
 193

The Interpretation of MIDI Velocity

Roger B. Dannenberg

School of Computer Science, Carnegie Mellon University
dannenberg@cs.cmu.edu

Abstract
The MIDI standard does not specify how MIDI key velocity
is to be interpreted. Of course, individual synthetic instru-
ments respond differently, but one would expect that on av-
erage, instruments will respond about the same. This study
aims to determine empirically how hardware and software
MIDI synthesizers translate velocity to peak RMS ampli-
tude. Analysis shows synthesizers roughly follow an x-
squared rather than exponential mapping. Given a desired
dynamic range (from velocity 1 to 127), a square-law
mapping from velocity to RMS is uniquely determined,
making dynamic range a convenient way to summarize
behavior. Surprisingly, computed values of dynamic range
for commercial synthesizers vary by more than 60dB.

1 Technical Introduction
MIDI key velocity (Rothstein 1995) is normally an indi-

cation of dynamic level or loudness, but the MIDI standard
(MMA 1996) does not specify exactly how velocity should
be interpreted. In synthesizers, key velocity can control
many parameters, including amplitude, FM modulation
depth, and sample selection. Even when velocity is used
simply to scale audio amplitude, it is unclear how to map
MIDI velocity to amplitude.

In order to create a truly “MIDI compatible” system, one
should try to be consistent with existing implementations so
that similar key velocity values result in similar output lev-
els. Lacking any published recommendations or specifica-
tions, I measured many programs (instruments) on a handful
of synthesizers to determine how key velocity maps to peak
RMS amplitude.

At the outset of this work, I assumed that MIDI velocity
would be logarithmically related to amplitude since it is well
known that perceived loudness is also quasi-logarithmic. A
logarithmic scale would allow a wide dynamic range to be
represented efficiently by the 7-bit velocity value in MIDI
messages. One finding is that a logarithmic relationship is
not a good fit to a variety of commercial synthesizers and
patches. Overall, a square-root function is a better, and in
some cases nearly exact, model of MIDI velocity as a
function of RMS amplitude. However, synthesizers and

programs appear to be quite inconsistent. We can make rec-
ommendations for MIDI-controlled instruments, but there is
hardly a de facto standard.

The next section expands upon the motivation as well as
some musical and esthetic concerns relating to this work.
Section 3 describes what I measure to study velocity, and
Section 4 describes how I measure it. Section 5 introduces a
model for sound variation as a function of velocity, and
Section 6 fits this model to actual synthesizers. This is
followed by some discussion and conclusions.

2 A Broader Introduction
MIDI seems to be a permanent fixture on the computer

music landscape. It has been used for more than twenty
years almost without change, and it has survived a major
transition from serving as a real-time hardware control pro-
tocol to a data format for music that is realized entirely in
software. MIDI is even used to specify ring tones for cell
phones, possibly the largest application of music synthesis
technology to date.

MIDI is not without shortcomings, and the limitations of
MIDI have been lamented by more than one author. (Moore
1988, Wessel and Wright 2002) Various proposals to extend
or replace MIDI have also appeared. (McMillen 1994,
Wright 1997) Nevertheless, MIDI has proven to be resilient,
durable, and well understood. The perceived benefits of
MIDI compatibility usually outweigh any implementation
difficulty, so most computer music systems handle MIDI
messages and standard MIDI files.

One of the features of MIDI is that it supports the notion
of the music score (or sequence of MIDI messages) as an
abstract specification that can be “performed” by a variety
of synthesizers. This has roots in Western music, common
practice notation, and music performance practice – music
scores can be played by different performers using different
instrumentation.

Many computer musicians have rejected this notion out-
right, replacing vague sequences of MIDI messages with
precise specifications of the entire sound production process
using software synthesis. In this approach, the “instrument,”
its control, and even the notion of score are often integrated
into a single software program, patch, or configuration,
giving precise control of sound from human gesture all the
way down to the details of sample-by-sample computation.

Now that we have experienced music making with
MIDI-based systems and more general software-based sys-
tems, we can observe that these two approaches naturally

Originally published as: Roger B. Dannenberg, “The Interpreta-
tion of MIDI Velocity,” in Proceedings of the 2006 Interna-
tional Computer Music Conference, San Francisco, CA: The
International Computer Music Association, 2006, pp. 193-196.
Copyright © 1996 by Roger B. Dannenberg

 194

lead composers in very different directions. In particular, we
hear a much stronger orientation toward “notes” and “sound
events” with MIDI, and much more effects processing and
continuous sound transformation with software systems.
Secondly, MIDI-based systems, by standardizing on a
common representation for performance information, invite
experimentation with different instrumentation.

Because software allows us to define our own instru-
ments, there is a tendency to treat MIDI data as arbitrary. A
note-on message can just as well control a digital audio ef-
fect as play a note, and parameters such as pitch and veloc-
ity can be treated as arbitrary bits of information rather than
specific meaningful parameters. However, creative practice
often benefits from the juxtaposition of different devices,
concepts, and technologies. Respecting some conventions
for MIDI semantics in MIDI controllers, MIDI control
software, and MIDI synthesizers simplifies experimentation
and creative combination.

Conventions are almost necessary as a starting point in
the infinitely malleable world of digital media. Therefore, it
seems helpful to understand how one might handle and
interpret MIDI velocity in a conventional way.

3 What to Measure
Velocity literally refers to the rate at which a keyboard

controller key is pressed. The focus in this paper is how
synthesizers respond to this parameter. But how can we
measure and compare a complex audio response in a simple,
objective way? One approach is to use psycho-perceptual
methods, using humans to judge and compare differences
between two synthesizers. (Martens 1985) These methods
allow us to measure perceptual features and to calibrate
control parameters accordingly. A new calibration would be
necessary for each new synthetic instrument.

An interesting alternative is to pursue models of percep-
tion, in particular loudness models (Zwicker and Fastl
1990), so that velocity could be translated automatically to
appropriate control values that produce the desired loudness
level as detected by the model. Unfortunately, rather so-
phisticated models are required to deal with the time-evolu-
tion of sounds. For example, how does one compare an in-
strument with an intense attack followed by a soft sustain to
one with a medium but sustained intensity?

I have chosen to ignore a number of thorny perceptual
issues by considering only the maximum of the evolving
short-term RMS envelope as a function of MIDI velocity.
The problem with this measure is that two sounds with the
same peak RMS value may not exhibit the same perceptual
loudness. On the other hand, this approach is objective and
simple to implement.

To measure the peak RMS value of a synthesized tone
start with audio sampled at 44100 Hz, and process non-
overlapping windows of 1050 samples:

]1050[, jixW ji += (1)

From these windows, compute the RMS value as follows:

∑
=

=
1049

0

2
, 1050/

i
jij Wrms (2)

The sequence rmsj, with a sample rate of 42 Hz, describes
an envelope. The peak RMS value is simply the maximum:

jj
rmspeak max= (3)

We are interested in how this peak varies with MIDI
velocity, so consider peakv, the peak RMS value resulting
from a MIDI velocity of v (for now, assume MIDI key
number and other parameters are constant). After normaliz-
ing by peak127, the peak observed with the velocity value at
the maximum of 127, we obtain:

127/)(peakpeakvf v= (4)
 We want to find a function f that is characteristic of many
synthesizers and programs. If one exists, we can claim that f
is a de facto standard for the interpretation of MIDI velocity.

4 Implementation: Peak RMS
To estimate f(v) for a variety of instruments, I use an

automated procedure. First a standard MIDI file is generated
to play sequences of MIDI notes on middle-C with 15
equally spaced velocity values: 1, 10, 19, … 118, 127.
Notes are 0.3 s long and a new note starts every 0.5 s. (It
was discovered that reverb tails on some patches are long
enough to cause some overlap, so wider note spacing should
have been used.) A 15-note sequence is generated using
every MIDI program from 0 to 127 for a total of 1920 notes
(only 32 programs were used for the DX7 synthesizer).

This sequence is synthesized and recorded. A sequence
of RMS amplitudes is computed. Knowing the starting
times and durations of notes from the MIDI file, it is simple
to scan the RMS amplitudes, computing a peak RMS value
for each note. There are now 128 peak RMS values for each
velocity, one for each MIDI program. Call these values pv,i.

Next, the peak RMS values for each velocity are nor-
malized by the peak at velocity 100 (the choice of this point
is arbitrary) and averaged across all programs:

128

1

,100

, ×=∑
i i

iv
v p

p
p (5)

The normalization step insures that we measure relative
changes in peak RMS amplitude as a function of velocity
(rather than absolute RMS amplitude), and the averaging
step summarizes the variation across different programs.

Figure 1 shows a typical result, this one from a Roland
Sound Canvas software synthesizer.

5 Analysis
One might expect amplitude to vary exponentially with

velocity, i.e. velocity is logarithmic. Figure 2 plots the log
of Peak RMS vs. Velocity for the Roland Sound Canvas

 195

Synthesizer. The result should be a straight line if the loga-

Peak RMS vs Velocity

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

0 50 100 150

MIDI Key Velocity

Av
g.

 P
ea

k
RM

S

Figure 1. Peak RMS, normalized to 1.0 at MIDI

Velocity 100, then averaged over all 128 programs and
plotted as a function of velocity (data from Roland

Sound Canvas software synthesizer).

rithmic relationship holds. Figure 2 also plots the square
root of amplitude as a function of velocity. This is much
closer to a straight line, leading to the equation:

2)()(bmvvfa +== (6)
where a is the peak RMS value, v is velocity, and (m, b) are
coefficients for the straight line model. Given a set of meas-
ured data points, a least-squares linear regression can be
performed (using square roots of peak RMS values rather
than the original values) to determine (m, b).

While m and b are not very intuitive, we can derive a
more meaningful parameter: the dynamic range from veloc-
ity 1 to velocity 127. Simply plugging in numbers, and let-
ting r be the dynamic range:

22)1/()127(bmbmr +⋅+⋅= (7)
or in decibels:

))1/()127log((20 22 bmbmrdB +×+×= (8)

Log and Square Root of Peak RMS vs Velocity

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 20 40 60 80 100 120 140

MIDI Key Velocity

Lo
g

A
vg

. P
ea

k
R

M
S

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sq
rt

 A
vg

. P
ea

k
R

M
S

log
sqrt

Figure 2. Log and Square Root of Peak RMS data from Fig-
ure 1, indicating that the square-root function is a better ap-

proximation than a log (decibel) scale.

Note that although (m, b) appear to be two independent
parameters to this model, the data is normalized so that a=1

where v=100. This eliminates one degree of freedom. As-
suming that Equation 6 holds, the dynamic range com-
pletely characterizes f. Given a desired dynamic range rdB,
we can solve for m and b to obtain:

20/10 dBrr = (9)

126/1)126/(127 −= rb (10)
127/)1(bm −= (11)

The dynamic range is an interesting and intuitive property
that can be used to compare different synthesizers.

6 Results
I analyzed 7 synthesizers: the Roland Sound Canvas

software synthesizer, the Microsoft GS software synthe-
sizer, a Yamaha DX7 and SY22, a Roland U220, a Kurzweil
K2000R with Kurzweil orchestral samples, and the Garritan
Personal Orchestra Finale Edition (included with Finale
2006). All of these are based on sampling synthesis except
for the DX7, which uses FM, and the SY22, which uses a
mix of FM and sampling. The dynamic range for each of
these is shown in column 2 of Table 1 and graphs of f as
measured from audio are shown in Figure 3.

Table 1. Synthesizers and measured average dynamic range
(characterizing response to MIDI Key Velocity).

Synthesizer Dynamic
Range

Dynamic
Range (Pn)

Roland Sound Canvas 89 45
Microsoft GS 61 81
Yamaha SY22 21 18
Yamaha DX7 11 15
Roland U220 20 51
Kurzweil K2000R 25 37
Garritan Pers. Orch. 44 105

One could argue that averaging measurements from

many instruments is a bad idea because instruments are
intentionally designed with different velocity curves. The
analysis was applied to a single piano sound on each
synthesizer to obtain the third column of Table 1. Far from
being consistent, the different piano implementations show
an even wider variation in dynamic range.

In all synthesizers but the K2000R, the velocity is
approximately linearly related to the square root of the peak
RMS value. This relationship is much more exact and
consistent among the software synthesizers. The hardware
synthesizes (SY22, DX7, U220) seem to exhibit much more
variation among different programs and overall, a much
lower average dynamic range. Particularly for the DX7 (us-
ing 32 factory presets), it seems that velocity has a great
effect on timbre through FM modulation depth and a lesser
effect on amplitude.

 196

The K2000R peak RMS value more closely fits the log
of the velocity than the square root, both in the average over
128 programs and considering just the grand piano program.

In Figure 3, there is an apparent anomaly in that ampli-
tude seems to increase at the lowest velocity levels. This is
due to some long decays and overlapping reverberation tails
from the previous note when the synthesizer was recorded.
These first two points of each curve were ignored in
subsequent calculations.

Peak RMS vs Velocity

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 50 100 150

MIDI Key Velocity

A
vg

. P
ea

k
R

M
S

SoundCanvas
DX7
MS GS
SY22
U220
K2000
GPO

Figure 3. Peak RMS vs. Velocity for various synthesizers.

While the software synthesizers show much more con-
formity to Equation 1, they have decidedly different dy-
namic ranges (44dB vs 89dB, see Table 1).

7 Discussion
One surprising result of this work is the very great dif-

ferences among different synthesizers. Presumably, all of
these synthesizers are intended to perform MIDI data from
keyboard performances, either directly or from recorded
MIDI sequences. Why would there be so much variation?
One might assume that the low dynamic range of the DX7
(11 dB) was designed to mask the noisy 12-bit DAC or that
timbral variation via FM takes the place of amplitude varia-
tion. But the SY22 is much quieter and relies more on sam-
pling, yet it also has a low dynamic range (21 dB). Note that
dynamic range is used here specifically to describe the
variation of average peak RMS with MIDI key velocity (rdB
in Equation 8), and this does not imply anything about the
signal-to-noise ratio, DAC’s, or other components. Another
observation is that the three software synthesizers have a
larger dynamic range that the four hardware synthesizers.

Based on these observations, how should a new software
synthesizer respond to MIDI velocity? For compatibility
with most existing synthesizers and MIDI files, the peak
RMS value should be related roughly to the square of
velocity as in Equation 6. Given this equation, one can
choose the dynamic range from softest to loudest. Values
from 20 to 60dB seem to be typical. In the synthesizers
studied, the dynamic range varies from one instrument to
another, even on the same synthesizer. From the standpoint
of making instruments more interchangeable, it seems

advisable to give all instruments a similar dynamic range.
Once a range, rdB, is chosen, Equations 9-11 can be used to
compute the coefficients m and b for use in Equation 6,
which computes a linear scale factor given a MIDI key
velocity.

8 Summary and Conclusions
This work began with the desire to be consistent with

commercial MIDI synthesizers. To do this, I measured how
synthesizers handle MIDI velocity, and I hoped to adopt
consistent mappings in my own software. To measure the
effect of velocity on synthesizer output, I compute the peak
RMS value of the amplitude envelope of a short (0.3s) mid-
dle C. I was surprised to find a rather wide range of inter-
pretations for MIDI velocity.

One fairly consistent trend, however, is that velocity is
linearly related to the square-root of the peak. Assuming this
relationship to hold, and if velocities are normalized, then
there is only one parameter left to choose. A convenient
form of that parameter is the dynamic range from velocity 1
to velocity 127.

Given the lack of a standard or even a suggestion within
the MIDI specifications, we are free to choose as we please.
My suggestion is to adopt a dynamic range of 60dB (a nice
round number, and about 1000:1 in linear terms). Consistent
interpretation will make software instruments easier to use
by being more predictable and more interchangeable.

I would be happy to share software developed in this
project so that others can easily gather data and characterize
other synthesizers.

References
McMillen, K. 1994. “ZIPI: Origins and Motivations.” Computer

Music Journal 18(4):47-51.
Martens, W. L. 1985. “PALETTE: An Environment for Develop-

ing an Individualized Set of Psychophysically Scaled Tim-
bres.” Proceedings of the 1985 International Computer Music
Conference. International Computer Music Association, pp.
355-365.

Midi Manufacturers Association. 1996. The Complete MIDI 1.0
Detailed Specification. Los Angeles, CA: The MIDI Manu-
facturers Association.

Moore, F. R. 1988. “The Dysfunction of MIDI.” Computer Music
Journal 12(1), 19-28.

Rothstein, J. 1995. Midi: A Comprehensive Introduction, 2nd ed.
Madison, WI: A-R Editions.

Wessel, D., and M. Wright. 2002. “Problems and Prospects for
Intimate Musical Control of Computers.” Computer Music
Journal 26(3):11-22.

Wright, M., and A. Freed. 1997. “Open Sound Control: A New
Protocol for Communicating with Sound Synthesizers.” Pro-
ceedings of the 1997 International Computer Music Confer-
ence. San Francisco: International Computer Music Associa-
tion, pp. 101-104.

Zwicker, E., and H. Fastl. 1990. Psychoacoustics: Facts and Mod-
els. Springer.

