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Abstract 
The MIDI standard does not specify how MIDI key velocity 
is to be interpreted. Of course, individual synthetic instru-
ments respond differently, but one would expect that on av-
erage, instruments will respond about the same. This study 
aims to determine empirically how hardware and software 
MIDI synthesizers translate velocity to peak RMS ampli-
tude. Analysis shows synthesizers roughly follow an x-
squared rather than exponential mapping. Given a desired 
dynamic range (from velocity 1 to 127), a square-law 
mapping from velocity to RMS is uniquely determined, 
making dynamic range a convenient way to summarize 
behavior. Surprisingly, computed values of dynamic range 
for commercial synthesizers vary by more than 60dB. 

1 Technical Introduction 
MIDI key velocity (Rothstein 1995) is normally an indi-

cation of dynamic level or loudness, but the MIDI standard 
(MMA 1996) does not specify exactly how velocity should 
be interpreted. In synthesizers, key velocity can control 
many parameters, including amplitude, FM modulation 
depth, and sample selection. Even when velocity is used 
simply to scale audio amplitude, it is unclear how to map 
MIDI velocity to amplitude. 

In order to create a truly “MIDI compatible” system, one 
should try to be consistent with existing implementations so 
that similar key velocity values result in similar output lev-
els. Lacking any published recommendations or specifica-
tions, I measured many programs (instruments) on a handful 
of synthesizers to determine how key velocity maps to peak 
RMS amplitude. 

At the outset of this work, I assumed that MIDI velocity 
would be logarithmically related to amplitude since it is well 
known that perceived loudness is also quasi-logarithmic. A 
logarithmic scale would allow a wide dynamic range to be 
represented efficiently by the 7-bit velocity value in MIDI 
messages. One finding is that a logarithmic relationship is 
not a good fit to a variety of commercial synthesizers and 
patches. Overall, a square-root function is a better, and in 
some cases nearly exact, model of MIDI velocity as a 
function of RMS amplitude. However, synthesizers and 

programs appear to be quite inconsistent. We can make rec-
ommendations for MIDI-controlled instruments, but there is 
hardly a de facto standard. 

The next section expands upon the motivation as well as 
some musical and esthetic concerns relating to this work. 
Section 3 describes what I measure to study velocity, and 
Section 4 describes how I measure it. Section 5 introduces a 
model for sound variation as a function of velocity, and 
Section 6 fits this model to actual synthesizers. This is 
followed by some discussion and conclusions. 

2 A Broader Introduction 
MIDI seems to be a permanent fixture on the computer 

music landscape. It has been used for more than twenty 
years almost without change, and it has survived a major 
transition from serving as a real-time hardware control pro-
tocol to a data format for music that is realized entirely in 
software. MIDI is even used to specify ring tones for cell 
phones, possibly the largest application of music synthesis 
technology to date. 

MIDI is not without shortcomings, and the limitations of 
MIDI have been lamented by more than one author. (Moore 
1988, Wessel and Wright 2002) Various proposals to extend 
or replace MIDI have also appeared. (McMillen 1994, 
Wright 1997) Nevertheless, MIDI has proven to be resilient, 
durable, and well understood. The perceived benefits of 
MIDI compatibility usually outweigh any implementation 
difficulty, so most computer music systems handle MIDI 
messages and standard MIDI files. 

One of the features of MIDI is that it supports the notion 
of the music score (or sequence of MIDI messages) as an 
abstract specification that can be “performed” by a variety 
of synthesizers. This has roots in Western music, common 
practice notation, and music performance practice – music 
scores can be played by different performers using different 
instrumentation. 

Many computer musicians have rejected this notion out-
right, replacing vague sequences of MIDI messages with 
precise specifications of the entire sound production process 
using software synthesis. In this approach, the “instrument,” 
its control, and even the notion of score are often integrated 
into a single software program, patch, or configuration, 
giving precise control of sound from human gesture all the 
way down to the details of sample-by-sample computation. 

Now that we have experienced music making with 
MIDI-based systems and more general software-based sys-
tems, we can observe that these two approaches naturally 
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lead composers in very different directions. In particular, we 
hear a much stronger orientation toward “notes” and “sound 
events” with MIDI, and much more effects processing and 
continuous sound transformation with software systems. 
Secondly, MIDI-based systems, by standardizing on a 
common representation for performance information, invite 
experimentation with different instrumentation. 

Because software allows us to define our own instru-
ments, there is a tendency to treat MIDI data as arbitrary. A 
note-on message can just as well control a digital audio ef-
fect as play a note, and parameters such as pitch and veloc-
ity can be treated as arbitrary bits of information rather than 
specific meaningful parameters. However, creative practice 
often benefits from the juxtaposition of different devices, 
concepts, and technologies. Respecting some conventions 
for MIDI semantics in MIDI controllers, MIDI control 
software, and MIDI synthesizers simplifies experimentation 
and creative combination. 

Conventions are almost necessary as a starting point in 
the infinitely malleable world of digital media. Therefore, it 
seems helpful to understand how one might handle and 
interpret MIDI velocity in a conventional way. 

3 What to Measure 
Velocity literally refers to the rate at which a keyboard 

controller key is pressed. The focus in this paper is how 
synthesizers respond to this parameter. But how can we 
measure and compare a complex audio response in a simple, 
objective way? One approach is to use psycho-perceptual 
methods, using humans to judge and compare differences 
between two synthesizers. (Martens 1985) These methods 
allow us to measure perceptual features and to calibrate 
control parameters accordingly. A new calibration would be 
necessary for each new synthetic instrument. 

An interesting alternative is to pursue models of percep-
tion, in particular loudness models (Zwicker and Fastl 
1990), so that velocity could be translated automatically to 
appropriate control values that produce the desired loudness 
level as detected by the model. Unfortunately, rather so-
phisticated models are required to deal with the time-evolu-
tion of sounds. For example, how does one compare an in-
strument with an intense attack followed by a soft sustain to 
one with a medium but sustained intensity? 

I have chosen to ignore a number of thorny perceptual 
issues by considering only the maximum of the evolving 
short-term RMS envelope as a function of MIDI velocity. 
The problem with this measure is that two sounds with the 
same peak RMS value may not exhibit the same perceptual 
loudness. On the other hand, this approach is objective and 
simple to implement. 

To measure the peak RMS value of a synthesized tone 
start with audio sampled at 44100 Hz, and process non-
overlapping windows of 1050 samples: 
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From these windows, compute the RMS value as follows: 
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The sequence rmsj, with a sample rate of 42 Hz, describes 
an envelope. The peak RMS value is simply the maximum: 

jj
rmspeak max=  (3) 

We are interested in how this peak varies with MIDI 
velocity, so consider peakv, the peak RMS value resulting 
from a MIDI velocity of v (for now, assume MIDI key 
number and other parameters are constant). After normaliz-
ing by peak127, the peak observed with the velocity value at 
the maximum of 127, we obtain: 

127/)( peakpeakvf v=  (4) 
 We want to find a function f that is characteristic of many 
synthesizers and programs. If one exists, we can claim that f 
is a de facto standard for the interpretation of MIDI velocity. 

4 Implementation: Peak RMS 
To estimate f(v) for a variety of instruments, I use an 

automated procedure. First a standard MIDI file is generated 
to play sequences of MIDI notes on middle-C with 15 
equally spaced velocity values: 1, 10, 19, … 118, 127. 
Notes are 0.3 s long and a new note starts every 0.5 s. (It 
was discovered that reverb tails on some patches are long 
enough to cause some overlap, so wider note spacing should 
have been used.) A 15-note sequence is generated using 
every MIDI program from 0 to 127 for a total of 1920 notes 
(only 32 programs were used for the DX7 synthesizer). 

This sequence is synthesized and recorded. A sequence 
of RMS amplitudes is computed. Knowing the starting 
times and durations of notes from the MIDI file, it is simple 
to scan the RMS amplitudes, computing a peak RMS value 
for each note. There are now 128 peak RMS values for each 
velocity, one for each MIDI program. Call these values pv,i. 

Next, the peak RMS values for each velocity are nor-
malized by the peak at velocity 100 (the choice of this point 
is arbitrary) and averaged across all programs:  
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The normalization step insures that we measure relative 
changes in peak RMS amplitude as a function of velocity 
(rather than absolute RMS amplitude), and the averaging 
step summarizes the variation across different programs. 

Figure 1 shows a typical result, this one from a Roland 
Sound Canvas software synthesizer. 

5 Analysis 
One might expect amplitude to vary exponentially with 

velocity, i.e. velocity is logarithmic. Figure 2 plots the log 
of Peak RMS vs. Velocity for the Roland Sound Canvas 
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Synthesizer. The result should be a straight line if the loga-

Peak RMS vs Velocity
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Figure 1. Peak RMS, normalized to 1.0 at MIDI 

Velocity 100, then averaged over all 128 programs and 
plotted as a function of velocity (data from Roland 

Sound Canvas software synthesizer). 
 

rithmic relationship holds. Figure 2 also plots the square 
root of amplitude as a function of velocity. This is much 
closer to a straight line, leading to the equation: 

2)()( bmvvfa +==  (6) 
where a is the peak RMS value, v is velocity, and (m, b) are 
coefficients for the straight line model. Given a set of meas-
ured data points, a least-squares linear regression can be 
performed (using square roots of peak RMS values rather 
than the original values) to determine (m, b).  

While m and b are not very intuitive, we can derive a 
more meaningful parameter: the dynamic range from veloc-
ity 1 to velocity 127. Simply plugging in numbers, and let-
ting r be the dynamic range: 

22 )1/()127( bmbmr +⋅+⋅=  (7) 
or in decibels: 

))1/()127log((20 22 bmbmrdB +×+×=  (8) 

Log and Square Root of Peak RMS vs Velocity

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 20 40 60 80 100 120 140

MIDI Key Velocity

Lo
g 

A
vg

. P
ea

k 
R

M
S

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sq
rt

 A
vg

. P
ea

k 
R

M
S

log
sqrt

 
Figure 2. Log and Square Root of Peak RMS data from Fig-
ure 1, indicating that the square-root function is a better ap-

proximation than a log (decibel) scale. 

Note that although (m, b) appear to be two independent 
parameters to this model, the data is normalized so that a=1 

where v=100. This eliminates one degree of freedom. As-
suming that Equation 6 holds, the dynamic range com-
pletely characterizes f. Given a desired dynamic range rdB, 
we can solve for m and b to obtain: 

20/10 dBrr =  (9) 

126/1)126/(127 −= rb  (10) 
127/)1( bm −=  (11) 

The dynamic range is an interesting and intuitive property 
that can be used to compare different synthesizers. 

6 Results 
I analyzed 7 synthesizers: the Roland Sound Canvas 

software synthesizer, the Microsoft GS software synthe-
sizer, a Yamaha DX7 and SY22, a Roland U220, a Kurzweil 
K2000R with Kurzweil orchestral samples, and the Garritan 
Personal Orchestra Finale Edition (included with Finale 
2006). All of these are based on sampling synthesis except 
for the DX7, which uses FM, and the SY22, which uses a 
mix of FM and sampling. The dynamic range for each of 
these is shown in column 2 of Table 1 and graphs of f as 
measured from audio are shown in Figure 3. 

Table 1. Synthesizers and measured average dynamic range 
(characterizing response to MIDI Key Velocity). 

Synthesizer Dynamic 
Range 

Dynamic 
Range (Pn) 

Roland Sound Canvas 89 45 
Microsoft GS 61 81 
Yamaha SY22 21 18 
Yamaha DX7 11 15 
Roland U220 20 51 
Kurzweil K2000R 25 37 
Garritan Pers. Orch. 44 105 
 
One could argue that averaging measurements from 

many instruments is a bad idea because instruments are 
intentionally designed with different velocity curves. The 
analysis was applied to a single piano sound on each 
synthesizer to obtain the third column of Table 1. Far from 
being consistent, the different piano implementations show 
an even wider variation in dynamic range. 

In all synthesizers but the K2000R, the velocity is 
approximately linearly related to the square root of the peak 
RMS value. This relationship is much more exact and 
consistent among the software synthesizers. The hardware 
synthesizes (SY22, DX7, U220) seem to exhibit much more 
variation among different programs and overall, a much 
lower average dynamic range. Particularly for the DX7 (us-
ing 32 factory presets), it seems that velocity has a great 
effect on timbre through FM modulation depth and a lesser 
effect on amplitude. 
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The K2000R peak RMS value more closely fits the log 
of the velocity than the square root, both in the average over 
128 programs and considering just the grand piano program. 

In Figure 3, there is an apparent anomaly in that ampli-
tude seems to increase at the lowest velocity levels. This is 
due to some long decays and overlapping reverberation tails 
from the previous note when the synthesizer was recorded. 
These first two points of each curve were ignored in 
subsequent calculations. 
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Figure 3. Peak RMS vs. Velocity for various synthesizers. 

While the software synthesizers show much more con-
formity to Equation 1, they have decidedly different dy-
namic ranges (44dB vs 89dB, see Table 1). 

7 Discussion 
One surprising result of this work is the very great dif-

ferences among different synthesizers. Presumably, all of 
these synthesizers are intended to perform MIDI data from 
keyboard performances, either directly or from recorded 
MIDI sequences. Why would there be so much variation? 
One might assume that the low dynamic range of the DX7 
(11 dB) was designed to mask the noisy 12-bit DAC or that 
timbral variation via FM takes the place of amplitude varia-
tion. But the SY22 is much quieter and relies more on sam-
pling, yet it also has a low dynamic range (21 dB). Note that 
dynamic range is used here specifically to describe the 
variation of average peak RMS with MIDI key velocity (rdB 
in Equation 8), and this does not imply anything about the 
signal-to-noise ratio, DAC’s, or other components. Another 
observation is that the three software synthesizers have a 
larger dynamic range that the four hardware synthesizers. 

Based on these observations, how should a new software 
synthesizer respond to MIDI velocity? For compatibility 
with most existing synthesizers and MIDI files, the peak 
RMS value should be related roughly to the square of 
velocity as in Equation 6. Given this equation, one can 
choose the dynamic range from softest to loudest. Values 
from 20 to 60dB seem to be typical. In the synthesizers 
studied, the dynamic range varies from one instrument to 
another, even on the same synthesizer. From the standpoint 
of making instruments more interchangeable, it seems 

advisable to give all instruments a similar dynamic range. 
Once a range, rdB, is chosen, Equations 9-11 can be used to 
compute the coefficients m and b for use in Equation 6, 
which computes a linear scale factor given a MIDI key 
velocity. 

8 Summary and Conclusions 
This work began with the desire to be consistent with 

commercial MIDI synthesizers. To do this, I measured how 
synthesizers handle MIDI velocity, and I hoped to adopt 
consistent mappings in my own software. To measure the 
effect of velocity on synthesizer output, I compute the peak 
RMS value of the amplitude envelope of a short (0.3s) mid-
dle C. I was surprised to find a rather wide range of inter-
pretations for MIDI velocity. 

One fairly consistent trend, however, is that velocity is 
linearly related to the square-root of the peak. Assuming this 
relationship to hold, and if velocities are normalized, then 
there is only one parameter left to choose. A convenient 
form of that parameter is the dynamic range from velocity 1 
to velocity 127. 

Given the lack of a standard or even a suggestion within 
the MIDI specifications, we are free to choose as we please. 
My suggestion is to adopt a dynamic range of 60dB (a nice 
round number, and about 1000:1 in linear terms). Consistent 
interpretation will make software instruments easier to use 
by being more predictable and more interchangeable. 

I would be happy to share software developed in this 
project so that others can easily gather data and characterize 
other synthesizers. 
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