IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 1, JANUARY 1982 43

Formal Program Verification Using Symbolic
Execution

ROGER B. DANNENBERG anD GEORGE W. ERNST

Abstract—Symbolic execution provides a mechanism for formally
proving programs correct. A notation is introduced which allows a con-
cise presentation of rules of inference based on symbolic execution.
Using this notation, rules of inference are developed to handle a num-
ber of language features, including loops and procedures with multiple
exits. An attribute grammar is used to formally describe symbolic ex-
pression evaluation, and the treatment of function calls with side ef-
fects is shown to be straightforward. Because symbolic execution is
related to program interpretation, it is an easy-to-comprehend, yet
powerful technique. The rules of inference are useful in expressing
the semantics of a language and form the basis of a mechamcal veri-
fication condition generator.

Index Terms—Control constructs, program proving, program verifica-
tion, rules of inference, side effects, symbolic execution, verification
conditions.

I. INTRODUCTION

N accepted way of proving things about programs is to

use rules of inference like those introduced by Hoare
[3]. Such rules are usually formulated so that they can be ap-
plied to the last statement of a program, yielding one or more
shorter programs and possibly some formulas in logic to be
verified. By iteratively applying rules of inference, the task of
proving program correctness is reduced to that of proving state-
ments in predicate calculus. '

Another proof technique is based on the notion of symbolic
execution [2] ; statements are processed in the same order that
an interpreter would execute them, as opposed to the “back-
ward”” order of the first method. It appears as though both
techniques are equally powerful and logically equivalent.
However, the close analogy between symbolic execution and
interpretive execution seems to make the symbolic execution
method easier to comprehend. In particular, symbolic execu-
tion is a natural paradigm for expressions which can contain
function calls with side effects. One of our goals is to develop
rules of inference which formalize symbolic execution, To our
knowledge, such a formalism has not appeared in the literature
to date.

Our second goal is to present rules of inference for some ad-

Manuscript received September 24, 1979. This work was supported
in part by the National Science Foundation under Grants MCS-77-24236
and SPI-78-21198. :

R. B. Dannenberg was with the Department of Computer Engineering
and Science, Case Institute of Technology, Case Western Reserve Uni-
versity, Cleveland, QH 44106. He is now with the Department of Com-
puter Science, Carnegie-Mellon University, Pittsburgh, PA 15213.

G. W. Ernst is with the Department of Computer Engineering and
Science, Case Institute of Technology, Case Western Reserve University,
Cleveland, OH 44106.

vanced control constructs. Rules of inference for a loop state-
ment based on Zahn’s construction [10] are presented, as are
rules for procedures with multiple labeled exits.

Finally, we will introduce an extended notation which al-
lows the formal treatment of expressions with side effects.
Side effects are strictly disallowed in verification-oriented lan-
guages such as Pascal [9] and Euclid [5], but it will be shown
that this restriction can be relaxed with little difficulty.

The ideas in this paper grew out of a project to design and
implement a mechanical verification condition generator [1].
Early in the project it became clear that we needed a concise
formal notation for stating verification rules for the constructs
found in contemporary programming languages. We found the
notation presented in this paper to be a good solution to this
problem.)

After an introduction to symbolic execution, notation and
rules for a simple language are described. The rules are then
extended to handle multiple-exit loops, and procedures with
multiple labeled exits. Finally, a formal treatment of expres-
sions with side effects is presented.

II. ConcePTS OF SYMBOLIC EXECUTION

In symbolic execution the values of program variables are
represented by symbolic constants or expressions. For exam-
ple, the value of variable v might be represented by “B + 3,”
where B is a symbolic constant (not a program variable). The
collection of all variables and their values is called a state. As
a program path is “executed,” assumptions about the state are
recorded in the path condition.

For example, suppose we wish to verify the following pro-
gram which sets x to its absolute value:

pre x=y;
if x <O then x :=-x endi;
post x>=0 & (y=x or y=-x)

The first and last lines contain input and output specifications
called pre- and postconditions. The keyword endi is the clos-
ing bracket for if. In the initial state, variables x and y have
arbitrary constants X and Y as their values. For now, we will
write the state as follows:

State ={xis X, yis Y}.

Next we evaluate the precondition by replacing each variable
by its value in the current state, obtaining X=Y. Note that X
and Y are values while x and y are variables. We assume the
precondition is true when the program begins by setting the
path condition to X=Y:

0098-5589/82/0100-0043$00.75 © 1981 IEEE

44) IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 1, JANUARY 1982

State ={xis X, y is Y}, PathCond = (X=Y).

The path taken through the program depends on the value of
the expression x<0. We symbolically evaluate x<<0 to obtain
X<0, and first assume that it is true by “anding” it to the
path condition, obtaining

State = {xis X, y is Y}, PathCond = (X=Y & X<0).

The statement “x := - x” is executed by changing the state so
that the value of x is - X:

State ={xis - X, y is Y}, PathCond = (X=Y & X<0).

Now we want to show the postcondition is true. Substituting
values from the current state into the postcondition yields

-X>=0 & (Y=-Xor Y=--X).

Since this is implied by the path condition, this path is verified.
Following the other path (X<O0 is false) gives rise to the
path condition

PathCond = (X=Y & ~(X<0))

where “~” is the logical negation operator. The postcondition
becomes '

X>=0 & (Y=X or Y=-X).

Again, this follows from the path condition, so this path is
verified. The program is correct because all paths have been
verified.

III. NOTATION AND TERMINOLOGY

To formalize this approach, some notation is introduced. A
substitution S is denoted by

S=[tl1/x1,12/x2,...,tn/xn].

where the term ti is to be substituted for variable xi, and the
X’s are all distinct. An instance of an expression is obtained
when a substitution is applied to the expression. This opera-
tion is indicated by “|”, e.g., B| [e/x] indicates the instance of
B in which each occurrence of x is replaced by e.

Substitutions can be composed to form a new substitution.
The composition of R = [ulfyl,u2/y2,...] and S = [t1/x1,
t2/x2,...] is RS=[ul|S/y1, u2|S/y2,. .., t1/x1,t2/x2,...],
where uilS/yi is omitted if ui|S =yi, and ti/xi is omitted if
some yj = xi. For example, the composition of [X/I,X+1/X]
and [C/X, 25/Z] is [C/1, C+1/X, 25/Z].

For any expression b, and substitutions R and S, the in-
stance b|(RS) obtained by applying the composition of R and
S to b is identical to the instance (b|R)|S obtained by left-to-
right application of R and S. 4

The identity substitutionis [],ie.,bl[] =b.

The application operator has higher precedence than logical
connectives, e.g., in the formula P&Q|S, S is only applied to
Q. If Q stands for a statement with many components, S is
applied to each of them.,

Substitutions are used to formalize the state concept in sym-
bolic execution. The value of program variable x in state S
(which is a substitution) is x|S.

To formalize symbolic execution, we will use formulas of
the form S, PC\A to indicate the correctness of statement list

A, given an initial path condition PC and state S. A is a state-
ment sequence, the last of which is a statement of the form
confirm Q. This specifies that Q must be true of the final
state. Hence, the formula [],P\A;confirm Q corresponds
to P{A}Q in the more conventional notation found in the
literature.

Rules of inference have the following form:

A
B

C

This means that, given A and B, we can infer C. In practice,
the rules are used ‘‘backwards”—the rule is used to reduce the
problem of proving C to that of proving both A and B.

To be more precise about the concept of correctness, we say
that a procedure is partially correct if its postcondition is true
whenever the procedure terminates (exits), given that the pre-
condition was initially satisfied. A procedure is fotally correct
if it is partially correct and it always terminates. This discus-
sion will not consider termination proofs, and the term “cor-
rect” is taken to mean “partially correct.”

IV. SIMPLE RULES OF INFERENCE

In this section, rules of inference are presented for five state-
ment types—assignment, conditional, iteration, confirm, and
procedure call. It is assumed that expressions do not contain
function calls, but procedures can alter global variables and
variable parameters.

A. Assignment Statement

[exp/x]S,PC\ A

S,PC\x :=exp; A

This rule states that the statement x:=exp changes the value
of x to the value of the expression exp. For example, this rule
reduces the verification of

[3/x],PC\x:=x+1;A
to the verification of
[x+1/x]1[3/x],PC\ A.
Composing substitutions in the latter yields
[3+1/x],PC\ A,
This corresponds to our intuitive understanding of assignments. .

B. Conditional Statement
S,PC&B|S\A2;Al
S,PC & ~B|S\ A3; Al
S, PC \ if B then A2 else A3 endi; Al

The keyword endi is the closing bracket for if. The condi-
tional expression B is evaluated by applying it to the state S.
There are two possibilities: B|S or ~B|S. The proof is by
cases. In the first case, B|S is assumed and the statement se-
quence A2 is executed before Al. In the second case, ~B|S is
assumed and A3 is executed before Al. These cases result in

DANNENBERG AND ERNST: FORMAL PROGRAM VERIFICATION

the first two lines of the rule. If both cases can be verified,
the if statement followed by Al must be correct.

C. Confirm Statement

PC-> QIS
S, PC \ confirm Q

The confirm statement asserts that Q must be true for the
program to be correct. A confirm statement is verified by
proving that Q is implied by the path condition when the vari-
ables in Q are replaced by the values in the current state.

D. Iteration Statement

PC IS
[1,1&B\ A2; confirm I
[1, 1&~B\ Al

S, PC \ while B maintaining I do A2 endw; Al

The keyword endw is the closing bracket for while. The
iteration statement is a “while loop” that contains a loop in-
variant. The first line of this rule states that the loop invari-
ant I must be true when the loop statement is encountered.
The next two lines consider the cases B and ~B. If B is true,
the loop body is executed and we want to show that I is main-
tained as a loop invariant, as stated by the second line. The
state is replaced by the identity substitution because nothing
is known about the state (except on the first iteration) due to
assignments in A2. Assuming B is not true, the loop terminates
and Al is executed. After an arbitrary number of iterations,
the only other assumption we can make is I, the loop invari-
ant. This gives the third line of the rule.

E. Procedure Call Statement
Consider the following procedure declaration:

procedure p (var X, const) ;
use var g;
use const C;
pre P;
post Q;
A
end p;

Procedure p has a variable (value-result) parameter X, a con-
stant (value) parameter y, and a global variable g which is al-
tered by p, and a global ¢ which is not altered by p. The body
of p is the statement sequence A. The postcondition Q may
refer to the initial and final values of x and g; their initial values
are #x and #g while their final values are x and g, respectively.

We assume that no two distinct variables in the program have
the same name, e.g., if a procedure uses “x” to name a local
variable, then no other procedure can declare a variable or pa-
rameter by the same name. If this assumption does not hold,
variables are simply renamed to produce an equivalent program
which is suitable. This eliminates the ambiguities normally re-
solved through scope rules, since each identifier refers to a
unique variable.

The rule of inference for a call to this procedure is

as

PC—>P|[v/x,e/y]S
[v'/v][g'/e]lS, PC & QIS1\ A
S,PC\p(v,e);A

where S1 = [v'/x, efy, g'/g, v/#x, g/#g]S and v', g’ are new
unique constants.

The first line of the rule indicates that the procedure pre-
condition must be true in the current state. The substitution
[v/x, e/y] is used to replace the formal parameters by the
actual parameters. Composing the substitution with S evalu-
ates the actual parameters in the current state.

The second line reflects the calling program after the execu-
tion of procedure p. The new state is [v'/v][g'/g]S. The
global variable g will have the new value g’, and the variable
parameter v acquires the new value v'. The order of substitu-
tion for v and g is important because they might be the same
variable. This places a call by value-result interpretation on pa-
rameters, because v’ may be “copied” onto g’.

The new path condition is PC & Q|S1. Let us look at the
substitution S1 applied to the postcondition Q. Unique con-
stants v’ and g’ are substituted for the formal variable param-
eter x and altered global g. The constant parameter e (which
may bc an expression) is substituted for its formal parameter
y. The initial value of the actual variable parameter v is sub-
stituted for #x, and g is substituted for #g.

For example, consider the following procedure, derived from
our previous program which computes absolute values:

procedure abs (var x);
pre TRUE;
post x>=0 & (x=#x or x=-#x);
if x<O then x=-x endi

endp

The variable parameter x is changed to its absolute val:~. No-
tice how #x is used in the postcondition to refer to the initial
value of x. Assuming abs is correct, suppose we want to verify

[1, B\ v:=-2;abs(v); confirm v=2

where B is some path condition. The rule for assignment state-
ments is applied, yielding

[-2/v], B\ abs (v); confirm v=2.

Now we use the rule for procedure calls. The first line of the
rule says to prove

B - TRUE|[v/x] [- 2/v].
The second line of the procedure call rule yields
[v'/v1[-2/v], B & (x>=0 & (x=#x
or x=-#x))|S1 \ confirm v=2

where S1 = [v'/x,v/#x][-2/v] = [v'/x, -2/#x,-2/v]. This
is simplified to

[v'/v],B& (v'>=0& (v'=-2or v'=--2))\ confirm v=2.
The confirm rule indicates we must now prove

B& (v'>=0& (v'=-20rv'=--2))> (v=2)|[v'/v].

a6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 1, JANUARY 1982

The consequent is simplified by applying the substitution,
yielding

B&(v'>=0&(v'=-20rv'=--2))>v'=2

which is true. Therefore, the path and hence the calling pro-
gram is verified.

V. MuLTIPLE-EXIT Loops

In this section, several new rules are introduced to allow an
equivalent of Zahn’s loop construction [10]. The general
form of our loop construct is

loop altering v;
Al;
maintain I;
A2

endl;

select
L1:B1 enda,
L2: B2 enda;

Ln: Bn enda
ends;

The phrase altering v indicates that the variable v can be modi-
fied by the loop body, which consists of statement list Al, a
maintain statement, and statement list A2. Either Al or A2
may be empty. One and only one maintain statement is in-
cluded in the loop body to provide the loop invariant.

Each loop statement must be followed by a select statement
which contains labeled statement lists called alternatives.
Within A1 and A2, there may be statements of the form exit
Li, which cause immediate transfer of control of the alterna-
tive labeled Li. Control is only transferred to within the select
statement following the immediately enclosing loop; however,
to effect multiple-level ex1ts alternatives may contain exit
statements themselves.

A. Multiple-Exit Loop Statement
S,PC\ Al; confirm I; end; A3
[v'/v]S,PC &I|[v'/v]S\ A2; Al; confirm I;end; A3
S, PC \ loop altering v; Al; maintain I; A2 end1; A3

where v' is a new unique constant.

With this loop statement, there are two cases to be proven.
In the first case (line 1), the loop body is executed up to the
maintain statement by executing Al. The confirm statement
indicates that the loop invariant must be true at ‘this point.
The reason for the

end; A3

after the confirm statement is that A1 may contain an exit
(discussed in the next section) which transfers control to A3;
the keyword end marks the end of the loop. A3 contains the
select and subsequent statements. In the second case (line 2),
the loop invariant is assumed, with unique constants as values
for altered variables. The loop body is then executed, starting
and ending at the maintain statement. Again, the loop invari-

ant must be confirmed. By induction, it can be shown that
the assertion I in the maintain statement will always be true
if the two cases hold.

A further explanation of the altering clause is in order. In
the literature (and also in Section IV-D), the iteration rule is
usually based on the assumption that the loop body can alter
every variable in the state. Therefore, the state is discarded by
using the identity substitution, and the only information car-
ried out of the loop is contained in the invariant I and the exit
condition (i.e., ~B in Section IV-D). This makes it necessary
to use invariants that state details about variables not altered
by the loop, because the loop invariant must be strong enough
to eventually allow the proof of the final confirm statement.
To simplify the task of finding sufficiently strong invariants,
an altering clause is added to the loop statement to specify
which variables might be modified by the body of the loop.
Now, most of the state will usually be unchanged by the loop,
and the loop invariant only needs to specify how the loop af-
fects the variable that it alters. The concept of the altering
clause is due to Ogden [8]. '

B. Exit Statement

S, PC\ branch L; A2
S,PC\exit L; Al;end; A2

where A1 does not contain the statement end.

This rule simply states that an exit statement causes control
to transfer to the statement following the immediately enclos-
ing loop. Rules for the branch statement are given below. Re-
call that the first statement in A2 is a select statement because
it follows a loop statement.

C. Branch Statement
S, PC\ A1;A3
S, PC \ branch L;select L: Al enda; A2 ends; A3

S, PC \ branch L1; select A2 ends; A3
S, PC\ branch L1;select L2: Al enda; A2 ends; A3

where L1 and L2 are distinct identifiers.

These rules describe the action of transfering control to a
labeled alternative. Note that control passes to the end of the
select statement after the alternative statement list is executed.
These rules assume that the branch label must be listed in the
select statement. ' B

For example, we can apply the exit rule to

S, PC\ exit TWO; .. . ;end;
select ONE: . . . enda;
TWO: p(x) enda;
THREE: . . .endaends;. ..
obtaining
S, PC \ branch TwO; select ONE: . . . enda;
TWO: p(X) enda;
THREE: . . .enda ends;. ..

The second branch rule applies, yielding

DANNENBERG AND ERNST: FORMAL PROGRAM VERIFICATION

S, PC \ branch TwoO; select Two: p(x) enda;
THREE: . . .enda ends;. ..

Now the nﬁrst branch rule is used to obtain
S,PC\ p(x);. ..

VI. MuLTIPLE-EXIT PROCEDURES

The general form of the procedures dealt with in this section
is given in Fig. 1. This form is like that of Section IV-E except
two labeled postconditions are provided to allow several con-
trol paths to emerge from a procedure call. Statements in the
body of procedure p are denoted by A. To simplify the nota-
tion in this section we restrict procedures to one variable (value-
result) parameter, one constant (value) parameter, two global
variables, only one of which can be modified, and two exit la-
bels. The generalization to an arbitrary number of these con-
structs is straightforward.

Each procedure call is followed by a select statement with
labeled alternatives corresponding to the labels in the post-
condition. An example of such a call is

p(v, 10);

select
L1:...enda;
L2:...enda

ends;

Within p, statements of the form exit L1 and exit L2 are al-
lowed. When an exit is executed, control is transferred back
to the calling procedure. The alternative corresponding to
the exit label is executed next as was the case with the loops
in Section V.

A. Procedure Declaration
The procedure declaration in Fig. 1 is verified by proving

[x/#x, g/ #8], Pl [x/#x, g/ #g] \
A end; select L1; confirm Q1;enda L2; confirm Q2 enda ends.

Each procedure declaration in a program is verified indepen-
dently in a similar manner. The substitution is used to save
the initial values of x and g in #x and #g so that the postcon-
ditions (and loop invariants) in the body of p can refer to
them. Notice that we are utilizing the property that the value
of a variable not mentioned in a substitution is the variable
itself, i.e., [x/#x] is the same as [x/#x, x/x]. Thus, x and
#x have the same initial value, x.

B. Multiple-Exit Procedure Call Statement

PC ~>P|[v/x,e/y]S

[v'/v]1[g'/g]S,PC & Q1|S1 \branch L1; A
[v'/v]1[g'/g]S, PC & Q2|S1 \ branch L2; A
S,PC\p(v,e); A

“where S1=[v'/x,ely,g'[g, v/#x, g/#g]S and v', g’ are new
constants.

This rule assumes that p has been declared as in Fig. 1. Re-

call that the first statement in A is a select statement, because a

47

procedure p (var x, const y);
use var g;
use const C;
pre P;
post L1: Q1,L2: Q2;
A
endp;

Fig. 1. Generic procedure declaration.

call on a multiple-exit procedure must be followed by a select
statement. The new procedure-call rule is like the first (see
Section IV-E) except for each label, a different postcondi-
tion is assumed, and a different path is taken. The branch
statements direct program flow to the proper alternative. The
substitution S1 is identical to S1 in Section IV-E.
As an example, consider the following procedure which dec-
rements a nonnegative integer unless it is zero:
procedure dec (var x);
pre x>=0;
post OK: x = #x-1 & x>=0,
ZERO: #x=0 & x=0;
if x>0 then x := x-1; exit OK
else exit ZERO
endi
endp;

Now suppose we wish to verify

[v/#v], v<10 & v>=0\ dec(v);

select OK: enda;

ZERO: V : =9 enda ends;
confirm v :=(#v-1) mod 10

Using the procedure-call rule, the first line tells us to verify
v<10 & v>=0 - x>=0| [v/x] [v/#V]

which simplifies to v<10 & v>=0 - v>=0, which is true. The
second and third lines require the verification of a path for
each exit label. The first path is

[v'/v][v/#v],
v<10 & v>=0 & (x = #x-1 & x>=0)| [v'/x, v/#x] [v/#v] \
branch Ok select . . .

which simplifies to

[v'/v,v/#v],v<10 & v>=0& v'=v-1 & v'>=0\
branch OK; select OK: enda; . . .

Applying the first branch rule gives us

[v'fv,v/#v],v<10 & v>=0 & v'=v-1 & v'>=0\
confirm v = (#v-1) mod 10

The confirm rule yields the following

v<1I0 & v>=0& v'=v-1 & v'>=0~>
(v=(#v-1)mod 10)|[v'/v, v/ #v]

which simplifies to
v<10& v>=0& v'=v-1 & v'>=0->v'=(v-1) mod 10.
This is also true. Taking the ZERO path yields

48 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 1, JANUARY 1982

[v']Lv/#v],
v<10 & v>=0 & (#x=0 & x=0)| [v'/x, v/#x] [v/#v] \
branch ZERO; . ..

which simplifies to

[v'/v,v/#v],v<10 & v>=0 & v=0 &
v'=0\ branch zERO; select . . .

Several applications of the branch rules give us

[v'v, v/#v], v<10 & v>=0 & v=0& v'=0\
v :=9; confirm v = (#v-1) mod 10.

Application of the assignment rule and some simplification
yields [9/v, v/#v], v<10 & v>=0 & v=0 & v'=0 \ confirm
v =(#v-1) mod 10. The confirm rule requires the proof of

v<10 & v>=0 & v=0 & v'=0 > (v = (#v-1)
mod 10)| [9/v, v/ #V]

which simplifies to
v<10 & v>=0& v=0& v'=0~>9 = (v-1) mod 10
which is true.

VII. EXPRESSIONS AND FUNCTIONS

Symbolic expression evaluation, without side effects and
function calls, is easily carried out by instantiating expressions
with substitutions as in the above inference rules. To incorpo-
rate functions with side effects, an attribute-grammar [4] is
used to formally describe expression evaluation. The treat-
ment of Pascal-like structured variables is also described.

A. Notation

All operations are written in functional notation, e.g., A + B
is written +(A, B). This removes concern over operator prece-
dence. Structure references are denoted by

acc(A, Slist)

where A is a structure and Slist is a list of selectors, i.e., array
indexes and record field-names (pointers will not be con-
sidered here). The function “acc” is called the access func-
tion. The expression

ch(A, Slist, t),

is a structure whose value is identical to that of A except at
the element named by Slist, where the value is t. The func-
tion “ch” is the change function. The change and access nota-
tion is due to McCarthy and Painter [7]. The concept was ex-
tended by Luckham and Suzuki [6].

A new mechanism is now introduced to describe state
changes. The modify function M(S, x, v) takes as arguments a
substitution S, a variable x, and a value v. The result is the
substitution in which the value of x is v, and all other variables
have the same values as in S. In other words, if S is [t1/x1,
t2/x2, ..., ti/xi,...], then M(S, xi, v) is [t1/x1, t2/x2, ...,
v/xi,...]. The relation between modify and composition is
illustrated by

[u/x]S =M(S, x, v) when v=u|S.

Recall that in performing the composition, S is applied to u.
The modify function changes the value of x to v without ap-
plying S. This function will be used in the rules that follow.
We further define the notation M(S, acc(A, Slist), v) to mean
M(S, A, ch(A, Slist, v)). This generalization provides a mecha-
nism whereby values can be substituted for structure elements
rather than just simple variables. This definition is used in the
rules for assignments, and procedure and function calls.

We will often want to modify several variables at once; the
notation

M(S, vl/x v2/x2,...,vn/xn)
will be used as an abbreviation for
M(...M(M(S, x1,v1),x2,v2)...xn,vn).

All nonterminals in the attribute grammer have eight attri-
butes:

Ci - an inherited verification condition list
Cs a synthesized verification condition list
Ss asynthesized state

Si an inherited state

Ps a synthesized path condition

Pi an inherited path condition

V asynthesized value

L asynthesized location.

Attributes are further qualified by nonterminals in the pro-
duction rule, e.g., Pi(expr) is the inherited path condition
attribute for the nonterminal “expr.” If the same nonter-
minal occurs more than once in a production rule, integers
are appended to distinguish the occurrences, e.g., “exprl”
and “expr2.”

The effect of expression evaluation is denoted by

E(expr, S, PC) =(L, V, S', PC’, VC)

where S and PC are the state and path condition before the
evaluation of expr, S’ and PC’ are the state and path condition
after evaluation of expr; L is the symbolic location if expr is a
variable or structure reference; V is the symbolic value if expr;
and VC is a list of verification conditions for expr. For exam-
ple, suppose we evaluate the expression x, and the state has
the value 10 for x:

E(x, [10/x], p) =(x, 10, [10/x], p, nil).

The location is x, the value is 10, the new state and path con-
dition are unchanged, and there are no verification conditions.
The attribute grammar is presented below with comments to
help the reader.
1) expr::=id:

Cs(expr) = Ci(expr)
Ss(expr) = Si(expr)
Ps(expr) = Pi(expr)
V(expr) = V(id)|Si(expr)
L(expr) = V(id).

DANNENBERG AND ERNST: FORMAL PROGRAM VERIFICATION

If an expression is an identifier, then its evaluation is per-
formed by finding the value of the identifier in the state. The
path condition and state are unchanged. We will not show the
production rules for “id.” Instead, we will simply state that
the value attribute of “id,” i.e., V(id), is the identifier itself.

A constant or a field-name also evaluates to itself; we will
not give an explicit rule for them.

2) expr ::=acc(id, slist):

Ci(slist) = Ci(expr)

Si(slist) = Si(expr)

Pi(slist) = Pi(expr)

Cs(expr) = Cs(slist)

Ss(expr) = Ss(slist)

Ps(expr) = Ps(slist)

V(expr) = acc(V (id)| Ss(slist), V(slist))
L(expr) = acc(V(id), V(slist)).

To -evaluate a structure-reference, the selector-list is evalu-
ated; then the structure is accessed. Notice that side effects
from the evaluation of slist can affect the value of “expr.”
Also notice that the location attribute has the same selector
list as the value attribute, but the structure name, V(id), is not
instantiated by the state, Ss(slist).

3) slist ::=expr:

Ci(expr) = Ci(slist)
Si(expr) = Si(slist)
Pi(expr) = Pi(slist)
Cs(slist) = Cs(expr)
Ss(slist) = Ss(expr)
Ps(slist) = Ps(expr)
V(slist) = V(expr)

L(slist) = nil.

4) slistl ::= expr slist2:

Ci(expr) = Ci(slist1)
Si(expr) = Si(slist1)
Pi(expr) = Pi(slist1)
Ci(slist2) = Cs(expr)
Si(slist2) = Ss(expr)
Pi(slist2) = Ps(expr)
Cs(slist1) = Cs(slist2)
Ss(slist1) = Ss(slist2)
Ps(slist1) = Ps(slist2)
V(slist1) = V(expr) V(slist2)
L(slist1) = nil.
Selector lists are evaluated from left to right. The value is
the list of evaluated list elements.
5) exprl ::=op(expr2):

Ci(expr2) = Ci(exprl)
Si(expr2) = Si(exprl)
Pi(expr2) = Ci(exprl)
Cs(exprl) = Cs(expr2)
Ss(exprl) = Ss(expr2)
Ps(exprl) = Ps(expr2)
V(exprl) = V(op) (V(expr2))
L(exprl).= nil.

49

6) exprl ::=op(expr2, expr3):

Ci(expr2) = Ci(exprl)
Si(expr2) = Si(exprl)
Pi(expr2) = Pi(exprl)
Ci(expr3) = Cs(expr2)
Si(expr3) = Ss(expr2)
Pi(expr3) = Ps(expr2)
Cs(exprl) = Cs(expr3)
Ss(exprl) = Ss(expr3)
Ps(exprl) = Ps(expr3)
V(exprl) = V(op) (V(expr2), V(expr3))
L(exprl) = nil.

Primitive operations are performed by evaluating the oper-
ands from left to right and returning the result of applying the
operator to the evaluated operands.

Our rule for function calls deals with functions of the form
shown in Fig. 2. As with previous procedure rules, a generic
example is used, since its generalization to multiple parameters
and global variables is straightforward. Functions do not con-
tain exit statements; an implicit exit follows the function body.
The statement f:=e assigns e to be the value returned by f.
The function production rule is similar to the rule for proce-
dure calls. The main differences are that a value (the constant
") is returned, and parameter evaluation can have side effects.

7) expr::= f(v, e):

Ci(v) = Ci(expr)

Si(v) = Si(expr)

Pi(v) = Pi(expr)

Ci(e) = Cs(v)

Si(e) = Ss(v)

Pi(e) = Ps(v)

Cs(expr) = Cs(e) Ps(e) > PIM(Ss(e), V(v)/x, V(e)/y)

Ss(expr) = M(Ss(e), 8'/g, v'/L(V))

Ps(expr) = Ps(e) &
QIM(Ss(e), f'/f, v'/x, 8'[g, V(e)ly, V(v)/ #x,
(glSs(e))/ #8)

V(expr) = f'

L(expr) =nil.

where v', f', g’ are new unique constants, and Fig. 2 gives the
declaration of f. As above, sharped (#) symbols refer to initial
values.

The first step in the symbolic execution of f(v, €) is to evalu-
ate the parameters which may contain function calls which
change the initial state Si(expr) and path condition Pi(expr)
and add items to the verification condition list. Symbolic exe-
cution then adds the precondition of f to thelist of verification
conditions Cs(e) after the appropriate substitution for vari-
ables. The new values v’ and g’ of v and g are recorded in the
output state Ss(expr). The postcondition of f is added to the
path condition after the appropriate substitution for variables.
The value returned, f’, is substituted for f in the postcondi-
tion. The replacement of formal parameters by actuals is es-
sentially the same as the procedure-call rule in Sections IV-E
and VI-B. The additional intricacies in this section stem from

50 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 1, JANUARY 1982

function f(var x, const y);

use var g;

use const c;

pre P;

post Q;

A
endf;

Fig. 2. Generic function declaration.

the possibility of side effects in parameter evaluation and our
provision for structure references (e.g., A[i]) as actual variable
parameters,

VIII. RULES FOR STATEMENTS

We are now prepared to present rules of inference for state-
ments, allowing expressions with side effects. The rules will
be similar to the previous versions, but expression evaluation
is accomplished using the “E” function rather than through
application of substitutions. We can now define this function
more precisely in terms of attributes:

E(expr, Si(expr), Pi(expr)) =
(L(expr), V(expr), Ss(expr), Ps(expr), Cs(expr))

where Ci(expr) is the empty list of verification conditions.
The rules for statements are listed in Fig. 3.

The assignment rule says that the expression on the left-hand
side is evaluated first, yielding a location, L (see Fig. 3). The
right-hand side is then evaluated yielding a value V. The state
is modified by changing the value of L to V. The verification
conditions, C1 and C2, resulting from the evaluation of exprl
and expr2 must be true. Notice that the final state reflects
side effects from exprl and expr2.

For example, consider the path

[3/i, 5/i1, TRUE \ j :=inc(A[i]); confirm Q
where inc is the function defined below:

function inc (var x);
pre TRUE;
post x = #x+1 & inc=x;
X :=x+1;
inc :=x
endf;

Assuming this function definition is correct we will symboli-
cally execute the assignment statement. First we evaluate the
left-hand side as follows: '

E(j, [3/i, 5/j]1, TRUE) = (j, 5, [3/i, 5/j], TRUE, nil).

The value 5 is obtained from the first attribute-grammar pro-
duction which states

V(expr) = V(id)| Si(expr)

which gives us
V(i) =jll3/i,5/i] =5.

The value of the right-hand side is determined by evaluating
E(inc(A[i]), [3/i, 5/j], TRUE).

A[i] is rewritten as acc(A, i) where i is the selector list. The

value of i is i|[3/i, 5/j] =3. The value of Ais A|[3/i, 5/j] =
A.

Next, we evaluate inc(acc(A, 3)). The precondition of inc
is TRUE, so the verification condition attribute Cs is

TRUE = TRUE.

From the production for functions, the new state is

M([3/1, 5/, v'/acc(A, 3))
=M([3/i, 5/j],ch(A, 3,v")/A)
= [3/i, 5/j, ch(A, 3,v")/A].

The new path condition is

TRUE & (x=#x+1 & inc=x)|S, where S =
M([3/i,5/j],v'[x, inc[inc, acc(A, 3)/#x)
= [3/i, 5/j, v'/x, inc'finc, acc(A, 3)/#x].

By applying S, the path condition is simplified to
TRUE & (v'=acc(A, 3)+1 &inc'=v").

The value of the right-hand side is inc’. The result of evaluat-
ing inc(A[i]) is

E(inc(A[i]), [3/i, 5/j1, TRUE] =
(nil, inc’, [3/i, 5/j, ch(A, 3,v')/A],
TRUE & (v'=acc(A, 3)+1 & inc'=v"), TRUE - TRUE).

Notice that the location attribute is nil, indicating that the ex-
pression cannot be the target of an assignment or a variable pa-
rameter. The verification condition results from the precondi-
tion of inc. Now, according to the rule for assignments, we
must establish

M([3/i, 5/j, ch(A, 3, v')/A], inc'/j),
TRUE & (v =acc(A, 3)+1 &inc'=v') \ confirm Q

which simplifies to

[3/i, inc'/j, ch(A, 3,v')/A],
TRUE & (v’ = acc(A, 3)+1 & inc'=v') \ confirm Q

Thus, the statement has the effect of incrementing A[3] and
assigning the new value to j.

The new conditional rule is like the first one in Section IV-B
except the evaluation of expr can result in a different path
condition and state (PC’ and S"), and .the precondition of its
function calls must be verified. -

The confirm rule is identical to the previous one.

The loop rule is essentially unchanged. For consistency, the
modify function is used in place of the composition operation
used previously. The exit rule and branch rules are identical
to the ones in Sections V-B and V-C.

The rule for procedure calls in Fig. 3 is similar to the at-
tribute-grammar production for function references. The

DANNENBERG AND ERNST: FORMAL PROGRAM VERIFICATION

1) Assignment Statement

C1
C2
M(S', V/L),PC'\ A

S, PC\ exprl :=expr2 ; A

where E(exprl, S, PC) = (L, V1, S1, PC1,C1)
and E(expr2, S1, PC1) = (L2, V, S, PC’, C2)

2) Conditional Statement

C

S, PC'& V\A2;Al

S',PC' &~V \A3;Al

S, PC\ if expr then A2 else A3 endi; Al

where E(expr, S,PC) = (L, V,S',PC',C). -
3) Confirm Statement

PC-Q|S
S, PC\ confirm Q

4) Loop Rule

S, PC\ Al; confirm B; end; A3
S’,PC & B|S'\ A2; Al; confirm B; end; A3

S, PC \ loop altering v; Al maintaining B; A2 endl; A3

where S’ is M(S, v'/v)
and v’ is a new unique constant.

5) Exit Statement

S, PC\ branch L; A2
S,PC\ exit L; Al;end; A2

where Al does not contain the statement end.
6) Branch Statement

S,PC\ Al; A3
S, PC\ branch L;select L: Al enda; A2 ends; A3

51

S, PC \ branch L1;select A2 ends; A3
S, PC \ branch L1;select L2: Al enda; A2 ends; A3

7) Procedure Call Statement

Cv

Ce

PCe — P|M(Se, Vv/x, Ve/y)

M(Se, g'/g, v'/Lv), PCe & Q1iS1 \ branch L1; A
M(Se, g'/g, v'/Lv), PCe & Q2|S1 \ branch L2; A

S,PC\p(v,e);A

where E(v, S, PC) = (Lv, Vv, Sv, PCy, Cv),
E(e, Sv, PCv) = (Le, Ve, Se, PCe, Ce),

S1=M(Se, v'/x, Vely, g'[g, Vv/#x, (g]Se)/#g),

g’ and v’ are new unique constants,

v is the actual variable parameter,

e is the actual constant parameter,

x is the formal variable parameter,

y is the formal constant parameter,

g is the global altered by p,

L1, L2 are exit labels, -

P is the precondition of p,

Q1, Q2 are the postconditions of q,

and sharped (#) symbols refer to initial values.

8) Procedure Declaration

Each procedure declaration like Fig. 1 must be proved correct
by verifying

[x/#x, g/#g], Pl [x/#x, g/#8] \
Ajselect L1: confirm Q1 enda
L2: confirm Q2 enda ends

9) Function Declaration

Each function declaration like Fig. 2 must be proved correct
by verifying

[x/#x, g/ #g], P| [x/#x, g/#g] \ A; confirm Q

Fig. 3. Rules of inference.

changes to the state are the same except the constant f', rep-
resenting the value of the function, is not necessary. This is
also true of the substitution applied to the postcondition(s).
A verification condition is generated for each exit label as in
the previous procedure-call rule.

As before, the correctness of a procedure declaration is es-
tablished by assuming its precondition, executing its body, and
confirming its postcondition. A select statement is used to se-
lect the appropriate component of the postcondition for the
exit that is taken. The initial state contains the values of #’d
variables.

A function declaration is verified in a similar manner as
shown in Fig. 3. Recall that functions can only have a single
exit. All procedures and functions called from the body of a
procedure or function must be correct by the same definition.

IX. SUMMARY

The notion of symbolic execution facilitates the writing and
understanding of formal rules of inference for proving program
correctness. . Using these rules, a language with side effects,
multiple-exit loops, and procedures with- multiple exits has

been formally described. A similar set of rules has been used
as the basis of a mechanical verification condition generator
[1]. In our experience, the implementation of a verification
condition generator is relatively straightforward once the veri-
fication rules have been precisely stated using the notation
developed in this paper. This is particularly true of the sym-
bolic execution of expressions. The details of the attribute
grammer in Section VII are quite intricate, but the implemen-
tation of the attribute grammar is very similar to its formal
specification.

REFERENCES

[1] R. B. Dannenberg, “An extended verification condition genera-
tor,” Dep. Comput. Sci., Case Western Reserve Univ., Tech. Rep.
CES-79-3, 1979. :)

[2] S.L.Hantler and J. C. King, “An introduction to proving the cor-
rectness of programs,” Comput. Surveys, vol. 8, pp. 331-353,
Sept. 1976. ‘ :

[3] C.A.R. Hoare, “An axiomatic basis for computer programming,”
Commun, Ass. Comput. Mach., vol. 12, pp. 576-580, Oct. 1969.

[4] D. E. Knuth, “Semantics of context-free languages,” Math Syst.
Theory, vol. 2, no. 2, pp. 127-145, 1968, and vol. §, no. 1, pp.
95-96, 1971.) ‘ :

52 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 1, JANUARY 1982

[5]1 B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell, and
G. J. Popek, “Revised report on the programming language Eu-
clid,” Xerox Res. Center, Tech. Rep. CSL 78-2, 1978; An earlier
version appeared in SIGPLAN Notices, vol. 12, Feb. 1977.

[6] D. C. Luckham and N. Suzuki, “Verification of array, record,
and pointer operations in Pascal,”” ACM Trans. Programming
Languages Syst., vol. 1, pp. 226-244, Oct. 1979.

[7] P. McCarthy and J. A. Painter, “Correctness of a compiler for
arithmetic expressions,” in Proc. Symp. Appl. Math., vol. 19.
Providence, RI: Amer. Math. Soc., 1967, pp. 33-41.

[8] W. F. Ogden, personal communication.

[9] N. Wirth, “The programming language Pascal,” Acta Informatica,

vol. 1, pp. 35-63, 1971.

C. T. Zahn, “A control statement for natural top-down struc-

tured programming,” in Proc. Programming Symp., Paris, Apr. 9-

11, 1974, Lecture Notes in Computer Science, vol. 19. Springer-

Verlag, 1974, pp. 170-179.

(10]

Roger B. Dannenberg was born in Houston, TX,
in 1955. He received the B.S.E.E. degree from
Rice University, Houston, in 1977, the M.S. de-
gree in computer engineering from Case Western
Reserve University, Cleveland, OH, in 1979,
and the M.S. degree in computer science from
Carnegie-Mellon University, Pittsburgh, PA, in
1980.

From 1978 to 1981, Mr. Dannenberg held an
NSF fellowship. He is currently a Hertz fellow
at Carnegie-Mellon, pursuing the Ph.D. degree

in computer science. His research interests include distributed systems,
parallel processing, computer languages, and computer music.

Mr. Dannenberg is a member of Phi Beta Kappa, Tau Beta Pi, and the
Association for Computing Machinery.

George W. Ernst was born in St. Marys, PA, in
1939. He received the Ph.D. degree in electrical
engineering from Carnegie Institute of Tech-
nology in 1966.

Upon completion of his Ph.D., he joined the
faculty of Case Institute of Technology, Case
Western Reserve University, Cleveland, OH,
where he is currently an Associate Professor
of Computer Engineering and Science. He co-
authored a book with Allen Newell entitled
GPS: A Case Study in Generality and Problem
Solving (New York: Academic, 1969). He has contributed to leading
journals in the areas of artificial intelligence, mechanical theorem prov-
ing, and program verification. He was an ACM National Lecturer and
is a Past Chairman of the ACM Special Interest Group on Artificial
Intelligence (SIGART).

Analysis of a Hybrid Access Scheme for Buffered
Users-Probabilistic Time Division

ANTHONY EPHREMIDES, SENIOR MEMBER, IEEE, AND OSAMA A. MOWAFI, MEMBER, IEEE

Abstract— A new multiple access scheme is proposed and evaluated.
The proposed scheme combines desirable features of the ordinary time-
division (TDMA) and the random access (RA) schemes. It is shown
that by adjusting the value of a single parameter a, the proposed access
method can vary continuously from one extreme (TDMA) to the other
(RA). The average delay per packet and the throughput can be im-
proved for intermediate values of the load factor. Furthermore, the
method can control the channel instability.

Index Terms—Delay, multiple access, packet switching, stability,
throughput.

Manuscript received August 10, 1980; revised May 29, 1981. This
work was supported in part by the National Science Foundation under
Grant ENG-7722752 and the Naval Research Laboratory under Task
Area RR021-05-41.

A. Ephremides is with the Department of Electrical Engineering, Uni-
versity of Maryland, College Park, MD 20742.

O. A. Mowafi is with the Networks Architecture Department, Com-
puter Sciences Corporation, Falls Church, VA 22046.

I. INTRODUCTION

N packet-switched broadcast channels the problem of mul-
Itiple access has received several solutions ranging from
schemes of the dedicated type, like TDMA and FDMA, through
demand assignment and reservation methods, to the com-
pletely random methods of contested access like the Aloha
scheme.

On the one end of the spectrum we have the class of dedi-
cated methods. The chief representative of this class is the
widely known TDMA method which has been extensively used
in data communications, but only recently analyzed in the
context of satellite or packet-radio communications [1], [2].
It is known that this scheme performs satisfactorily in terms
of channel utilization (throughput) and average packet delay
if the traffic is heavy (high load factor) or if the user terminals
produce data on a regular (almost periodic) basis. Otherwise
the performance of TDMA tends to become unsatisfactory.

0098-5589/82/0100-0052800.75 © 1981 IEEE

