
2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 19-22, 2003, New Paltz, NY

Polyphonic Audio Matching and Alignment for Music Retrieval

Ning Hu, Roger B. Dannenberg and George Tzanetakis

Computer Science Department, Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213-3891 USA
ninghu,rbd,gtzan@cs.cmu.edu

ABSTRACT

We describe a method that aligns polyphonic audio
recordings of music to symbolic score information in standard
MIDI files without the difficult process of polyphonic
transcription. By using this method, we can search through a
MIDI database to find the MIDI file corresponding to a
polyphonic audio recording.

1. INTRODUCTION

For most pieces of classical or popular music, there are
printed scores, audio recordings, and often MIDI files created
by manual transcription or score conversion. One of the
challenges in Music Information Retrieval (MIR) is to find
correspondences among these different music representations. In
this paper, we propose a method to match and align polyphonic
audio with MIDI data.

Our work is motivated by a Query By Humming (QBH)
music retrieval system [1]. In QBH systems, typically audio
queries are matched against a symbolic database, because
matching to audio is simply too difficult. Therefore, we need
symbolic representations (e.g. MIDI) corresponding to audio
(e.g. MP3) files. One strategy is to search the web for MIDI files,
but using filenames is not a reliable method to insure that the
files correspond. One important goal of our work is to search for
MIDI files that match audio.

The problem is: Given an audio recording, find the
corresponding standard MIDI file (or vice versa) from a
database. The matched audio and MIDI files should be as close
to the actual score as possible, but the timing or even keys might
be quite different. For example the MIDI data may be a “flat”
performance using exact tempo markings from a score, while the
audio may be an expressive performance by musicians.

A “standard” approach to this problem might be to perform
some sort of polyphonic transcription on the music and then use
a symbolic score-matching algorithm [2] to compare the query
with every target in the database [3]. Unfortunately, accurate
polyphonic transcription is yet to be achieved, and the error
rates of the best systems are sufficiently high as to make
matching difficult in many cases.

We present an alternative in which matching is performed
on acoustic features rather than symbolic ones. We directly map
MIDI data to corresponding audio features, and use a dynamic
time warping algorithm [4] to align the resulting sequences. The

result not only tells us the optimal alignment between the audio
and MIDI data, but also returns a score reflecting how confident
we are to say the audio and MIDI data are truly correspondent.

Our work is closely related to that of Orio and Schwarz [5],
who also use dynamic time warping to align polyphonic music
to scores. They obtain accurate alignment using small (5.8ms)
analysis windows, and use a measure called Peak Structure
Distance, which is derived from the spectrum of audio and from
synthetic spectra computed from score data. In contrast, we use
the chromagram, described below. Another novel aspect of our
work is that we have demonstrated success with popular vocal
music, in spite of obvious discrepancies between MIDI data and
vocal performance. Finally, our work is motivated by MIR
rather than score following or alignment.

2. POLYPHONIC AUDIO MATCHING

2.1. The Chroma Representation and Other Features

First, we convert audio data into discrete chromagrams:
sequences of chroma vectors. The chroma vector representation
is a 12-element vector, where each element represents the
spectral energy corresponding to one pitch class (i.e. C, C#, D,
D#, etc.). To compute a chroma vector from a magnitude
spectrum, we assign each bin of the FFT to the pitch class of the
nearest step in the chromatic equal-tempered scale. Then, given
a pitch class, we average the magnitude of the corresponding
bins. This results in a 12-value chroma vector. Each chroma
vector in this work represents 0.25 seconds of audio data (non-
overlapping).

The exact details of the chroma computation concerning
how to deal with low-frequency bins that span more than one
half-step, whether to average magnitude or sum power, etc., are
not critical. Our work differs from the original chroma vector
work [6] in that we use linear rather than logarithmic amplitudes.

The reason chroma might be good for this application is that
the chroma vector depends on the pitch classes of strong partials
in the signal. By design, all spectral energy is collapsed into one
octave; chroma vectors are not sensitive to spectral shape, yet
they are sensitive to prominent pitches and chords. Since we are
comparing MIDI data to acoustic data, it is good to focus on
pitch classes and more-or-less ignore details of timbre and
spectral shape.

Besides the chroma representation, we considered features
based on the pitch histogram [7] and mel frequency cepstral
coefficients (MFCC). In Section 3, we compare the performance
of these features for our task.

2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 19-22, 2003, New Paltz, NY

A pitch histogram is calculated by performing automatic
multiple pitch detection for each frame. The four most
prominent detected pitches are converted to pitch class and the
results are accumulated in a histogram.

MFCC is a perceptually motivated spectrum representation
that is widely used not only in speech recognition but also for
music modeling [8]. MFCC are calculated every 23 milliseconds
and averaged across every 0.25 seconds. A variant we call
NMFCC normalizes the MFCC vectors across each audio file so
that they have mean 0 and standard deviation 1.

2.2. From MIDI to Chroma

The second step is to convert MIDI data to chromagrams.
Our initial experiments were done conservatively. We first
converted MIDI data to audio using a MIDI synthesizer, and
then the rendered audio was converted to chromagrams. For
these experiments, we used Timidity (http://www.onicos.com/
staff/iz/timidity/index.html), which generates audio files from
standard MIDI files.

We can also use a direct mapping from MIDI to
chromagrams. In Figure 1, we show a score where each whole
note is a piano sound with duration of 0.25 second played via
MIDI and Timidity. We converted the rendered audio to a
chromagram. The comparison between the original score and
the generated chromagram demonstrates the obvious
relationship between them.

Figure 1. Relationship between score and chromagram.

To compute the chromagram directly from MIDI data, we
first associate each pitch class with an independent unit chroma
vector – the chroma vector with only one element value as 1 and
the rest as 0; then, where there is polyphony in the MIDI data,
the unit chroma vectors are simply multiplied by the loudness
factors, added and normalized.

In addition to timbre and loudness, this approach ignores
many other details that would be present in synthesized sound,
including envelopes and vibrato. It is particularly hard to map
the MIDI data with percussion instruments to chromagrams.
Nevertheless, this simplified direct mapping has little impact on
the results.

2.3. Matching Audio to MIDI

After computing chroma for audio recordings and MIDI
data, we obtain two sequences of vectors. We want to find a
correspondence between the two sequences such that
corresponding vectors are similar. One way to think about this
problem is that we will modify the tempo of the MIDI data in
order to obtain the best agreement between the resulting
sequences of vectors.

We must first define what “agreement between vectors”
means. We first normalize the vectors to have a mean of zero
and a variance of one. The normalization reduces differences
due to absolute magnitude (loudness), which seems to be a good
idea because loudness in MIDI files is rarely calibrated to
absolute levels. We then calculate the Euclidean distance
between the vectors. The distance is zero if there is perfect
agreement. Figure 2 shows a similarity matrix where the vertical
axis is a time index into the acoustic recording, and the
horizontal axis is a time index into the MIDI data. The intensity
of each point is the distance between the corresponding vectors,
where black represents a distance of zero.

 MIDI (s)

 A
co

us
tic

 R
e

co
rd

in
g

 (
s)

0 20 40 60 80
0

20

40

60

80

100

Figure 2. Similarity matrix for Beatles' "I Will".

The dark diagonal represents a path where the vectors are
near one another. This path is the alignment we are after. Notice
that the tempo of the MIDI performance [9] is substantially
faster than the audio [10], so the acoustic recording is longer
than the MIDI data. Also the repetition at the beginning of the
song yields additional off-diagonal paths where the first repeat
of the acoustic data matches the second repeat of the MIDI data
and vice versa.

Although the path is visually clear in the figure, we need an
automated method to locate the path. Alignment is computed
using a dynamic time warping (DTW) algorithm. DTW
computes a path in a matrix where the rows correspond to one
vector sequence and columns correspond to the other. The path
is a sequence of adjacent cells, and DTW finds the path with the
smallest sum of distances.

For DTW, each matrix cell (i,j) represents the sum of
distances along the best path from (0,0) to (i,j). We use the
calculation pattern shown in Figure 3 for each cell. The best
path up to location (i,j) in the matrix (labeled “D” in the figure)
depends only on the adjacent cells (A, B, and C) and the
distance between the vectors corresponding to row i and
column j. The DTW algorithm requires a single pass through the

 Time (s)

 C
h

ro
m

a
V

ec
to

r
(B

in
s

1
~

1
2

)

0 0.5 1 1.5 2 2.5

2

4

6

8

10

12

2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 19-22, 2003, New Paltz, NY

matrix to compute the cost of the best path. Then, a
backtracking step is used to identify the actual path. We tried
other formulations of DTW [11]; however, the difference
between the resulting optimal paths is often too subtle to tell
which one is best.

Figure 3. Calculation pattern for cell (i,j).

Using DTW, we can use the similarity matrix in Figure 2 to
identify the path shown by the white line in Figure 4. As shown
by the path, there is some non-matching MIDI at the beginning
and non-matching audio at the end of the song.

 MIDI (s)

 A
co

u
st

ic
 R

e
co

rd
in

g
(s

)

0 20 40 60 80
0

20

40

60

80

100

Figure 4. The optimal alignment path is shown in white
over the similarity matrix of Figure 2.

An alternative to dynamic time warping is the hidden
Markov model (HMM), which might lead to improved
performance. However, HMM requires careful design and
training. Since we have achieved good results with a simple
model and no training, we believe our approach is attractive for
a variety of applications.

After computing the optimal alignment between any audio
recording and MIDI file, we can easily compute the average
distance along the path. This turns out to be a useful feature to
tell whether the audio recording and MIDI file represent the
same piece of music. On one hand, when matching and
alignment are possible, we would expect to see a low average
distance along the alignment path. On the other hand, if we use
MIDI data that is unrelated to the audio, then even the best path
should exhibit a large average distance.

3. RESULTS AND ANALYSIS

3.1. Features Comparison

We chose 10 acoustic recordings of Beatles’ songs as
queries and rendered their corresponding MIDI files to audio as

targets. From these audio files, we computed the following
representations: chromagram, pitch histogram, and MFCC.

For each query, the program matches its particular feature
sequence against that of every target in the database and returns
the average distance along the path. Then the targets are sorted
according to the average distance.

Table 1 shows the experimental results for features
comparison. The first row “Top 1” tells how many correct
matches are ranked first for each feature. The second row
“MRR” is the mean of the reciprocals of the ranks of the correct
matches (so 1 is best, 0 is worst). Overall, chroma returns the
best result, and pitch histogram is the second best, while the
results from MFCC and NMFCC are essentially random. This
confirms that pitch-based representations, especially chroma, are
better choices for this task.

Table 1. Features Comparison.

Features Chroma Pitch
Histogram

MFCC NMFCC

Top 1 9 7 0 1
MRR 0.95000 0.81667 0.21306 0.30361

3.2. Music Retrieval Using Chroma

For music retrieval using chroma, we set up a larger scale
experiment with 51 acoustic recordings as queries and 259
MIDI files as targets in the database. Both the queries and
targets are Beatles’ songs.

The results are good, in spite of the fact that the songs
feature vocal and percussion prominently and the music styles
are similar (they are all Beatles’ songs). If we use classical
music as the queries and targets instead, the results should be
even better. Figure 5 shows the rank distribution of correct
matches from the experiment. 40 out of 51 queries returned the
correct match ranked among top 10, and 25 of them are ranked
first.

Figure 5. Rank distribution of correct matches.

Of course, the smaller the average distance value, the more
confident we are to say it is a correct match. Figure 6 shows the
distribution histograms of the average distance values on those
correct and wrong matches. They are made up of 51 and 13676
data points respectively, and both are normalized to 1 so that the
shapes are comparable.

Another feature of the polyphonic audio matching is the
ratio between the average distance along the path and the
average distance value in the matrix. The average distance along
the path is always lower than the average matrix value as
indicated by ratio values less than one. However, we found this
feature less effective than the average distance value along the
path in predicting successful matches.

C D

A B

D = M i,j = min(A,B,C)+dist(i,j)

i

j

2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 19-22, 2003, New Paltz, NY

Figure 6. Distribution histograms of the average
distance values on correct and wrong matches.

4. FUTURE WORK AND CONCLUSIONS

The method we describe in this paper is simple and easy to
implement. There are many possible ways to improve the
performance. A neural network might output the most likely
chroma vector for each distinct polyphonic MIDI frame, and we
could replace the simple dynamic time warping with a hidden
Markov model. For better ranking of the matches, we can
extract various features from the optimal path found by DTW
including average distance value along the path, the ratio
between the average distance along the path and the average
distance value in the matrix, and the smoothness measurement
of the path. Machine learning techniques can then be applied to
build a better classifier. The current system runs slowly because
of the DTW algorithm. We can use some tricks to speed up
matching, such as only computing the cells close to the diagonal,
as most optimal paths are along diagonal. A more advanced
method would be approximate or exact indexing of DTW [12].

On the other hand, we appreciate the directness and
simplicity of the current method. Matching polyphonic audio
recording of music to symbolic score information is good not
only for music search, but it also enables interesting applications,
for instance, polyphonic score following, intelligent audio
editors and analysis of expressive performance. We discuss
those possible applications in more detail in another paper [13].

Many computer music studies and applications focus solely
on either signal representations (namely audio data) or symbolic
representations (specifically scores, MIDI and note lists) of
music. Many lower-level tasks, such as beat tracking [14] and
fundamental estimation [15], are performed on features
extracted from audio. Operations at higher levels rely upon
symbolic representations, for example, Music Retrieval based
on melody contour and structural analysis [16]. Both the signal
and symbolic representations have their advantages and
disadvantages. If we can forge links between signal and
symbolic representations, we can more fully utilize features and
operations at different levels to solve a wider range of problems.
In this paper, we suggest one possible way to automatically
identify MIDI files that correspond to audio recordings. We
believe the resulting combinations of audio and MIDI
transcriptions will find many interesting applications.

5. ACKNOLEDGEMENTS

This work was supported by NSF Award #0085945. We
would like to thank Greg Wakefield and Mark Bartsch for their
chromagram code and fruitful discussions.

6. REFERENCES

[1] Birmingham, W.P., et al. "MUSART: Music Retrieval via
Aural Queries", Proc. 2nd International Symposium on
Music Information Retrieval (ISMIR): 73-81, 2001.

[2] Bloch, J., & Dannenberg, R.B. "Real-Time Accompaniment
of Polyphonic Keyboard Performance", Proc. 1985
International Computer Music Conference (ICMC): 279-
290, ICMA.

[3] Pickens, J., et al. "Polyphonic Score Retrieval Using
Polyphonic Audio Queries: A Harmonic Modeling
Approach", Proc. 3rd ISMIR, 2002.

[4] Sankoff, D., & Kruskal, J.B., Time Warps, String Edits, and
Macromolecules, the Theory and Practice of Sequence
Comparison, Addison-Wesley, 1983.

[5] Orio, N., & Schwarz, D. "Alignment of Monophonic and
Polyphonic Music to a Score", Proc. 2001 ICMC: 155-158,
ICMA.

[6] Bartsch, M., et al. "To Catch a Chorus: Using Chroma-
Based Representations For Audio Thumbnailing", Proc.
2001 WASPAA, IEEE.

[7] Tzanetakis, G. et al. "Pitch Histograms in Audio and
Symbolic Music Information Retrieval", Proc. 3rd ISMIR:
31-38, 2002.

[8] Logan, B. "Mel Frequency Cepstral Coefficients for Music
Modeling", Proc. 1st ISMIR, 2000.

[9] "Doc Doc" Petro, Beatles' "I Will" [Standard MIDI File],
http://home.texoma.net/~docdoc, 1996.

[10] Beatles. "I Will", White Album (Disc 1 of 2): Apple Records,
1968.

[11] Hu, N., & Dannenberg, R.B. "A Comparison of Melodic
Database Retrieval Techniques Using Sung Queries", Proc.
Joint Conference on Digital Libraries (JCDL) 2002, ACM.

[12] Keogh, E. "Exact Indexing of Dynamic Time Warping",
Proc. 28th International Conference on Very Large
Database (VLDB), VLDB Endowment, 2002.

[13] Dannenberg, R.B. & Hu, N. "Polyphonic Audio Matching
for Score Following and Intelligent Audio Editors", Proc.
2003 ICMC, ICMA, (to appear).

[14] Goto, M. & Muraoka, Y. "Music Understanding at the Beat
Level: Real-Time Beat Tracking of Audio Signals",
Computational Auditory Scene Analysis, Lawrence Erlbaum
Associates, New Jersey, 1998.

[15] Rabiner, L. "On the use of autocorrelation analysis for pitch
detection", IEEE Trans. ASSP, 25 (1): 24-33, 1977.

[16] Dannenberg, R.B. and Hu, N. "Pattern Discovery
Techniques for Music Audio", Proc. 3rd ISMIR: 63-70,
IRCAM, 2002.

	CCC: 0-7803-7850-4/03/$17.00 © 2003 IEEE
	page1: 185
	page2: 186
	page3: 187
	page4: 188

