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ABSTRACT 
Unit generators are primary building blocks of music 
audio software. Unit generators aim to be both efficient 
and flexible, but these goals are often in opposition. As 
designers trade off efficiency against flexibility, many 
designs emerge, leading to a multitude of incompatible 
implementations. Thus, there are many incompatible unit 
generator libraries, each representing substantial effort. 
The present work suggests that unit generators can be 
written in a functional style using a conventional 
language with operator overloading, and an easily 
modifiable “back end” can generate efficient code. A 
prototype of this method, the Unit Generator Generator 
(UGG) system can be tailored quickly to target many unit 
generator designs. Computations can be shared across 
unit generators by defining simple functions, leading to 
an even more compact and expressive notation. 

 

1. INTRODUCTION 
In any computer music system for audio processing, most 
computation time is spent processing audio. Typically, 
audio processing is performed in a collection of unit 
generators that generate, filter, combine, and modify 
streams of audio samples. Since unit generators are 
critical to efficiency, they tend to have specialized and 
carefully designed lightweight interfaces so that the 
overhead of moving samples and control from one unit 
generator to the next is minimized. 

Unfortunately, there is little or no compatibility 
between audio systems and the way they interface with 
unit generators. If efficiency were not so important, one 
could consider “compatibility layers” to adapt one set of 
conventions to another, but in practice, copying samples 
from one container or format to another can add 
substantial overhead. Instead, we see the development of 
many different libraries of unit generators, each 
optimized for a slightly different purpose. 

One promising development has been high-level 
languages for describing audio signal processing. 
Typically, these languages use a functional programming 
style and treat signals as infinite sequences that are 
defined recursively. If a powerful, functional notation can 

be compiled to C or C++, then an optimizing compiler 
can finish the job of producing highly efficient code. 

However, the functional language approach has been 
used mainly for monolithic signal processing programs 
such as audio plugins or complete synthesizers rather 
than smaller unit generators, and the “back end” or code 
generation part is not designed to target multiple different 
unit generator coding conventions. 

The Unit Generator Generator (UGG) was developed 
to explore a new approach to high-level unit generator 
description. In UGG, one writes programs to create 
graphs that describe signal-processing algorithms to be 
implemented as unit generators. Operator overloading is 
used so that signal-processing graphs can be written 
intuitively and more-or-less as mathematical expressions. 
For example, the sum of signals A and B can be written 
A+B. In the UGG implementation, A, B and A+B would 
all be represented by objects, and operator overloading is 
used to define what it means to apply “+” to two objects. 
Thus UGG can be embedded in an existing language 
(Python), which reduces the need for users to learn a 
special language or syntax. The objects contain methods 
to generate code. Representing signals as objects allows 
users to customize code generation by extending or 
replacing code-generating methods. This keeps UGG 
lightweight, easy to understand, and adaptable so that one 
DSP algorithm expression can be used to generate any 
number of different styles of unit generators. There is no 
particular limit on the size of algorithms, so one could 
use UGG to build complete audio processing systems as 
well as simple unit generators. 

We envision a typical use case to be a custom unit 
generator for an existing computer music language (e.g. 
Max or csound). The user first describes the algorithm in 
UGG and automatically generates code and a stand-alone 
test program. When testing is complete, the user 
automatically generates an “external” or library 
compatible with the preferred composition environment. 
If the unit generator is of general interest, the user can 
generate extensions for other systems such as 
Supercollider, Nyquist, Pd, and Chuck. 

2. RELATED WORK 
Most unit generators are coded directly in C or C++. Unit 
generator libraries can be found in Csound [1], 
Supercollider [2], and Pd [3][4], among others. As 
mentioned, languages use different conventions for unit 
generators. For example, Csound and Supercollider unit 
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generators have block rate (k-rate) and audio rate (a-rate) 
versions whereas Pd does not. 

Many unit generator libraries exist outside of specific 
language implementations.  Putnam describes Gamma, a 
C++ library for unit generators [5]. This article also 
describes a number of other libraries including CLAM 
[6], CSL [7], ICST [8], and STK [9]. Putnam identifies 
three “main distinctions between the implementations of 
unit generators in these libraries: (1) processing 
granularity (single-sample and/or block-based), (2) 
support for processing generic types, and (3) ability to 
run at multiple sample rates,” which accounts for some of 
the diversity and incompatibilities we see. 

RATL [10] uses C++ templates to write unit 
generators in an object-oriented. RATL is motivated by 
trying to overcome incompatibilities between different 
unit generator-based systems. Nyquist [11] and Aura [12] 
describe unit generators in terms of parameters, types, 
various properties, and use a preprocessor to generate C 
implementatons. The idea behind these systems is to 
factor out commonalities so that only algorithm-specific 
code is required for each unit generator. 

FAUST [13][14] and Kronos [15] are high-level 
languages based on functional programming that describe 
signal processing algorithms. In both cases, programs are 
expanded into C or LLVM to be compiled by an 
optimizing compiler. (FAUST can also generate code in a 
number of languages including Java and Javascript, and it 
can produce unit generators for several languages.) These 
systems may calculate audio in blocks at the top level, 
but do not support the creation of unit generators with a 
mix of audio rate and block rate signals. 

Functional approaches often compile to functions that 
do the work of many unit generators. This is efficient, but 
then any changes to algorithms require recompilation of 
code, whereas unit generator systems (as produced by 
UGG) can be reconfigured without recompilation. 

3. THE FUNCTIONAL APPROACH 
Suppose we want a signal that is initially 0 and increases 
by 1 every 1000 samples. In procedural programming, we 
can simply write x ← x + 0.001 (using “←” to indicate 
assignment), and arrange to perform this assignment 
every sample period. However, at the risk of 
oversimplifying things, functional language descriptions 
of DSP algorithms use equations rather than sequential 
steps to describe computation, so we must somehow 
express how signals change over time without assignment 
statements. The “trick” to avoiding state changes is to 
describe signals as a sequence of values. While the syntax 
may vary from one language to the next, signals are 
described as a first element followed by elements that 
depend on previous elements. For example, we can say x0 
= 0 and xn = xn-1 + 0.001. 

This approach is not limited to a single variable. We 
can have any number of “state” variables, and the only 
restriction for the programmer is to describe the DSP 
algorithm as a set of equations (that more-or-less look 

like assignment statements) for the values of the next 
samples in terms of the values of previous samples. 

One advantage of functional programs is that all data 
dependencies and thus order of execution is implicit in 
the equations. We can use this property to generate code 
in a very flexible manner. 

Often, music signal processing combines signals 
running at different rates. In particular, if unit generators 
compute a block of 64 audio samples per activation at 
sample rate SR, it is fairly simple to introduce control-
rate signals at SR/64 that control filter cutoff frequencies, 
amplitude envelopes, vibrato, and many other time-
varying parameters.  

Multi-rate computation is not simple in most 
functional programming languages and usually involves 
explicit programming to implement signal decimation or 
interpolation. Since we often want control-rate and audio-
rate versions of unit generators, UGG handles mixed 
sample rate computations automatically, and just one 
specification can generate multiple unit generators. UGG 
considers all variables and signals to have one of three 
rates: audio rate (AR) denotes one value per audio 
sample. Block rate (BR) denotes a sequence of values 
where one new value is computed each time the unit 
generator’s run method is called. Constant rate (CR) 
denotes a scalar value that remains constant over time. 
However, constant values can be updated between calls 
to the unit generator’s run method. 

4. CODING IN UGG 
The Unit Generator Generator (UGG) uses objects to 
represent variables, values, and operators. There is no 
strong attempt to hide the implementation, and we will 
see that exposing the implementation gives UGG some 
interesting power. 

Unit generator descriptions in UGG begin with a call 
to ugg_begin("osc"), where "osc" is the base 
name of the unit generator. One can then define variables 
by writing Var("y", expr), where  “y” is the variable 
name, and expr is an expression used to compute the 
value. Related to variables are parameters: 
Param("x") creates a parameter named "x", which 
represents an input to the unit generator. First("s", 
0) creates a signal named “s” with initial value 0. This 
must be paired with another declaration, Next(s, expr), 
where expr describes the next value of signal “s” in terms 
of the current values of this an other signals. Various 
functions and operators are available. E.g. A + B 
denotes the sum of A and B, which can be scalar values or 
signals. Conditional execution can be defined 
functionally using Cond(test, a, b), which returns 
value a or b depending on test. Unit generator code is 
produced by calling ugg_write([r1,r2,…],  
[p1,p2,…],  expr,  rate), where r1, r2, … are rates, 
p1, p2, … are parameters, expr describes the output signal 
of the unit generator, and rate is the rate of the output. 
Rates for parameters and output can be either AR, BR, or 
CR as described in the previous section. 
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4.1 The Simplest Unit Generator 

As a simple example, the following describes a unit 
generator that multiplies two audio rate signals: 

ugg_begin("Mult") 
pa = Param("a") 
pb = Param("b") 
ugg_write([AR,AR], [pa,pb], pa * pb, AR) 

Notice the use of variables pa and pb. These are bound 
to parameter objects created by Param. In the expression 
pa*pb, “*” is overloaded; rather than performing any 
kind of arithmetic, it constructs a tree representation of 
the product of two parameters. This tree is then used to 
generate code. Due to space limitations, we will show 
just the generated constructor and run methods: 

void Mult_aa_a(Ugen a, Ugen b) { 
   this->b = b; 
   this->a = a; } 
void run() { 
   float *b_samps = b->get_outs(); 
   float *a_samps = a->get_outs(); 
   for (int i = 0; i < BL; i++) { 
      out[i] = (a_samps[i] * b_samps[i]); }} 

4.2 Recursively Defined Signals as “State” 

The next example illustrates how unit generators that 
retain and modify state can be expressed and generated 
using the functional style of UGG: 

ugg_begin("Phasor") 
freq = Param("freq") 
phase = First("phase", 0, "double") 
phase.use_output_rate() 
Next(phase, phase + freq / SR) 
ugg_write([CR], [freq], phase, AR) 

Note that phase is created by First with an optional 
type declaration (the default is float). Since phase 
depends only on CR variables (freq and SR), UGG will 
assume that it is a block rate “control” variable. 
phase.use_output_rate() tells UGG to use the 
same rate as the unit generator’s output, which in this 
case is audio rate. Then, we complete the recursive 
definition in Next: each next value of phase is 
computed from the given expression in terms of the 
current value of phase (and other variables). An 
abbreviated listing of the generated code follows: 

void Phasor_c_a(float freq) { 
 t10 = (freq / SR); 
 this->freq = freq; 
 phase = 0; } 
void run() { 
 for (int i = 0; i < BL; i++) { 
  out[i] = phase; 
  double  phase_next = fmod((phase + t10), 1); 
  phase = phase_next; }} 

Because freq / SR depends only on constant terms 
(CR) but is used in an audio rate computation (to 
compute phase), the expression is assigned to a new 
variable (t10), which moves the division out of the 
inner loop. It may also seem curious that the next value of 
phase is stored in phase_next and then assigned to 
phase. This style of code generation can compute 
multiple “next” values for these recursively-defined 

signals before the current values are overwritten. In this 
case, the assignment to phase_next is unnecessary, 
and the compiler will remove it. 

4.3 Alternate Versions for Different Rates 

UGG can generate different implementations based on 
the rates of input parameters and the output signal. For 
example, we can use our multiplier definition (Section 
4.1) to multiply an audio rate by a block rate parameter: 

ugg_write([AR,BR], [pa,pb], pa * pb, AR) 

Notice that there are no changes to the DSP algorithm 
itself. We merely indicate that the second parameter is 
BR instead of AR. UGG will detect that the block rate 
parameter pb is used in an AR expression (pa*pb) and 
automatically introduces in-lined code to linearly 
interpolate the block rate parameter to audio rate. 
(Interpolation can be removed with the 
use_non_interpolated method.) Here is the gist of 
the generated code: 

void Mult_ab_a(Ugen a, Ugen b) { 
   b_arate = 0; 
   this->b = b; 
   this->a = a; } 
void run() { 
   float *a_samps = a->get_outs(); 
   float  b_step = 

         (b->get_out()- b_arate) * BL_RECIP; 
   for (int i = 0; i < BL; i++) { 
      out[i] = a_samps[i] * b_arate; 
      b_arate += b_step; }} 

In this version, a single sample is fetched from b before 
the inner loop (thus at the block rate), and the inner loop 
interpolation is a simple increment by b_step. Note 
also that the base name, Mult, has been “decorated” with 
rates to indicate parameter rates and output rate, forming 
the class name Mult_ab_a. In a similar way, we can 
generate Phasor_c_b, a phasor that runs at the block 
rate. 

5. CODE GENERATION 
UGG generates code in three steps. First, the UGG 
program (expressed in Python) is evaluated, creating a 
dataflow graph that describes the DSP algorithm. Next, 
the graph is copied and altered to introduce new variables 
and operators to implement changes in sample rate and to 
avoid audio rate computation when control rate will do. 
Third, the graph is walked multiple times to generate 
code snipits to fill in an overall unit generator code 
template. 

5.1 Building the Dataflow Graph 

The basic elements of UGG DSP algorithms are objects. 
The constructors Param, Var and First are designed 
to look like declarations, but they actually create objects. 
Operators such as +, -, * and / are overloaded to create 
objects of class UBinary. Thus, our phasor unit 
generator (Section 4.2) produces the graph shown in 
Figure 1. 
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Figure 1. Dataflow graph for the phasor unit generator. 

5.2 Introducing New Variables and Operators 

In the next code generation step, the expression graph is 
topologically sorted and traversed from sources to sinks, 
and each node is labeled with a rate derived from its 
inputs. An exception in this case is that the method 
use_output_rate forces phase to be treated as AR. 

When a rate change occurs, such as the one labeled “CR 
to AR” in Figure 1, a new node is inserted: either a 
variable is created to allow the value to be computed 
outside and reused inside the inner loop, or a node of 
class Upsample is added to interpolate from block rate 
to audio rate. In this case, the variable t10 is created (see 
the generated code in Section 4.2). 

5.3 Template-based Generation 

Finally, code is generated by traversing the graph, again 
in order of sources to sinks so that values are generated 
before they are used in the sequential C++ code. 
Generation follows a code template such as the one 
shown below, which is used for audio-rate output unit 
generators: 
class basename_decorations : Ugen_outa { 
   declarations 
   void classname(parameters) { 
      constructor_stmts } 
   void run() { 
      brate_code 
      upsample_prep 
      for (int i = 0; i < BL; i++) { 
         arate_code 
         out[i] = output_expression_code; 
         next_arate_state_code 
         upsample_update  
         update_arate_state } } 

In general, each point in the template, e.g. 
constructor_stmts, is generated by a full pass through the 
graph, invoking a method for each node. In this case, the 
method is gen_constructor(), which is inherited 
and does nothing in most classes, but, for example, a 
Param node, if declared to have rate CR, will generate 
code such as: 
    this->freq = freq; 

Expressions such as fmod((phase + t10), 1) are 
generated from multiple objects by recursively 

constructing and combining sub-expressions. For 
example, the UBinary object’s (slightly simplified) 
gen_code method (here “+” denotes string 
concatenation) is: 
def gen_code(self): 
  return self.left.gen_code() + self.op +  
         self.right.gen_code() 

Allowing each class to generate class-specific code, and 
using a different method to generate each code snipit in 
the template results in a simple architecture that can be 
modified or extended to meet different requirements. 

6. CUSTOM CODE TARGETS 
One of the drawbacks of existing libraries is that 
architectural decisions can affect the code of every unit 
generator. It is difficult for a library or even a language 
like FAUST to cover every desirable feature. Therefore, 
there is some value in a simple, very adaptable approach.  

For example, some unit generator systems construct a 
unit generator graph, topologically sort the unit 
generators according to dependencies, and then compile 
and save an execution sequence. Unit generators can then 
assume without checking that their input samples are 
valid each time their “run” method is called. 
Alternatively, unit generators can check for valid inputs 
and call run methods (recursively) as needed, effectively 
performing a topological sort as each block is computed. 
This approach might make sense if unit generator graphs 
can be modified on the fly. 

As an experiment, we modified our UGG code 
generator to insert checks and eliminate the need to call 
each unit generator explicitly. A single call to the 
“output” unit generator’s run method brings all inputs up 
to date. Only 14 lines of code were added or modified to 
make this change. Admittedly, this should be a small 
change. What about a large change such as targeting 
Javascript instead of C++? To give some idea of the 
magnitude of this change, there are only 44 lines of code 
in UGG that explicitly depend upon C++. This number 
might be much larger if many more built-in functions and 
operators were added to UGG, but these added 
declarations would be very simple and repetitive. 

7. POLYMORPHISM 
UGG generates a unit generator specialized to each 
possible combination of parameter sample rates. E.g. we 
might create multipliers to multiply AR×AR, AR×BR, 
AR×CR, BR×BR, and BR×CR (or even more if we 
ignore the commutative property or make interpolation an 
option). One could always up-sample parameters to audio 
rate before connecting them to an audio rate unit 
generator, but that is much less efficient. One of the goals 
of UGG is to generate a polymorphic “front end” so that 
users can write something simple, such as mult(a, b), 
and let mult find the optimal unit generator based on the 
types of a and b.  

The details depend on the language in which unit 
generators are embedded. For example, if one is 
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combining unit generators directly in C++, then function 
overloading can be used, and the compiler itself can 
select unit generators. On the other hand, if UGG unit 
generators are linked into a dynamically typed language, 
it is up to the caller to inspect parameter types and select 
from a number of implementations. As with variants of 
unit generators, this code is tedious to write, so 
automation can save a lot of work and minimize errors. 

As a proof of concept, we imagined a synthesis 
system based on Python, extended with unit generators 
created by UGG. (One can imagine doing something 
similar with Pd [4], Supercollider [2], ChucK [16], or 
other languages.) Unit generators are represented by 
objects in Python, and we want polymorphic functions so 
that we can write generic expressions such as 
Mult(Osc(…), Env(…)) rather than type-specific 
expressions such as Mult_ab_a(Osc_c_a(…), 
Env_cccc_b(…)). 

 Since the required code is simple and repetitive, we 
extended UGG with a function that creates a family of 
unit generators with different parameter rates. The new 
function: (1) computes permutations of parameter rates 
(AR, BR, CR), (2) calls ugg_write to generate a unit 
generator for each permutation, (3) writes a polymorphic 
unit generator (in Python) where the parameters can be 
any combination of AR, BR, and CR. The function finds 
and creates an actual unit generator implementation with 
matching parameter types. Thus, we can use UGG not 
only for unit generators but also to generate a convenient 
API to use them. Keeping UGG small and simple makes 
this sort of customization a very reasonable task 
compared to writing interfaces by hand. 

8. ABSTRACTION IN UGG 
One if the interesting possibilities of UGG arises from its 
embedding in an “ordinary” language (Python). While 
one might criticize UGG for being just a set of objects 
and coding conventions rather than a true language, we 
view this as a feature rather than a shortcoming. The 
previous section described how UGG supports targeting 
different systems merely by making simple changes to 
UGG itself, leaving DSP algorithms untouched. 

Another possibility is using functions in Python to 
represent DSP algorithms in a more abstract form. For 
example, we presented a phasor algorithm that simply 
ramps from 0 to 1 at a given frequency. In practical cases, 
we might use a phasor in combination with a table lookup 
to generate a tone, or use multiple phasors in an FM 
algorithm. Can we abstract the notion of phasor without 
making a full-blown unit generator? 

In fact, this is quit simple using ordinary Python 
functions and variables in a direct manor. Consider this 
function definition (in Python): 

def phasor(freq): 
    phase = First("phase", 0, "double") 
    phase.use_output_rate() 
    Next(phase, phase + freq / SR) 
    return phase 

Now we have a function that constructs and returns the 
phasor computation. To use this alone as a unit generator, 
we can write: 

ugg_begin("Phasor") 
freq = Param("freq") 
ugg_write([CR], [freq], phasor(freq), AR) 

More interestingly, we can combine phasor with other 
abstractions. For example, we could define sinetone 
to take a phasor as input and return an interpolated table 
lookup (as a signal). Then, we could define lowpass to 
filter the freq parameter so that sudden frequency 
changes produce slow frequency sweeps in the phasor 
and oscillator. The whole construction could then be 
written as: 

ugg_begin("SweepOsc") 
freq = Param("freq") 
swr = Param("sweeprate") 
ugg_write([BR, BR], [freq, swr],  
   sinetone(phasor(lowpass(freq),swr)), AR)) 

In this example, the freq and sweeprate parameters are 
now block rate (BR) to make the point that this form of 
abstraction does not “lock in” rates, and code generation 
still performs a global resolution and optimization of 
rates, necessary variables and interpolation operations. 

One potential problem is that programs written in this 
way can “blow up” into large blocks of in-lined code. To 
some extent, this is a feature that reduces overhead at 
runtime. On the other hand, because UGG generates 
readable high-level code and the code generation is easy 
to modify, we believe users can alter code generation if 
necessary to control code size. 

9. FUTURE WORK 
UGG already seems useful as is, but future work might 
consider a number of extensions. One missing 
optimization from UGG is common sub-expression 
elimination. If an operator graph is used in two places, it 
is possible that the graph will be converted into two or 
more copies of the same code. Wherever a graph node is 
referenced more than once and is not a variable or 
parameter, the computation should be stored in a variable 
and computed just once. If the graph contains actual 
copies of subgraphs (not just multiple references to the 
same node), finding them is more difficult, but the same 
optimization applies. 

Spectral processing is a challenge for computer music 
languages. One approach is to introduce synchronous 
processing at some fraction of the block rate, i.e. the FFT 
analysis/synthesis rate. It seems possible to extend UGG 
with a “spectral rate” below the block rate. Both ChucK 
and LC have introduced support for operating at arbitrary 
hop sizes on vectors of samples, supporting granular 
synthesis, frequency domain processing with overlapping 
windows, and other interesting algorithms [17][18]. It 
would be interesting to explore this approach using 
sample synchronous unit generators (as in ChucK and 
LC). Alternatively, one could investigate how to combine 
this approach with block-based unit generators. 
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Similarly, asynchronous output should be supported, 
such as sending a message when a peak is detected. This 
can be implemented by defining operators that 
conditionally call a side-effect-producing function. 

FAUST has introduced vector-based processing to take 
advantage of modern vector instructions [19]. This is not 
always optimal because of sample-to-sample dependen-
cies, but the UGG representation of algorithms should 
allow a similar approach to vector code generation. 

UGG should have “back-end” methods to generate code 
for a wide range of languages and systems. We also plan 
to develop a small but extensible UGG-based sound 
server for games, installations, and other applications 
where sound synthesis is an embedded component of a 
larger system. 

10. CONCLUSIONS 
UGG offers a way to describe unit generators in terms of 
equations rather than low-level coding in C++. Equations 
are represented as graphs of objects, leading to a very 
compact system for automatic code generation. UGG is 
capable of dealing with multiple sample rates for 
efficiency and multiple unit generator designs for 
flexibility. Unit generators can be optimized for 
combinations of constant, block-rate and audio-rate 
inputs and outputs, and UGG can generate polymorphic 
functions that select efficient implementations from 
among the options. In principle, UGG can target a variety 
of unit generator libraries, standards, and language 
implementations, allowing DSP code to be shared, 
maintained, and extended more easily. 
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