INTERPOLATION ERROR IN WAVEFORM TABLE LOOKUP

Roger B. Dannenberg
School of Computer Science, Carnegie Mellon University
Pittsburgh, PA 15217 USA
rbd@cs.cmu.edu, http://www.cs.cmu.edu/~rbd

Abstract: Waveform tables are an important tool for synthesizing sound, but they introduce error
which results in noise. Error is affected by the spectrum of the signal stored in the table. Error is
reduced by increasing the table size and/or by increasing the quality of interpolation. Both of
these also affect the signal computation cost. Table sizes required for a given signal-to-noise ratio
are computed for different interpolation methods and spectral rolloffs. Execution times are then
evaluated. Non-interpolated oscillators perform the best, but only if the storage and computation
costs of the tables are not an issue. This and other tradeoffs are discussed.

1. Introduction

Software-based synthesizers are gaining in popularity because computers are becoming faster and cheaper at an
exponential rate and because they offer tremendous flexibility. However, software is not the same as hardware. Itis
important to reconsider design choices rather than simply emulate existing hardware designs. A case in point it the
table-lookup oscillator. General purpose processors are not particularly good at either random access to main
memory or interpolation, but these operations are at the core of a table lookup oscillator. What is the best table size,
and what is the best interpolation technique for a software implementation? This paper describes the factors that
affect table-lookup oscillator performance, provides a methodology to study design tradeoffs, and presents some
interesting results based on current processors.

Table lookup (including sampling) is an old but still important technique for music synthesis. Table lookup is used

to generate sinusoids for additive synthesis, and fixed spectra for group additive, spectral interpolation, and vector
synthesis. Samplers also use a form of table-lookup, and sample-rate conversion can be viewed as a generalization
of table lookup. Thus, a fundamental operation for a variety of synthesis techniques is reading samples from tables.

The purpose of a table lookup oscillator is to output samples of a periodic function (dalidhisow, and assume
that the domain of is the interval [0, 1)). A simple algorithm for computing samples, given frequensgmple
ratesr, and functiorf, is:
phase = 0;
increnent = hz | sr;
while (true) {
out put (F(phase)) ;
phase = phase + increnent;
/'l phase "wap" for periodic output:
if (phase >= 1) phase = phase - 1; }
Notice thatphase andincrement are floating point (or at least fixed-point numbers with fractional value$) nsost
be evaluated at arbitrary phases. This is where table lookup comes in. Equally spaced s&naptestofed in a
table. To evaluatB(phase), we can simply choose the nearest sample, perform linear interpolation between the
nearest samples, or perform some higher-order interpofativany casetable lookup yields an approximation of
F, and we are concerned with the error that is introduced.

Quantization noise is also important to consider, but for this study, we use floating point samples so that
guantization noise is negligible.

2. Table Lookup Noise

Table lookup for sinusoids has been studied previously. (Moore 1977) However, spectrally rich signals complicate
the analysis. There are at least two factors to consider. First, upper harmonics are effectively stored in smaller tables:

! In a practical implementation, the inner loop includes the table access and interpolatjsasaislcomputed
such that its integer part is a direct table index (Roads 1996).

Dannenberg, R. B. 1998. “Interpolation Error in Waveform Table LookuPtdeeedings of the International
Computer Music Conference. San Francisco: International Computer Music Association.

Dannenberg Interpolation Error in Waveform Table Lookup 2

the Nth harmonic has N complete periods within the table, so the table size is effectively scaled by 1/N. Smaller
table sizesyield larger errors. Figure 1 illustrates the signal-to-noise ratio (SNR) of a table-lookup oscillator using
linear-interpolation, with 1 through 64 equal-amplitude harmonicsin a table with 1024 entries. Notice that the SNR
falls as the number of harmonics increases. Thisis largely because the table size for the 64th harmonic is effectively
only 1024/64 = 16 samples.

SNR, Linear Interpolation SNR vs Spectral Slope
120 1

—_— 120 1
_. 961 \ 100 -
S 7] D g -~
S 48 — x 60 >~
2] Z 40

24 n
] 20
O T T T T T 1 O . ; ; .
1 2 4 8 16 32 64
Number of Harmonics 0 6 12 18 24
Figure 1. SNR falls as the number of harmonics increases. Rolloff in dB/octave

Figure 2: SNR increases as the spectral rolloff increases.

The second factor is that the amplitudes of upper harmonics typically fall rapidly with harmonic number. Smaller
amplitudes give rise to smaller errors, potentially compensating for the smaller effective table size. In Figure 2, the
SNR is computed for a 1024-sampl e table containing 64 harmonics, where the spectral slopeisvaried from 0
dB/octave to 24 dB/octave. Notice that with alarge negative spectral slope (called the rolloff), the upper harmonics
are lower in amplitude and the resulting waveform is “smoother,” so the interpolation noise is less.

2.1 Estimating SNR

Throughout this work, the reported SNR is estimated as follows. The fuRdsocomputed as a weighted sum of
sinusoids (computed using floating point arithmeticjs evaluated at each point corresponding to a table entry.
Then, table lookups are performed at equal intervals. For example, if the table size is 186; #@060 lookups

are performed corresponding to table offsets of 0.0, 0.1, 0.2, ... 99.8, and 99.9. At each table lookup, the “true”
value ofF (limited by floating point resolution) is computdsis the signal, and the difference betw&eand the

table lookup value is the error (noise). The SNR in dB is estimated by:

AR = 20log,, \/Z F i2/ N /\/z Alz/ N , whereA is the difference betwedhand the table lookup value.

3. Table Size

Perhaps the most interesting question is, given a spectral slope and some number of parameters, how large should
the table be to achieve a certain SNR? Software synthesizers can have arbitrary table sizes, so it is possible to choose
an appropriate size based on the spectrum. Figure 3 presents the required table size to achieve SNR’s of 60, 72, 84,
and 96 dB for 32 harmonics, with rolloff varying from 0 to 24 dB/octave. Table sizes range from 62 to 10402

samples! Note that at 62 samples, th& Barmonic actually aliases, but the amplitude is so low due to rolloff, this

aliasing does not contribute significant error.

Linear interpolation is not the only option. In theory, any sampled signal can be recovered with arbitrarily low error
provided that the signal's sample rate is higher than twice its highest frequency component. In the case of tables, the
table should have at least twice as many samples as harmonics. In practice, “proper” interpolation requires many
expensive memory operations and as many arithmetic operations, but even a short, low-quality interpolator should
do better than linear interpolation. A less expensive (but less accurate) technique is polynomial curve fitting. A
guadratic equation fit to three samples is more accurate than a linear equation fit to two samples. An equation for
quadratic interpolation is:

F((i+p)/ts) =fi + p((2 —p) fia — (B =) fi = (1 —p) fi2)/2),

Dannenberg Interpolation Error in Waveform Table Lookup 3

wheretsisthetable size, i istheinteger part and p is the fractional part of the table offset, and f; is the i table entry.
For convenience, two “extra” table entries are adfled:f, andfis,.; = f;. Note that the argument Fovaries from 0
to 1 as described in the introduction.

Table Size for Linear Interpolation Table Size for Quadratic Interpolation
10000 1 10000 1
\] 6 dB SNR
8
8 1000 {7~ © 1000 &
&] SNR | > 1
o 84 o 4&__\\\\\\\\\\\‘
o g | =]
S 0 | <
10 ‘ ‘ ‘ ‘ 10
0 6 12 18 24 0 6 12 18 24
Rolloff (dB/octave) Rolloff (dB/octave)
Figure 3. How large should atable be for linear Figure 4. How large should atable be for quadratic
interpolation? interpolation?

Figure 4 is similar to Figure 3, except that quadratic interpolation is used. The reduction in table size ranges from
28% (12 dB/octave rolloff, 60 dB SNR) to 80% (0 or 24 dB/octave, 96 dB SNR).

No interpolation is another possibility. In other words, the phase is simply rounded to the nearest sample in the table.
Since truncation is the standard floating-point-to-integer conversion, it is convenient to simply add 0.5 to the initial
phase to accomplish rounding. Figure 5 is similar to Figures 3 and 4, except that no interpolation is used. Notice that
the required table sizes are much larger than for linear interpolation (factors range from 13 to 239). The largest table
size is 2,170,489 for 32 equal-amplitude harmonics and 96 dB SNR).

Table Size for No Interpolation

10000000 1
™

\\96 dB SNR
—

100000 1
_ 84 |
72

10000 1 —
] 60

1000000

Table Size

L

1000 w w T
6 12 18 24

o

Rolloff (dB/octave)

Figure5. How large should a table be for no interpolation?

4. Execution Speed.

Using higher-order interpolation requires more processing power. Table 1 shows the amount of processing time
required per sample to compute one sample using different interpolation techniques. These measurements were
made using a single oscillator with a table size of 512. Notice that the cost of interpolation is not proportional to the
number of arithmetic operations. This is because arithmetic operations are only a part of the computation, and
parallelism in the CPU allows some of these operations to overlap.

Dannenberg Interpolation Error in Waveform Table Lookup 4

Since higher-order interpolation conserves table space, it allows more tables to fit in the cache. The resulting savings
in memory access time could potentially offset the extra arithmetic operations. A fair comparison, then, would use
large tables for no interpolation and small tables for quadratic interpolation.

Interp. Arith. Loads and P133 PPro200
Method Ops Store Time Ratio Time Ratio
None 3 2 410 ns 1.00 324ns | 1.00
Linear 7 3 550 ns 135 400ns | 1.23
Quadratic 15 4 730 ns 1.80 498ns | 1.54
Table 1. Execution time for different interpolation methods. Table size = 1024.
Interp. Arith. Loads and Table Size P133, 16 tables P133, 125 tables
Method Ops Store
Time Ratio Time Ratio
None 3 2 9428 500 1.00 460 1.00
Linear 7 3 282 570 1.14 550 1.20
Quadratic 15 4 166 770 155 730 1.59

Table 2. Execution time for different interpolation methods. Table size as shown.

Table 2 shows computation time per sample for 16 tables. The table sizes were arbitrarily chosen to give 72 dB SNR
with a 12 dB/octave rolloff using the various interpolation techniques. These results should be highly dependent
upon cache size, machine architecture, and table size, which in turn depends upon the spectral rolloff and the desired
SNR. In this particular experiment, performance decreased when multiple tables were used, but using even more
tables did not further increase the per-sample execution time.

5. Discussion.

In all cases the non-interpolated oscillator is fastest. Notice, however, that when table sizes are chosen to give results
with equal SNR, the relative advantage of non-interpolated oscillatorsis reduced. For the particular parameters
chosen for this experiment, the non-interpolated oscillator is only about 1.55 times as fast as the quadratic
interpolation oscillator, and only 1.14 times as fast as the linear interpolation oscillator.

These times do not include the times to build the tables, which are much larger for the non-interpolated oscillator. If
table construction time is taken into account, interpolating oscillators may in fact have an advantage. If tables are
constructed by summing sinusoids, then it costs much more to generate a table sample than to access the table. For
example, if it costs 20 times as much to generate a table sample as to access it with the non-interpolating oscillator,
if table sizes are 8192 for non-interpolating tables and 128 for quadratic interpolating tables, and if quadratic
interpolation is 1.6 times the cost of non-interpolating access, then a table would have to be used for (8192 - 128) x
20/ 1.6 = 100,800 samples, or 2.3s of audio at a 44100 hz sampling rate. Otherwise, quadratic interpolation is faster
(and linear interpolation would be faster still).

6. Future Work

Thiswork can be extended to study sample rate conversion, including pitch shifting and sample-based synthesis.

What degree of oversampling would be required to achieve acceptable SNR’s? This work ignores the effects of

human perception, including masking. Is SNR the right measure, and if so, what SNR is really necessary? Can this
be confirmed with listening tests?

7. Conclusion

We have demonstrated that the table size required to achieve a given SNR is highly dependent upon the spectrum
and the interpolation method. Software-based synthesizers should choose a table size and interpolation method that
optimizes performance. Since musical spectra often exhibit significant rolloff, the performance of simple

interpolation techniques can be quite good for table-lookup and other sample-rate conversion applications.

References
Moore, F. R. 1977. “Table lookup noise for sinusoidal digital oscillat@aiputer Music Journal 1(2), pp26-29.
Reprinted in C. Roads and J. Strawn, eds. 1B888ndations of Computer Music. MIT Press. pp. 326-334.

Roads, C. 1996The Computer Music Tutorial. Cambridge: MIT Press, p. 93.

