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ABSTRACT

Music timbre style transfer aims at replacing the instrument
timbre in a solo recording with another instrument, while
preserving the musical content. Existing GAN-based meth-
ods can only achieve timbre style transfer between two given
timbres. Inspired by the practice in voice conversion, we
propose TransPlayer, which uses an autoencoder model with
one-hot representations of instruments as the condition, and
a Diffwave model trained especially for music synthesis. We
evaluate our model in both the one-to-one transfer task and
the many-to-many transfer task. The results prove that our
method is able to provide one-to-one style transfer outputs
comparable with the existing GAN-based method, and can
transfer among multiple timbres with only one single model.

Index Terms— Timbre, style transfer, music synthesis

1. INTRODUCTION

Music style transfer is an important topic in applying AI
technologies to music creation. In music style transfer, it’s
typically assumed that music consists of two complementary
components, namely content and style [1]. By separating
and recombining them, we can create new music that inherits
musical attributes from different origins. Different definitions
of content and style lead to different sub-topics, including
performance style transfer, composition style transfer, etc.

Timbre style transfer is an intriguing sub-topic in mu-
sic style transfer. Timbre is an essential element in a musi-
cal sound that can differentiate instruments or human voice
sounds. Listeners can tell the difference between two in-
struments by their timbres, even when playing the same note
with the same pitch, loudness and duration. Timbre is hard
to model as it shows great differences across instruments in
both time and frequency domains [2]. While there are well-
designed physical models that simulate sound production us-
ing formulas and parameters [3, 4, 5], high-fidelity sample
libraries are still preferred in virtual instrument plugins. In
timbre style transfer, Generative Adversarial Network (GAN)
methods are proved more successful than explicitly extract-
ing timbre information from audio [6, 7]. However, they can
only work between two given instruments (one-to-one trans-
fer), without the possibility of more flexible timbre control.
Models like NSynth and Differentiable Digital Signal Pro-

cessing (DDSP) can also perform timbre transfer, but only
limited to monophonic music [8, 9].

In this paper, we explore the problem of timbre style trans-
fer, focusing on (1) transferring the timbre while preserving
the musical content and the sound quality (2) flexible transfer
among a number of instruments (many-to-many transfer). We
refer to the pitches, loudness and durations as the content of
music, and the instrument’s timbre as the style. We take a sim-
plified view of timbre, assuming that instruments and timbres
are equivalent. We do not attempt to model the possibility of
timbral variation among the sounds of individual instruments.

We propose TransPlayer, a conditional autoencoder-based
model working on constant-Q transform (CQT) representa-
tions of music. The idea is to train an autoencoder with a style
embedding layer, then convert the decoder output back to au-
dio using a Diffwave model [10]. Experiment results show
that the proposed model can successfully perform many-to-
many timbre transfer, with the result quality comparable to
state-of-the-art one-to-one timbre transfer models.

2. RELATED WORK

Many previous deep learning models explored various as-
pects of music style transfer, but only a few of them focused
on timbre-related features in polyphonic music. Verma and
Smith were the first to apply deep learning to timbre transfer
[11]. A later work [12] proposed a WaveNet autoencoder
structure to translate music waveforms across multiple style
domains such as instruments. Some other works adopted
GAN-based models, which do not require paired training
data [6, 7]. They used consistency loss terms to restore the
content during reconstruction. A Variational Autoencoder
(VAE) method tried to transfer timbre among multiple do-
mains with only one model [13], but it’s only applicable to
monophonic music. Some other studies focused on model-
ing the timbre embedding space with representation learning
[8, 14]. DDSP proposed a novel idea for audio components’
disentanglement and was able to do timbre transfer but lim-
ited to monophonic music [9]. Another work proposed the
Guided Adversarial Autoencoder (GAAE), which is capable
of generating audio using very few labeled data [15]. A semi-
supervised approach was proposed for many-to-many timbre
transfer, but its training process relied on paired data [16].

Although not tested with music audio, similar problemsIC
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have been well explored in voice [17]. AutoVC used a suc-
cinct autoencoder with a well-designed information bottle-
neck to disentangle speaker information and content infor-
mation [18]. A revisional work proposed alteration invari-
ant content loss and adversarial training for better robustness
[19]. StarGAN-VC and its successors overcame the drawback
of CycleGAN that it can only achieve one-to-one conversion
[20, 21, 22, 23]. Some other works modeled voice conversion
as a Sequence-to-Sequence (Seq2Seq) problem [24, 25]

Theoretically, we can convert Short-time Fourier Trans-
form (STFT) representations back to audio if we have both
the amplitude and phase information. However, this is not re-
alistic in many situations. Alternative methods for audio gen-
eration include non-parametric algorithms such as the Griffin-
Lim algorithm [26] and the WORLD vocoder [27]. Neural
network-based methods for audio generation include the well-
known WaveNet, [28], WaveGAN and Hifi-GAN [29, 30],
and Diffwave which applied diffusion model to audio synthe-
sis [10]. In this work, we selected Diffwave as our waveform
generator because it’s relatively easier to train than GAN-
based models, and much faster than WaveNet [10].

3. METHOD

We describe a system for many-to-many timbre transfer,
which works on both monophonic and polyphonic music. As
illustrated in Fig. 1, we use constant-Q transform (CQT) to
obtain spectral representations of music, and use an autoen-
coder to encode the content. Both the encoder and decoder
are conditioned by a style latent code. The decoder gener-
ates CQT representations and they are converted back to the
waveform with a trained Diffwave model.

3.1. Data Representation

Constant-Q transform can transform data series from the time
domain to the frequency domain [31]. Unlike STFT, CQT
is especially suitable for representing music audio, since the
fundamental frequency of a note increases approximately
exponentially with the increase in pitch. CQT can be de-
scribed as a bank of filters logarithmically spaced in central
frequency and bandwidth. The logarithmic spacing of filters
makes CQT transposition equivariant. This means different
pitches played by the same instrument have a similar har-
monic pattern, which is closely related to the spectral features
in a timbre. We use a hop length of 16ms, and obtain an 84-
dimensional log-scale CQT representation for every frame, in
which there are 12 dimensions for each of the 7 octaves.

3.2. Timbre Style Transfer Autoencoder

Consider two domains X and Y , where x and y are two sam-
ples from X and Y respectively. In a style transfer problem,
X and Y share the same content space C, but differ in their

Fig. 1. Pipeline of TransPlayer

styles S. Since C and S are complementary information, a
sample of x can be generated by combining a content code
c ∈ C and a style code s ∈ S. We learn the mapping func-
tion from every domain X to the content space C conditioned
on S, and its inverse mapping function from C to X . With the
assumption that instruments and timbres are equivalent, every
domain X has a fixed style code sX .

We design our model based on AutoVC [18], which is a
successful many-to-many voice conversion model using only
one autoencoder conditioned by pre-trained speaker embed-
dings [32]. Here we add a style embedding layer to adapt it
to the timbre transfer problem.

The style embedding layer Es learns the representation of
style code s of any given timbre, formulated as sX = Es(x).
This is a substitution for the X-vector extractor proposed in
AutoVC [18]. It takes a one-hot representation of timbre as
the input and outputs a latent style code as the style embed-
ding. This style code s is used as the condition in both the
content encoder Ec and the decoder D. The style code should
be able to preserve sufficient information of the timbres.

The content encoder Ec learns the mapping function from
every feature domain X to the content space C. For every
sample x ∈ X , we have a content code cx = Ec(x, sX ). The
goal of the content encoder is to produce different content
codes for different music pieces of the same instrument, and
produce the same content code for the same piece played by
different instruments. The input of Ec is the CQT representa-
tion concatenated with style code s. It is fed into three convo-
lutional blocks, each consisting of a 5× 1 convolutional layer
with 512 channels, a batch normalization layer and a ReLU

Fig. 2. Reconstruction in training. The content encoder Ec
and the decoder D are conditioned on the same style code s.
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Fig. 3. Transfer between domains. The decoder D is condi-
tioned on the target style code sY . The output is fed into Ec
again to compute the cross-domain content consistency loss.

layer. The output is fed into two bidirectional LSTM lay-
ers with a latent dimension of 32. Then we downsample the
LSTM output along the time axis as a dimension reduction.
What we finally attain here is the information bottleneck [18].
It should be wide enough to preserve all the musical content,
but setting the bottleneck too wide will make the content code
blended with style-related information. The bottleneck width
is determined by the LSTM output dimension and the down-
sampling rate. In our case, the LSTM output dimension and
the downsampling rate are empirically set to 32.

The decoder D is almost the inverse process of the content
encoder Ec. The content code is first concatenated with the
target style code, then upsampled by a factor of 32. We feed
the concatenated embeddings into an LSTM layer with 512
channels. It’s followed by three convolutional blocks identi-
cal to the ones in the encoder. Then we feed the output into
two LSTM layers with an output dimension of 1024. Lastly,
the feature is linearly projected to 84 dimensions.

In training, the model tries to first encode the musical con-
tent in x, and then transfer the content code cx back to its
original timbre, as shown in Fig. 2. We want this reconstruc-
tion process to be as accurate as possible. Here we have the
reconstruction loss, formulated as follows:

Lrecon = E[|x− x̂|1]
= E[|x−D(Ec(x, sX ), sX )|1]

where x̂ denotes the reconstruction result of x. L1 rather
than L2 loss is adopted here for a sharper generation result.
Also, the content code should remain unchanged when we
feed the reconstruction back into Ec, which can be described
using the reconstruction content consistency loss:

Lc consistency self = E[|cx − ĉx|1]
= E[|cx − Ec(x̂, sX )|1]

Finally, since the conditions on the Ec and D are actu-
ally different in testing, we add an extra step in training to
simulate the testing scenario, as shown in Fig. 3. Denoting
the expected transferred results as y, and the real results as
ŷ = D(Ec(x, sX ), sY), we should have cx = cŷ . This leads

us to the cross-domain content consistency loss:

Lc consistency cross = E[|cx − cŷ|1]
= E[|cx − Ec(ŷ, sY)|1]

In every training iteration, we randomly select a target do-
main Y as the target style, so that there isn’t an imbalance
among different transfer pairs. The final training objective is
the sum of the above loss functions.

3.3. Waveform Generation

One reason why CQT representations are not widely used in
audio generation tasks is that CQT does not have a direct in-
verse transform like STFT does. However, this drawback can
be overcome by using neural networks to generate the wave-
form. Among these models, Diffwave stands out for its versa-
tility and fast generation speed in speech [10], but only a few
works investigated its ability in generating music audio [33].

Diffwave is one instance of diffusion model in audio syn-
thesis. It is composed of a stack of residual layers with a bidi-
rectional dilated convolution architecture. For generation, the
feature is upsampled to the same dimension as the expected
waveform. Then we sample the transition distributions in the
reverse process step by step to obtain the waveform. In our
case, the generation is conditioned on CQT representations.

4. EXPERIMENTS AND EVALUATION

To ensure the quality, the audio files are synthesized using
commercial-level virtual instruments and MIDI files from the
POP909 dataset [34] and the MAESTRO dataset [35]. Instru-
ments used include the piano, electric piano, flute, acoustic
guitar, harp, organ, trumpet, and viola. The data of each in-
strument are about 8,000 seconds long in total. 90% of the
data are used for training and the other 10% are for testing.

4.1. Experiment Settings

We train the conditional autoencoder for 1.5M iterations at a
batch size of 2 [18]. The training objective is optimized with
the Adam optimizer at a learning rate halved every 0.25M
iterations starting from 1e-4. We trained the Diffwave model
conditioned on CQT representations for 14000 epochs at a
batch size of 32. The initial learning rate was also 1e-4 1.

4.2. Evaluation of One-to-one Transfer

To evaluate our system, we first compare it to a baseline on
one-to-one timbre style transfer. We consider a GAN-based
model as our baseline [7]. It is able to generate satisfying re-
sults without paired data. Also, it’s an open-source project so
we can reproduce their results following the original settings.

1Code and examples can be viewed at https://github.com/
Irislucent/TransPlayer.
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We consider the task of timbre transfer between piano and
guitar, which was a better-performed sub-task described in the
original work. We trained the baseline for 500k iterations, and
used the phase extracted from the source signal for waveform
generation. We conducted anonymous listening tests on Ama-
zon Mechanical Turk (AMT) to evaluate the system from hu-
man perspective. The 50 participants were presented first with
three original music clips, and then their two transferred ver-
sions without knowing how they were generated. The Mean
Opinion Scores (MOS) are given in three dimensions ranging
from 1 to 5, including (1) Success in transfer (ST): how well
the timbre of the transferred version matches the target per-
ceptually. (2) Content preservation (CP): how well the mu-
sical content of the transferred version matches the original
version. (3) Sound quality (SQ): how good the transferred
audio quality is overall. The subjective scores in 1 showed
that the proposed system can perform nearly as well as, if not
significantly better than our baseline.

Table 1. MOS of One-to-one Timbre Transfer Comparing the
Baseline and TransPlayer

Task Piano to Guitar Guitar to Piano
Model ST CP SQ ST CP SQ

Baseline 3.66 3.96 3.71 3.92 3.88 3.58
TransPlayer 3.68 3.80 3.84 3.92 3.83 3.64

For an objective evaluation, we employed an instrument
classifier by training an AlexNet-like network on 1-second
audio segments sliced from our dataset to classify whether
the transferred audio belongs to piano sound or guitar sound.
The classifier outputs a scalar value passed through a Sig-
moid function, which represents the classification likelihood
per segment. We report this classification likelihood as a level
of confidence. Segment-wise classification accuracy and the
mean classification likelihood along segments are given as the
results in Table. 2. The classification results showed that
TransPlayer observably surpassed our one-to-one baseline in
terms of the similarity to the target timbre. However, it falls
slightly behind in content preservation quality. Generally, our
model shows better sound quality, which shows that Diffwave
is a promising direction for music synthesis.

Table 2. Classification Results of One-to-one Timbre Trans-
fer Comparing the Baseline and TransPlayer

Task Piano to Guitar Guitar to Piano
Model Accuracy Confidence Accuracy Confidence

Ground Truth 96.58% 95.50% 98.99% 97.74%
Baseline 89.91% 85.52% 91.35% 89.79%

TransPlayer 91.72% 86.32% 93.14% 90.71%

4.3. Evaluation of Many-to-many Transfer

We then evaluate our proposed system on the task of many-to-
many timbre style transfer. We select random pieces for each

Fig. 4. MOS of Many-to-many Timbre Transfer Results.

instrument in the testing set, and transfer them to each of the
remaining seven instruments, as well as the original instru-
ment (reconstruction), resulting in 8 × 8 = 64 transfer pairs.
Participants are presented first with the sounds of the origi-
nal instruments, and then with the transfer results. The MOS
scores are given in the same three dimensions (ST, CP, SQ)
and then averaged as the final evaluation scores. We plot the
listening test results of many-to-many transfer as a heatmap
in Fig. 4. It’s observed that certain transfer pairs have bet-
ter performance than others, and the reconstruction quality
is generally better than the transfer quality. Transferring from
other instruments to the organ has the best performance, while
transferring to harp sounds the worst among all. A possible
explanation is that the organ is far from other points in the
timbre space, which means it shares few similarities in timbre
characteristics with other instruments. On the other hand, the
harp timbre has more characteristics in common with other
instruments. Another possible reason is that organ notes do
not have decay, whereas harp notes have exponential decay,
which is a long-term dependency that requires learning to ig-
nore the source instrument’s amplitude variation.

5. CONCLUSION

In this paper, we propose TransPlayer, a timbre style transfer
model based on the autoencoder structure. The model works
on CQT representations and is conditioned on a style em-
bedding layer that is simultaneously trained with the model.
We convert CQT representations back to the waveform with a
Diffwave model. The model can generate high-quality results
comparable with the state-of-the-art one-to-one timbre trans-
fer model on the given transfer pair. On top of that, its ability
extends to a much wider range, enabling transfer among mul-
tiple domains for more flexible timbre control.
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