-screen displays may have additional frame buffers for
frame-rate conversion, interlacing, de-interlacing, and
interpolation. GPUs put teraflops of compute power into
our hands, making live interactive software video pro-
cessing more attractive. Video scheduling, timing, buffer-
ing, and synchronization now require careful thought.

Not even experimental systems are solving synchroni-
zation and timing problems in a disciplined way. Moreo-
ver, the lack of solutions or even proposals has affected
the design of APIs that often lose important information
needed to solve synchronization problems. This paper
aims to describe and analyze systematic solutions to the
delivery of synchronized, interactive media using modern
software-intensive computer systems. The ideas in this
paper are not fully implemented, and our goal is to pro-
mote discussion and future designs.

After describing some related work in the next section,
we describe four approaches to synchronization in in-
creasing levels of sophistication. We call these Synchro-
nization Levels 0 through 3. This is followed by a discus-
sion of input, an example and conclusions.

2. RELATED WORK
Synchronization has been widely discussed. Of particular
interest are specification schemes and frameworks [1].
(This reference cites a wealth of additional work.) One
could view this work as “top-down,” telling us what we
want to deliver, but very little has been done on the “bot-
tom-up” problem of implementation. The traditional view
of devices – as responsive, dedicated, low-latency hard-
ware – is outdated and must be addressed.

Anderson and Kuivila’s work on FORMULA [2] pro-
vides an excellent model for thinking about latency and
synchronization in software. In FORMULA, timing is
specified by scheduling and computing within a logical
time system that runs in advance of real time. Output ac-
tions and data are tagged with the current logical time
and delivered to a high-priority thread or interrupt han-

Copyright: © 2017 Roger B. Dannenberg. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are
credited.

 105

dler for accurately timed delivery. This is essentially the
same mechanism as “strong timing” in ChucK [7], was
discussed specifically in Liang, Xia, and Dannenberg [6]
and inspired time-stamps in OpenSound Control [8].
Brandt and Dannenberg [3] considered logical time and
forward-synchronous timing in the face of distributed
systems with varying output latency and varying tempo.

Still, this is not enough, because: (1) systems are not
necessarily composed of only two layers (e.g. client and
server) and may have more (e.g. control, synthesis, mix,
spacialization) and/or multiple media (audio, MIDI, vid-
eo, animation), and (2) current systems, APIs and proto-
cols are not written to share the underlying latency of
media synthesis and delivery. When you change a filter
parameter or press “go,” when does that take effect? If
you plug an effects processor into your audio chain, does
that change the latency and upset the synchronization?

The PortAudio API (http://portaudio.com/docs/v19-
doxydocs/) hints at how useful information might be pro-
vided to applications. The audio callback function pro-
vides the time corresponding to audio input time, the cur-
rent real time, and the time corresponding to the audio
output time. In principle, this information can be derived
from hardware, e.g. USB audio devices can report inter-
nal processing delays [9].

3. LEVEL 0 SYNCHRONIZATION
One approach to synchronization is simply to eliminate

as much latency as possible, assume that latency is zero,
and operate in real time. MIDI is an example of this ap-
proach we call “Level 0.” MIDI has no layer of timing
specification, logical time, or even time-stamps. When
you want something to happen, you send a message, and
devices perform the command as quickly as possible.

While Level 0 minimizes latency, synchronization be-
tween multiple devices or media is lost when the various
output channels have different latencies. In addition, if
there are variations in the amount of time it takes to com-
pute or communicate control information, the timing jitter
that results is passed along to the output.

4. LEVEL 1 SYNCHRONIZATION
The next level of sophistication in synchronization is to
apply time-stamps to events, computing the events in
advance within a “control stage.” The computed events
are delivered with time-stamps to a “rendering stage.”
There, events are delayed according to time-stamps in
order to produce accurately timed output.

Level 1 employs this “forward synchronous” [3] timing
to mask the timing jitter that arises during the computa-
tion of control information and also from communication
delays. In addition, if control information is delivered in
advance, rendering stages with different latencies can
adjust time-stamps to compensate and produce synchro-
nized outputs as long as the latencies are known.

Where networks are involved, time-stamps only have
meaning if both systems agree on the time. This problem
can be solved with clock synchronization protocols, and
previous work has shown that very accurate clock syn-
chronization can be obtained with low overhead [3].

Level 1 synchronization does not address the problems
of audio delivery except in the simple case of directly
rendering audio from control information and delivering
the audio with a fixed, known latency. Moreover, Level 1
does not deal well with any situation in which real-time
data propagates through multiple stages of processing.

5. LEVEL 2 SYNCHRONIZATION
In multi-stage media processing, software modules accept
control information and media streams as input, process
them, and pass control and media along through further
stages and ultimately to output devices. The paths of data
may vary, may hop from one software application to an-
other, and may stream across local networks to take ad-
vantage of additional computing resources or I/O devices.
We would like to consider all digital media including
audio, video, computer animation, and even robots.

The guiding principle of this approach will be the sepa-
ration of timing specifications (when data should ulti-
mately be delivered) and real time (the current time re-
ported by a clock synchronization protocol). We use for-
ward synchronous timing as in Level 1, but carefully
manage and forward time-stamps through many stages.

Level 2 introduces some new problems to solve:
1. We do not restrict computing to two stages,
2. We consider “continuous” audio and video streams

along with discrete, time-stamped control infor-
mation, and

3. We need to combine control information and media
streams from different sources.

Each of these problems is considered in the following
subsections.

5.1 Handling Multiple Stages

In the simplest case of multiple stages, consider a single
source, a single sink, and a multi-stage pipeline in be-
tween. In Figure 1, we see a source, three stages of pro-
cessing, and a sink (the output). Control information is
computed by the source at time t−L, where t is the logical
time and L (for Latency) is the time advance – how early
to compute things relative to their output times. Since t is
the desired real output time, t is the time-stamp, but since
the logical time system runs L seconds ahead of real time,
the message is delivered to the first stage at approximate-
ly t−L. Each stage adds some delay (Δ1, Δ2 and Δ3), so the
data (or data derived through processing) is forwarded to
successive stages at times t−L+Δ1 and t−L+Δ1+Δ2. Since
the final stage is the output stage, it holds and delivers
output according to the time-stamp at time t. Note that
this assumes L ≥ Δ1+Δ2+Δ3, otherwise the output would
be late and should be delivered as soon as possible.

We do not assume processing stages or communica-
tions take fixed amounts of time, so information could
arrive at the last stage as early as t−L (assuming no delays
whatsoever) or as late as t−L+Δ1+Δ2+Δ3. The key is that
the time-stamp allows the final stage to compensate for
any delays encountered along the way.

How can the source discover the overall latency (which
among other things is the basis for determining L)? We

 106

propose that protocols for sending timed events can offer
this information through messages when connections are
made. As shown by the dashed lines in Figure 1, each
stage computes and sends the overall output delay to its
immediate upstream stage(s). In practice, these delays
might include expected, recommended and worst case
delays, allowing the source to make the tradeoff between
eliminating all late output (large L) and achieving lower
latency (small L).

Figure 1. Forward-synchronous time-stamped data in
multiple stages. x@y means data is time-stamped with x
and delivered at real time y. The dashed lines show de-
lay information passed upstream.

5.2 Audio and Video Streams

Now suppose the data in Figure 1 is sampled data, either
audio samples or constant frame-rate video frames. Be-
cause the data is “synchronous,” we do not place time-
stamps on the data. Instead, we expect samples to emerge
from the output at exactly the sample rate. Current sys-
tems essentially use Level 0, attempting to solve syn-
chronization problems by lowering latencies and control-
ling timing at the source. (The output time will only be a
short time interval later, and we ignore the difference or
adjust timing at the input after estimating the latency).

Our approach is different: we start the stream in a
known relationship to real-time (and recall that we can
have synchronized clocks across all stages even if they
are on separate computers). A simple way to synchronize
the stream is to specify the starting time (t) in the future,
start producing samples L seconds ahead (at t−L) and rely
on the output stage, e.g. the device and device driver, to
deliver the first sample at the correct time.

As with event synchronization, each audio stage in this
example might run with lower latency than the anticipat-
ed Δi. Because samples are synchronous, this would lead
to samples accumulating in buffers in the output stage,
but this is good because additional buffering will lower
the likelihood of underflow in the event that some up-
stream stage is delayed. Regardless of actual delays and
buffer sizes, each stage keeps track of the logical time of
the stream, i.e. when each sample is due to be output.
This information will be used when combining streams as
described in the next subsection.

5.3 Combining Streams from Different Sources

The third problem mentioned earlier is combining data
from multiple streams. Consider Figure 2, where data
from a single source is routed to two different processing
stages A and B, then mixed together. For now, refer to
the solid lines and ignore the dashed lines. If A has high
latency and B has low latency, then without some com-
pensation, the data processed by A will effectively be
delayed relative to the data processed by B. This could
cause unwanted phasing effects in audio, or in more

complex situations, a loss of synchronization between
video and audio that derive from a common source.

Figure 2. A simple example illustrating the combina-
tion of synchronized streams. The source is processed
by two stages A (top) and B (bottom) and combined in
the output stage (right).

This problem is solved using the Level 2 scheme of start-
ing streams with a known timing state and keeping track
of stream times. Assuming audio streams, when samples
arrive from B at the output stage, they are held in buffers
until the intended output time t. Thus, even if A has high
latency, the samples from B will not yet be consumed,
their intended timing is known, and they can be aligned
with A’s samples and combined properly.

Notice that Processes A and B do not need any infor-
mation about the overall configuration. Thus, we preserve
the idea that audio processing systems can be constructed
modularly from independent software components. Also,
the same idea of reporting cumulative delay upstream to
source stages applies here (although not shown in Figure
2). Where streams split (as in the source connecting to
both A and B), the cumulative delay seen by the upstream
stage is the maximum of all the downstream stages to
which the upstream stage connects.

5.4 Combining Streams of Discrete Timed Events

Control updates, note-on messages or messages that trig-
ger some kind of processing are not quite as simple in
this architecture as sampled streams. Timed “events”
delivered at discrete times cause the stream time to ad-
vance by arbitrary jumps, and we cannot know when the
next event will occur. Thus, there is some danger that – in
an effort to process events as quickly as possible – events
from two sources will be processed out of order.

Referring again to Figure 2, if B delivers an event with
time-stamp t to the output stage, it may be safe to process
the event right away (for example, this might result in
inserting the event into a time-stamped FIFO output
queue). On the other hand, at that moment, stage A might
deliver an event with time-stamp t−ε, in other words, just
before the event from B. This is possible because A has
greater latency and simply took longer to produce an
event, even though the event has an earlier time-stamp.

Assuming no other information is available, the stage
combining events from A and B should wait long enough
to ensure any events from A for time <t have been re-
ceived before processing any events from B for time ≥t.
How long is that? In this case, A has latency ΔA, so we
expect to receive events from A at time t−L+ΔA at the
latest. Thus, it is safe to process events from B after
t−L+ΔA. The latency after which we can expect all input

 107

to be available is shown as dashed lines in Figure 2.
Thus, in addition to communicating data upstream about
latency (dashed lines in Figure 1), Level 2 protocols
should communicate the maximum allowable time ad-
vance for discrete timed data to downstream processes
(dashed lines in Figure 2).

5.5 Time-Flow Systems

Throughout this discussion, we are building upon the idea
of timed data. If all information is time-stamped and pro-
cessed in time order, we have a conceptually simple
model that leads to specifiable and predictable computa-
tion. A key feature of this overall model is that if we
know all the input in advance of real time, we can per-
form the computation immediately. Just as “data-flow”
systems permit computation to proceed as soon as input
data is available, we coin the term “time-flow” to de-
scribe systems where computation can proceed as soon as
the next logical time of all inputs has been reached, and
where logical time can be ahead of real time.

This idea that computation can run ahead of real time is
not just an optimization but an absolute requirement in
the case of audio samples and video frame buffers – data
must be pre-computed and buffered before the output
takes place – so the model fits nicely with reality.

6. LEVEL 3 SYNCHRONIZATION
An interesting development in the direction of modular
software-intensive audio processing systems is the JACK
Audio Connection Kit (www.jackaudio.org), which al-
lows multiple applications in separate address spaces to
exchange audio in real time. What are the latency impli-
cations of spreading computation across multiple applica-
tions? JACK takes the view that latency is most critical,
and originally, JACK serialized audio computation. In a
pipeline configuration like Figure 1, JACK would send
input to stage 1, run it, send stage 1 output to stage 2, run
it, send stage 2 output to stage 3, etc. This means that
each stage effectively adds no additional buffers or delay
to the total audio processing chain.

6.1 Concurrency vs. Latency

Concurrency was added to JACK [12] so that if the sig-
nal graph has parallel paths, such as A and B in Figure 2,
JACK can deliver samples to both A and B together, al-
lowing them to run in parallel. In principle, parallelism
can also be achieved in a pipeline configuration like Fig-
ure 1, provided that pipeline stages are working on differ-
ent logical times within the audio stream. This requires
additional buffers and increases latency, and therefore is
not supported in JACK.

6.2 Allocating Latency

In Level 3 synchronization, we address the problem of
trading off concurrency with latency. Unfortunately, a
truly independent, modular solution does not seem to
exist. Instead, we need some sort of planning and coordi-
nation to optimize the “allocation” of latency, in other

words the placement of buffers to meet overall latency
and performance requirements.

For example, imagine that stages 1 and 2 in Figure 1
run on separate computers. Due to communication costs,
it might not even be possible to take the JACK approach
of running stages sequentially, waiting to send data to the
remote computer, processing the data, and returning it, all
before continuing. Instead, we need some buffers to allow
computation and communication to run in parallel. The
added latency here might preclude additional buffers to
allow for concurrency elsewhere in the pipeline.

We define Level 3 synchronization as a network of pro-
cesses using time-flow techniques – time-stamped data
and sample streams that offer precise timing – with the
addition of global optimization of buffers and processors
to find a computationally feasible configuration that ei-
ther minimizes latency or produces an acceptable latency.

As with all real-time systems, performance guarantees
depend upon an accurate characterization of resources
and the workload, but often in music and creative appli-
cations, information is limited and requirements change
rapidly during the creative process. While optimal con-
figuration might not be possible, we can at least build
systems that can measure performance, spot the most
time-critical elements, and assist us in tuning to get the
best performance even if it is not completely predictable.

7. SYNCHRONIZING WITH INPUT
One apparent disadvantage of time-stamp-based synchro-
nization is that, to hide variations in latency, output is
intentionally delayed. Almost by definition, input and
output cannot be synchronized due to delay. However,
time-stamps and synchronization techniques are not the
real problem here. Even Level 0, with no time-stamps or
explicit synchronization, exhibits delay from input to
output. In audio-input-to-audio-output systems, the delay
is normally constant, just as in a time-stamped forward-
synchronous approach. In event-input-to-event-output
systems, the delay is minimized in Level 0 systems by
running as fast as possible, but at the expense of greater
jitter. In contrast, time-stamped forward-synchronous
(Level 1 and 2) systems can reduce jitter through precise
timing. However, they can also achieve minimal delay on
each event by setting the time advance (L) to zero. Zero
time-advance makes time-stamps rather pointless, but by
adjusting time-advance upwards, one can achieve a com-
promise: events that can be delivered within the time ad-
vance (L) are delayed, eliminating jitter, while events that
are delayed longer are delivered as soon as possible.
There is no absolute requirement to eliminate all jitter by
adding excessive delay.

What can be done to synchronize output to input? There
are at least two possibilities, both forms of prediction.
The first is anticipation of musical timing, which is nec-
essary even for humans to perform together. Humans
require more than 100ms to react physically to sound
[10], so clearly we must anticipate future actions. Simi-
larly, software systems can schedule events in the future
based on (1) models of tempo, (2) timed sequences
(scores), (3) tracking human gestures, e.g. using position

 108

and velocity to predict when a drum stick will hit the
drum [11].

The second possibility, introduced in FORMULA, is to
“launch” sequences with no time advance. Imagine that
you want to press a key to launch a musical sequence in
time with a live drummer. (And assume that matching
tempo is not a problem.) Ideally, you would just press the
key in time with the drummer, and your music would
begin with zero latency and be synchronized. In reality,
let’s say there is a 40ms latency to produce output, so
your music will be 40ms late. Within our synchronization
framework, if the key is pressed at t, we would schedule
the output as early as feasible: at t+40ms. Alternatively,
we could schedule the output at time t, in which case the
first note would begin late but would start as soon as pos-
sible. Subsequent note events in the sequence are sched-
uled more than 40ms in advance, and therefore the musi-
cal sequence will “catch up” and be synchronized.

In practice, none of these approaches offers a full solu-
tion, but with time-stamps and the synchronization tech-
niques proposed here, various methods can be combined.
For example, we can play fixed sequences or smoothly
adjust parameters with enough time advance to mask high
latency, and we can simultaneously manage more interac-
tive, low-latency streams, using precise time-stamps to
coordinate and synchronize everything.

8. A DEMONSTRATION OF CONCEPTS
To illustrate concepts further, we describe some real ex-
amples. In 2016, we created an extensive implementation
for an “Internet Drum Circle.” Successful group drum-
ming has very low latency requirements compared to
wide area network latency, so we accurately record and
time-stamp drumming (as events, not as audio), send the
data to remote sites, and reproduce the drumming accu-
rately after exactly one cycle (usually 8 beats)1. In princi-
ple, this approach, similar to [5], can ensure millisecond-
level accuracy. It is also a good illustration of a Level 1
time-flow architecture: compute and send data with time-
stamps, potentially with high-latency, then render the
data precisely according to the time-stamps.

Unfortunately, in our system, rendering took place in a
variety of different laptops with different software syn-
thesizers and different latencies, some of which were
quite high. This illustrates the shortcomings of Level 1
architectures when working with multiple processing
stages. Level 2 offers a solution (although not supported
in current applications and APIs): First, the synthesizers
should accept not just MIDI events but time-stamped
messages.2 Second, the audio output from the synthesizer
should be timed so that the synthesizer can introduce
sound events into the audio stream according to stream
logical time rather than real time to ensure output is heard
at the right time. Ultimately the variability in audio laten-

1 We make no claims about this as a mode of telematic music
performance, and we hope to report on musical and social as-
pects of this project in the future. For now, we merely present it
as a source of technical challenges.
2 In fact, on Mac OS X, MIDI events are time-stamped, and
many AU and VST plug-ins interpret them.

cy across different computers interfered with the sense of
pulse and entrainment, so we are working on an improved
lower latency audio version also using Level 2 concepts.

In a more recent distributed performance implementa-
tion, we modified our software to give every laptop a
100ms “rendering latency budget.” Even though we can-
not know through software and APIs what will be the
synthesis latency, we can adjust a slider on the user inter-
face by listening in order to synchronize with other lap-
tops. 3 In this more successful performance, which was
based on synchronized compositional algorithms in a
laptop orchestra, we used O2 [4] for clock synchroniza-
tion and communication. A central control “conductor”
sent tempo, meter, harmony, style and play/rest parame-
ters to about 20 connected laptops. There, human per-
formers controlled additional parameters interactively as
algorithms generated precisely timed MIDI and audio. A
video is posted at https://youtu.be/icLUJMM-11M.

To summarize, in the distributed system, a clock syn-
chronization protocol gives a common time reference to
every machine. Time-stamped control data are delivered
to different machines well in advance of the time-stamps.
Rather than waiting for the time-stamp to expire, the lap-
tops subtract the synthesis latencies and deliver the data
ahead of the time-stamp by that amount. Potentially, eve-
ry laptop sends information to their synthesizer at a
slightly different time to obtain synchronized output.
Thus, we achieve end-to-end synchronization through
multiple processing stages and across multiple output
devices.

9. SUMMARY AND CONCLUSIONS
Current systems for media processing seem to have been
developed with hardware and analog models in mind.
Rather than treat latency as something to reduce, elimi-
nate or simply ignore, we should treat timing as a funda-
mental property of our data and manage time, scheduling,
and buffering throughout our systems and applications.

To encourage new approaches to timing and synchroni-
zation in creative multimedia systems, we describe sever-
al levels of sophistication. We define Level 0 as “best
effort” low-latency systems that do not keep track of
time. Level 1 systems are 2-stage “forward synchronous”
systems where control information and media streams are
computed with time-stamps that specify the delivery
time. Even Level 1 is an advance over most current sys-
tems because precise timing can help to coordinate con-
trol updates and coordinate the delivery of audio, video,
and other media.

Level 2 extends Level 1 by considering multiple stages
of processing, addressing the needs of modern software-
intensive, modular media processing systems, where mul-
tiple applications might be employed together. In Level 2,
applications propagate information about latency to both
upstream and downstream stages, allowing applications
to synchronize and merge multiple input streams and

3 This is similar to Ableton’s External Instrument Hardware
Latency control; see https://help.ableton.com/hc/en-us/articles/
209774265-Using-external-hardware-with-Live, except we are
synchronizing multiple stages from “conductor” to “performer”
to synthesizer.

 109

events, predict the total end-to-end latency, and synchro-
nize multiple media output devices.

Level 3 describes systems that globally optimize and
configure in order to obtain adequate performance while
minimizing latency (or maximize performance while
keeping latency to an acceptable level). We discussed
some of the problems and motivation for Level 3 sys-
tems, but leave a detailed design to future work.

9.1 What Does This Work Suggest?

One of the main results we offer is the possibility of
much better timing and synchronization using a systemat-
ic approach. In particular, our Level 2 model offers some
very nice properties including:
1. Synchronized delivery of multiple media streams,
2. Modular design supporting inter-operation of applica-

tions even across multiple operating systems,
3. Feedback to users/composers/designers about latency

and performance,
4. Coordination of timed events with timed media

streams as opposed to asynchronous updates.
Achieving all this requires a re-thinking of the API’s and
models used in current software. There are many indica-
tions that software designers are concerned and aware of
these problems. For example, the USB protocol for audio
offers latency information from hardware to device driv-
ers [9], and JACK allows audio applications to inform
JACK if they insert delay into the audio stream.

9.2 Future Work

While this paper has discussed principles and architectur-
al considerations, there is much more work to be done.
One way to proceed would be to create an experimental
system embodying these concepts and demonstrating
end-to-end synchronization across media and applica-
tions. The lessons learned could be useful in creating
future Audio API’s.

It would also be interesting to see how some existing
APIs such as Core Audio, JACK, PortAudio, PortMidi,
etc. could be extended to support time-flow systems.

Another concern is how will programmers build real
systems around time flow? It is a lot to ask a DSP coder
to correctly perform scheduling, manage time-stamps and
track logical time in a time-flow network. However, lan-
guages like FORMULA and ChucK already encapsulate
explicit timing into very usable computational frame-
works, as have many toolkits, so it should be possible to
integrate a more complete Level 2 approach into existing
software frameworks.

These concepts also have implications for streaming
protocols and web delivery, where time-stamps and time
flow might help with synchronization, especially as au-
dio, MIDI, and video begin to be incorporated as both
inputs and outputs in web applications.

Acknowledgments

I would like to thank reviewers for their helpful com-
ments, the School of Computer Science at Carnegie
Mellon for its support, and my spring 2017 Computer
Music Systems and Information Processing class for their

implementation and participation in the laptop orchestra
performance described above.

10. REFERENCES
[1] G. Blakowsky and R. Steinmetz, “A Media

Synchronization Survey: Reference Model,
Specification, and Case Studies,” IEEE Journal on
Selected Areas in Communications, vol. 14, no. 1,
1996, pp. 5-35.

[2] D. P. Anderson and R. Kuivila, “A system for
computer music performance,” ACM Transactions
on Computer Systems, vol. 8, no. 1, pp. 56-82, 1990.

[3] E. Brandt and R. B. Dannenberg, “Time in
Distributed Real-Time Systems,” Proceedings of the
1999 International Computer Music Conference,
Beijing, 1999, pp. 523-526.

[4] R. B. Dannenberg and Z. Chi, “O2: Rethinking
Open Sound Control,” in Proceedings of the 42nd
International Computer Music Conference, Utrecht,
September 2016, pp. 493-496.

[5] M. Goto, I. Hidaka, H. Matsumoto, Y. Kuroda, and
Y. Muraoka, “A Jazz Session System for Interplay
among All Players–VirJa Session (Virtual Jazz
Session System),” Proceedings of the 1996
International Computer Music Conference, pp.346-
349, August 1996.

[6] D. Liang, G. Xia, and R. B. Dannenberg, “A
Framework for Coordination and Synchronization of
Media,” Proceedings of the International
Conference on New Interfaces for Musical
Expression, Oslo, Norway, 2011, pp. 167-172.

[7] G. Wang, P. Cook and S. Salazar, “ChucK: A
Strongly Timed Computer Music Language,”
Computer Music Journal, vol. 39, no. 4, 2015, pp.
10-29.

[8] M. Wright, A. Freed and A. Momeni, “OpenSound
Control: State of the Art 2003,” Proceedings of the
2003 Conference on New Interfaces for Musical
Expression (NIME-03), Montreal, 2003, pp. 153-
159.

[9] USB Implementers Forum, “USB Device Class
Definition for Audio Devices, Release 1.0,”
http://www.usb.org/developers/docs/devclass_docs/,
1997.

[10] A. Welford (Ed.), Reaction Times. Academic Press,
New York, 1980.

[11] M. Benning, M. McGuire and P. Driessen,
“Improved Position Tracking of a 3-D Gesture-
Based Musical Controller Using a Kalman Filter,”
Proceedings of the 2007 Conference on New
Interfaces for Musical Expression (NIME07), New
York, 2007, pp 334-337.

[12] S. Letz, D. Fober, Y. Orlarey, “Jack Audio Server
For Multi-Processor Machines,” Proceedings of the
International Computer Music Conference,
Barcelona, 2005.

