
Published as: Roger B. Dannenberg, “UGG: A Unit Generator Generator,” in Proceedings of the 2018 International
Computer Music Conference, International Computer Music Association, August 2018.

UGG: A Unit Generator Generator

 Roger B. Dannenberg

Carnegie Mellon University
rbd@cs.cmu.edu

ABSTRACT
Unit generators are primary building blocks of music
audio software. Unit generators aim to be both efficient
and flexible, but these goals are often in opposition. As
designers trade off efficiency against flexibility, many
designs emerge, leading to a multitude of incompatible
implementations. Thus, there are many incompatible unit
generator libraries, each representing substantial effort.
The present work suggests that unit generators can be
written in a functional style using a conventional
language with operator overloading, and an easily
modifiable “back end” can generate efficient code. A
prototype of this method, the Unit Generator Generator
(UGG) system can be tailored quickly to target many unit
generator designs. Computations can be shared across
unit generators by defining simple functions, leading to
an even more compact and expressive notation.

1. INTRODUCTION
In any computer music system for audio processing, most
computation time is spent processing audio. Typically,
audio processing is performed in a collection of unit
generators that generate, filter, combine, and modify
streams of audio samples. Since unit generators are
critical to efficiency, they tend to have specialized and
carefully designed lightweight interfaces so that the
overhead of moving samples and control from one unit
generator to the next is minimized.

Unfortunately, there is little or no compatibility
between audio systems and the way they interface with
unit generators. If efficiency were not so important, one
could consider “compatibility layers” to adapt one set of
conventions to another, but in practice, copying samples
from one container or format to another can add
substantial overhead. Instead, we see the development of
many different libraries of unit generators, each
optimized for a slightly different purpose.

One promising development has been high-level
languages for describing audio signal processing.
Typically, these languages use a functional programming
style and treat signals as infinite sequences that are
defined recursively. If a powerful, functional notation can

be compiled to C or C++, then an optimizing compiler
can finish the job of producing highly efficient code.

However, the functional language approach has been
used mainly for monolithic signal processing programs
such as audio plugins or complete synthesizers rather
than smaller unit generators, and the “back end” or code
generation part is not designed to target multiple different
unit generator coding conventions.

The Unit Generator Generator (UGG) was developed
to explore a new approach to high-level unit generator
description. In UGG, one writes programs to create
graphs that describe signal-processing algorithms to be
implemented as unit generators. Operator overloading is
used so that signal-processing graphs can be written
intuitively and more-or-less as mathematical expressions.
For example, the sum of signals A and B can be written
A+B. In the UGG implementation, A, B and A+B would
all be represented by objects, and operator overloading is
used to define what it means to apply “+” to two objects.
Thus UGG can be embedded in an existing language
(Python), which reduces the need for users to learn a
special language or syntax. The objects contain methods
to generate code. Representing signals as objects allows
users to customize code generation by extending or
replacing code-generating methods. This keeps UGG
lightweight, easy to understand, and adaptable so that one
DSP algorithm expression can be used to generate any
number of different styles of unit generators. There is no
particular limit on the size of algorithms, so one could
use UGG to build complete audio processing systems as
well as simple unit generators.

We envision a typical use case to be a custom unit
generator for an existing computer music language (e.g.
Max or csound). The user first describes the algorithm in
UGG and automatically generates code and a stand-alone
test program. When testing is complete, the user
automatically generates an “external” or library
compatible with the preferred composition environment.
If the unit generator is of general interest, the user can
generate extensions for other systems such as
Supercollider, Nyquist, Pd, and Chuck.

2. RELATED WORK
Most unit generators are coded directly in C or C++. Unit
generator libraries can be found in Csound [1],
Supercollider [2], and Pd [3][4], among others. As
mentioned, languages use different conventions for unit
generators. For example, Csound and Supercollider unit

Copyright: © 2018 Roger B. Dannenberg. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are
credited.

 2

generators have block rate (k-rate) and audio rate (a-rate)
versions whereas Pd does not.

Many unit generator libraries exist outside of specific
language implementations. Putnam describes Gamma, a
C++ library for unit generators [5]. This article also
describes a number of other libraries including CLAM
[6], CSL [7], ICST [8], and STK [9]. Putnam identifies
three “main distinctions between the implementations of
unit generators in these libraries: (1) processing
granularity (single-sample and/or block-based), (2)
support for processing generic types, and (3) ability to
run at multiple sample rates,” which accounts for some of
the diversity and incompatibilities we see.

RATL [10] uses C++ templates to write unit
generators in an object-oriented. RATL is motivated by
trying to overcome incompatibilities between different
unit generator-based systems. Nyquist [11] and Aura [12]
describe unit generators in terms of parameters, types,
various properties, and use a preprocessor to generate C
implementatons. The idea behind these systems is to
factor out commonalities so that only algorithm-specific
code is required for each unit generator.

FAUST [13][14] and Kronos [15] are high-level
languages based on functional programming that describe
signal processing algorithms. In both cases, programs are
expanded into C or LLVM to be compiled by an
optimizing compiler. (FAUST can also generate code in a
number of languages including Java and Javascript, and it
can produce unit generators for several languages.) These
systems may calculate audio in blocks at the top level,
but do not support the creation of unit generators with a
mix of audio rate and block rate signals.

Functional approaches often compile to functions that
do the work of many unit generators. This is efficient, but
then any changes to algorithms require recompilation of
code, whereas unit generator systems (as produced by
UGG) can be reconfigured without recompilation.

3. THE FUNCTIONAL APPROACH
Suppose we want a signal that is initially 0 and increases
by 1 every 1000 samples. In procedural programming, we
can simply write x ← x + 0.001 (using “←” to indicate
assignment), and arrange to perform this assignment
every sample period. However, at the risk of
oversimplifying things, functional language descriptions
of DSP algorithms use equations rather than sequential
steps to describe computation, so we must somehow
express how signals change over time without assignment
statements. The “trick” to avoiding state changes is to
describe signals as a sequence of values. While the syntax
may vary from one language to the next, signals are
described as a first element followed by elements that
depend on previous elements. For example, we can say x0
= 0 and xn = xn-1 + 0.001.

This approach is not limited to a single variable. We
can have any number of “state” variables, and the only
restriction for the programmer is to describe the DSP
algorithm as a set of equations (that more-or-less look

like assignment statements) for the values of the next
samples in terms of the values of previous samples.

One advantage of functional programs is that all data
dependencies and thus order of execution is implicit in
the equations. We can use this property to generate code
in a very flexible manner.

Often, music signal processing combines signals
running at different rates. In particular, if unit generators
compute a block of 64 audio samples per activation at
sample rate SR, it is fairly simple to introduce control-
rate signals at SR/64 that control filter cutoff frequencies,
amplitude envelopes, vibrato, and many other time-
varying parameters.

Multi-rate computation is not simple in most
functional programming languages and usually involves
explicit programming to implement signal decimation or
interpolation. Since we often want control-rate and audio-
rate versions of unit generators, UGG handles mixed
sample rate computations automatically, and just one
specification can generate multiple unit generators. UGG
considers all variables and signals to have one of three
rates: audio rate (AR) denotes one value per audio
sample. Block rate (BR) denotes a sequence of values
where one new value is computed each time the unit
generator’s run method is called. Constant rate (CR)
denotes a scalar value that remains constant over time.
However, constant values can be updated between calls
to the unit generator’s run method.

4. CODING IN UGG
The Unit Generator Generator (UGG) uses objects to
represent variables, values, and operators. There is no
strong attempt to hide the implementation, and we will
see that exposing the implementation gives UGG some
interesting power.

Unit generator descriptions in UGG begin with a call
to ugg_begin("osc"), where "osc" is the base
name of the unit generator. One can then define variables
by writing Var("y", expr), where “y” is the variable
name, and expr is an expression used to compute the
value. Related to variables are parameters:
Param("x") creates a parameter named "x", which
represents an input to the unit generator. First("s",
0) creates a signal named “s” with initial value 0. This
must be paired with another declaration, Next(s, expr),
where expr describes the next value of signal “s” in terms
of the current values of this an other signals. Various
functions and operators are available. E.g. A + B
denotes the sum of A and B, which can be scalar values or
signals. Conditional execution can be defined
functionally using Cond(test, a, b), which returns
value a or b depending on test. Unit generator code is
produced by calling ugg_write([r1,r2,…],
[p1,p2,…], expr, rate), where r1, r2, … are rates,
p1, p2, … are parameters, expr describes the output signal
of the unit generator, and rate is the rate of the output.
Rates for parameters and output can be either AR, BR, or
CR as described in the previous section.

 3

4.1 The Simplest Unit Generator

As a simple example, the following describes a unit
generator that multiplies two audio rate signals:

ugg_begin("Mult")
pa = Param("a")
pb = Param("b")
ugg_write([AR,AR], [pa,pb], pa * pb, AR)

Notice the use of variables pa and pb. These are bound
to parameter objects created by Param. In the expression
pa*pb, “*” is overloaded; rather than performing any
kind of arithmetic, it constructs a tree representation of
the product of two parameters. This tree is then used to
generate code. Due to space limitations, we will show
just the generated constructor and run methods:

void Mult_aa_a(Ugen a, Ugen b) {
 this->b = b;
 this->a = a; }
void run() {
 float *b_samps = b->get_outs();
 float *a_samps = a->get_outs();
 for (int i = 0; i < BL; i++) {
 out[i] = (a_samps[i] * b_samps[i]); }}

4.2 Recursively Defined Signals as “State”

The next example illustrates how unit generators that
retain and modify state can be expressed and generated
using the functional style of UGG:

ugg_begin("Phasor")
freq = Param("freq")
phase = First("phase", 0, "double")
phase.use_output_rate()
Next(phase, phase + freq / SR)
ugg_write([CR], [freq], phase, AR)

Note that phase is created by First with an optional
type declaration (the default is float). Since phase
depends only on CR variables (freq and SR), UGG will
assume that it is a block rate “control” variable.
phase.use_output_rate() tells UGG to use the
same rate as the unit generator’s output, which in this
case is audio rate. Then, we complete the recursive
definition in Next: each next value of phase is
computed from the given expression in terms of the
current value of phase (and other variables). An
abbreviated listing of the generated code follows:

void Phasor_c_a(float freq) {
 t10 = (freq / SR);
 this->freq = freq;
 phase = 0; }
void run() {
 for (int i = 0; i < BL; i++) {
 out[i] = phase;
 double phase_next = fmod((phase + t10), 1);
 phase = phase_next; }}

Because freq / SR depends only on constant terms
(CR) but is used in an audio rate computation (to
compute phase), the expression is assigned to a new
variable (t10), which moves the division out of the
inner loop. It may also seem curious that the next value of
phase is stored in phase_next and then assigned to
phase. This style of code generation can compute
multiple “next” values for these recursively-defined

signals before the current values are overwritten. In this
case, the assignment to phase_next is unnecessary,
and the compiler will remove it.

4.3 Alternate Versions for Different Rates

UGG can generate different implementations based on
the rates of input parameters and the output signal. For
example, we can use our multiplier definition (Section
4.1) to multiply an audio rate by a block rate parameter:

ugg_write([AR,BR], [pa,pb], pa * pb, AR)

Notice that there are no changes to the DSP algorithm
itself. We merely indicate that the second parameter is
BR instead of AR. UGG will detect that the block rate
parameter pb is used in an AR expression (pa*pb) and
automatically introduces in-lined code to linearly
interpolate the block rate parameter to audio rate.
(Interpolation can be removed with the
use_non_interpolated method.) Here is the gist of
the generated code:

void Mult_ab_a(Ugen a, Ugen b) {
 b_arate = 0;
 this->b = b;
 this->a = a; }
void run() {
 float *a_samps = a->get_outs();
 float b_step =

 (b->get_out()- b_arate) * BL_RECIP;
 for (int i = 0; i < BL; i++) {
 out[i] = a_samps[i] * b_arate;
 b_arate += b_step; }}

In this version, a single sample is fetched from b before
the inner loop (thus at the block rate), and the inner loop
interpolation is a simple increment by b_step. Note
also that the base name, Mult, has been “decorated” with
rates to indicate parameter rates and output rate, forming
the class name Mult_ab_a. In a similar way, we can
generate Phasor_c_b, a phasor that runs at the block
rate.

5. CODE GENERATION
UGG generates code in three steps. First, the UGG
program (expressed in Python) is evaluated, creating a
dataflow graph that describes the DSP algorithm. Next,
the graph is copied and altered to introduce new variables
and operators to implement changes in sample rate and to
avoid audio rate computation when control rate will do.
Third, the graph is walked multiple times to generate
code snipits to fill in an overall unit generator code
template.

5.1 Building the Dataflow Graph

The basic elements of UGG DSP algorithms are objects.
The constructors Param, Var and First are designed
to look like declarations, but they actually create objects.
Operators such as +, -, * and / are overloaded to create
objects of class UBinary. Thus, our phasor unit
generator (Section 4.2) produces the graph shown in
Figure 1.

 4

Figure 1. Dataflow graph for the phasor unit generator.

5.2 Introducing New Variables and Operators

In the next code generation step, the expression graph is
topologically sorted and traversed from sources to sinks,
and each node is labeled with a rate derived from its
inputs. An exception in this case is that the method
use_output_rate forces phase to be treated as AR.

When a rate change occurs, such as the one labeled “CR
to AR” in Figure 1, a new node is inserted: either a
variable is created to allow the value to be computed
outside and reused inside the inner loop, or a node of
class Upsample is added to interpolate from block rate
to audio rate. In this case, the variable t10 is created (see
the generated code in Section 4.2).

5.3 Template-based Generation

Finally, code is generated by traversing the graph, again
in order of sources to sinks so that values are generated
before they are used in the sequential C++ code.
Generation follows a code template such as the one
shown below, which is used for audio-rate output unit
generators:
class basename_decorations : Ugen_outa {
 declarations
 void classname(parameters) {
 constructor_stmts }
 void run() {
 brate_code
 upsample_prep
 for (int i = 0; i < BL; i++) {
 arate_code
 out[i] = output_expression_code;
 next_arate_state_code
 upsample_update
 update_arate_state } }

In general, each point in the template, e.g.
constructor_stmts, is generated by a full pass through the
graph, invoking a method for each node. In this case, the
method is gen_constructor(), which is inherited
and does nothing in most classes, but, for example, a
Param node, if declared to have rate CR, will generate
code such as:
 this->freq = freq;

Expressions such as fmod((phase + t10), 1) are
generated from multiple objects by recursively

constructing and combining sub-expressions. For
example, the UBinary object’s (slightly simplified)
gen_code method (here “+” denotes string
concatenation) is:
def gen_code(self):
 return self.left.gen_code() + self.op +
 self.right.gen_code()

Allowing each class to generate class-specific code, and
using a different method to generate each code snipit in
the template results in a simple architecture that can be
modified or extended to meet different requirements.

6. CUSTOM CODE TARGETS
One of the drawbacks of existing libraries is that
architectural decisions can affect the code of every unit
generator. It is difficult for a library or even a language
like FAUST to cover every desirable feature. Therefore,
there is some value in a simple, very adaptable approach.

For example, some unit generator systems construct a
unit generator graph, topologically sort the unit
generators according to dependencies, and then compile
and save an execution sequence. Unit generators can then
assume without checking that their input samples are
valid each time their “run” method is called.
Alternatively, unit generators can check for valid inputs
and call run methods (recursively) as needed, effectively
performing a topological sort as each block is computed.
This approach might make sense if unit generator graphs
can be modified on the fly.

As an experiment, we modified our UGG code
generator to insert checks and eliminate the need to call
each unit generator explicitly. A single call to the
“output” unit generator’s run method brings all inputs up
to date. Only 14 lines of code were added or modified to
make this change. Admittedly, this should be a small
change. What about a large change such as targeting
Javascript instead of C++? To give some idea of the
magnitude of this change, there are only 44 lines of code
in UGG that explicitly depend upon C++. This number
might be much larger if many more built-in functions and
operators were added to UGG, but these added
declarations would be very simple and repetitive.

7. POLYMORPHISM
UGG generates a unit generator specialized to each
possible combination of parameter sample rates. E.g. we
might create multipliers to multiply AR×AR, AR×BR,
AR×CR, BR×BR, and BR×CR (or even more if we
ignore the commutative property or make interpolation an
option). One could always up-sample parameters to audio
rate before connecting them to an audio rate unit
generator, but that is much less efficient. One of the goals
of UGG is to generate a polymorphic “front end” so that
users can write something simple, such as mult(a, b),
and let mult find the optimal unit generator based on the
types of a and b.

The details depend on the language in which unit
generators are embedded. For example, if one is

 5

combining unit generators directly in C++, then function
overloading can be used, and the compiler itself can
select unit generators. On the other hand, if UGG unit
generators are linked into a dynamically typed language,
it is up to the caller to inspect parameter types and select
from a number of implementations. As with variants of
unit generators, this code is tedious to write, so
automation can save a lot of work and minimize errors.

As a proof of concept, we imagined a synthesis
system based on Python, extended with unit generators
created by UGG. (One can imagine doing something
similar with Pd [4], Supercollider [2], ChucK [16], or
other languages.) Unit generators are represented by
objects in Python, and we want polymorphic functions so
that we can write generic expressions such as
Mult(Osc(…), Env(…)) rather than type-specific
expressions such as Mult_ab_a(Osc_c_a(…),
Env_cccc_b(…)).

 Since the required code is simple and repetitive, we
extended UGG with a function that creates a family of
unit generators with different parameter rates. The new
function: (1) computes permutations of parameter rates
(AR, BR, CR), (2) calls ugg_write to generate a unit
generator for each permutation, (3) writes a polymorphic
unit generator (in Python) where the parameters can be
any combination of AR, BR, and CR. The function finds
and creates an actual unit generator implementation with
matching parameter types. Thus, we can use UGG not
only for unit generators but also to generate a convenient
API to use them. Keeping UGG small and simple makes
this sort of customization a very reasonable task
compared to writing interfaces by hand.

8. ABSTRACTION IN UGG
One if the interesting possibilities of UGG arises from its
embedding in an “ordinary” language (Python). While
one might criticize UGG for being just a set of objects
and coding conventions rather than a true language, we
view this as a feature rather than a shortcoming. The
previous section described how UGG supports targeting
different systems merely by making simple changes to
UGG itself, leaving DSP algorithms untouched.

Another possibility is using functions in Python to
represent DSP algorithms in a more abstract form. For
example, we presented a phasor algorithm that simply
ramps from 0 to 1 at a given frequency. In practical cases,
we might use a phasor in combination with a table lookup
to generate a tone, or use multiple phasors in an FM
algorithm. Can we abstract the notion of phasor without
making a full-blown unit generator?

In fact, this is quit simple using ordinary Python
functions and variables in a direct manor. Consider this
function definition (in Python):

def phasor(freq):
 phase = First("phase", 0, "double")
 phase.use_output_rate()
 Next(phase, phase + freq / SR)
 return phase

Now we have a function that constructs and returns the
phasor computation. To use this alone as a unit generator,
we can write:

ugg_begin("Phasor")
freq = Param("freq")
ugg_write([CR], [freq], phasor(freq), AR)

More interestingly, we can combine phasor with other
abstractions. For example, we could define sinetone
to take a phasor as input and return an interpolated table
lookup (as a signal). Then, we could define lowpass to
filter the freq parameter so that sudden frequency
changes produce slow frequency sweeps in the phasor
and oscillator. The whole construction could then be
written as:

ugg_begin("SweepOsc")
freq = Param("freq")
swr = Param("sweeprate")
ugg_write([BR, BR], [freq, swr],
 sinetone(phasor(lowpass(freq),swr)), AR))

In this example, the freq and sweeprate parameters are
now block rate (BR) to make the point that this form of
abstraction does not “lock in” rates, and code generation
still performs a global resolution and optimization of
rates, necessary variables and interpolation operations.

One potential problem is that programs written in this
way can “blow up” into large blocks of in-lined code. To
some extent, this is a feature that reduces overhead at
runtime. On the other hand, because UGG generates
readable high-level code and the code generation is easy
to modify, we believe users can alter code generation if
necessary to control code size.

9. FUTURE WORK
UGG already seems useful as is, but future work might
consider a number of extensions. One missing
optimization from UGG is common sub-expression
elimination. If an operator graph is used in two places, it
is possible that the graph will be converted into two or
more copies of the same code. Wherever a graph node is
referenced more than once and is not a variable or
parameter, the computation should be stored in a variable
and computed just once. If the graph contains actual
copies of subgraphs (not just multiple references to the
same node), finding them is more difficult, but the same
optimization applies.

Spectral processing is a challenge for computer music
languages. One approach is to introduce synchronous
processing at some fraction of the block rate, i.e. the FFT
analysis/synthesis rate. It seems possible to extend UGG
with a “spectral rate” below the block rate. Both ChucK
and LC have introduced support for operating at arbitrary
hop sizes on vectors of samples, supporting granular
synthesis, frequency domain processing with overlapping
windows, and other interesting algorithms [17][18]. It
would be interesting to explore this approach using
sample synchronous unit generators (as in ChucK and
LC). Alternatively, one could investigate how to combine
this approach with block-based unit generators.

 6

Similarly, asynchronous output should be supported,
such as sending a message when a peak is detected. This
can be implemented by defining operators that
conditionally call a side-effect-producing function.

FAUST has introduced vector-based processing to take
advantage of modern vector instructions [19]. This is not
always optimal because of sample-to-sample dependen-
cies, but the UGG representation of algorithms should
allow a similar approach to vector code generation.

UGG should have “back-end” methods to generate code
for a wide range of languages and systems. We also plan
to develop a small but extensible UGG-based sound
server for games, installations, and other applications
where sound synthesis is an embedded component of a
larger system.

10. CONCLUSIONS
UGG offers a way to describe unit generators in terms of
equations rather than low-level coding in C++. Equations
are represented as graphs of objects, leading to a very
compact system for automatic code generation. UGG is
capable of dealing with multiple sample rates for
efficiency and multiple unit generator designs for
flexibility. Unit generators can be optimized for
combinations of constant, block-rate and audio-rate
inputs and outputs, and UGG can generate polymorphic
functions that select efficient implementations from
among the options. In principle, UGG can target a variety
of unit generator libraries, standards, and language
implementations, allowing DSP code to be shared,
maintained, and extended more easily.

Acknowledgments

The author would like to thank Vesa Norilo for
interesting conversations and insights. Also thanks to the
authors of many computer music systems for creating the
design space from within which this research has grown.

11. REFERENCES
[1] V. Lazzarini, S. Yi, J. ffitch, J. Heintz, Ø.

Brandtsegg, and I. McCurdy. Csound: A Sound and
Music Computing System, Springer, 2016.

[2] J. McCartney, “Rethinking the Computer Music
Language: SuperCollider.” Computer Music
Journal, vol. 26, no. 4 (Winter), 2002, pp. 61-68.

[3] M. Puckett, “Pure Data,” Proceedings, International
Computer Music Conference, ICMA, 1996, pp. 224-
227.

[4] M. Puckette, “Max at Seventeen,” Computer Music
Journal, vol. 26, no. 4 (Winter), 2002, pp. 31-43.

[5] L. Putnam, “Gamma: A C++ Sound Synthesis
Library Further Abstracting the Unit Generator,”
Proceedings of the ICMC/SMC 2014, ICMA, 2014,
pp. 1382-1388.

[6] X. Amatriain, An object-oriented metamodel for
digital signal processing with a focus on audio and

music. (Ph.D. dissertation.) Barcelona, Spain:
Universitat Pompeu Fabra, 2005.

[7] S. Pope, X. Amatriain, L. Putnam, J. Castellanos,
and R. Avery. “Metamodels and design patterns in
CSL4.” Proceedings of the 2006 International
Computer Music Conference, ICMA, 2006.

[8] S. Papetti, “The icst dsp library: A versatile and
efficient toolset for audio processing and analysis
applications.” Proceedings of the 9th Sound and
Music Computing Conference, 2012, pp. 535–540.

[9] P. R. Cook, G. P. Scavone. “The synthesis toolkit
(STK),” Proceedings of the 1999 International
Computer Music Conference, ICMA, 1999.

[10] K. MacMillan, M. Droettboom, and I. Fujinaga. “A
system to port unit generators between audio DSP
systems.” Proceedings of the International
Computer Music Conference, ICMA, 2001, pp. 103-
106.

[11] R. B. Dannenberg, “The Implementation of Nyquist,
a Sound Synthesis Language,” Computer Music
Journal, vol. 21, no. 3 (Fall), 1997, pp. 71-82.

[12] R. B. Dannenberg, “Combining Visual and Textual
Representations for Flexible Interactive Signal
Processing,” The ICMC 2004 Proceedings, ICMA,
2004.

[13] Y. Orlarey, D. Fober, and S. Letz, “FAUST: An
Efficient Functional Approach to DSP
Programming,” New Computational Paradigms for
Computer Music. Editions Delatour, 2009.

[14] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and
Semantical Aspects of Faust.” Soft Computing vol.
8, no. 1, Springer-Verlag, 2004, pp. 623-632.

[15] V. Norilo, “Kronos: A Declarative
Metaprogramming Language for Digital Signal
Processing,” Computer Music Journal, vol. 39, no.
4 (Winter), 2015, pp. 30-48.

[16] G. Wang, P. R. Cook, and S. Salazar, “ChucK: A
Strongly Timed Computer Music Language,”
Computer Music Journal, vol. 39, no. 4 (Winter),
2015, pp. 10-29.

[17] H. Nishino, N. Osaka, and R. Nakatsu. “The
Microsound Synthesis Framework in the LC Music
Programming Language.” Computer Music Journal,
vol. 39, no. 4 (Winter), 2015, pp. 49-79.

[18] G. Wang, R. Fiebrink, and P. Cook, “Combining
Analysis and Synthesis in the ChucK Programming
Language,” Proceedings of the 2007 International
Computer Music Conference, ICMA, 2007.

[19] Y. Orlarey, D. Fober, and S. Letz, “Adding
Automatic Parallelization to Faust,” Linux Audio
Conference, 2009.

