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ABSTRACT

We describe a method that aligns polyphonic audio

recordings of music to symbolic score informationstandard
MIDI files without the difficult process of polypimic
transcription. By using this method, we can sedlobugh a
MIDI database to find the MIDI file corresponding ta
polyphonic audio recording.

1. INTRODUCTION

For most pieces of classical or popular music, ehare
printed scores, audio recordings, and often MIMdsficreated
by manual transcription or score conversion. One thof
challenges in Music Information Retrieval (MIR) e find
correspondences among these different music regeggms. In
this paper, we propose a method to match and pbidyphonic
audio with MIDI data.

Our work is motivated by a Query By Humming (QBH)
music retrieval system [1]. In QBH systems, tydicaudio
queries are matched against a symbolic databasgude
matching to audio is simply too difficult. Thereéorwe need
symbolic representations (e.g. MIDI) correspondingaudio
(e.g. MP3) files. One strategy is to search the feeMIDI files,
but using filenames is not a reliable method taiiasthat the
files correspond. One important goal of our workoisearch for
MIDI files that match audio.

The problem is: Given an audio recording, find the

corresponding standard MIDI file (or vice versapnfr a
database. The matched audio and MIDI files shoelddclose
to the actual score as possible, but the timingven keys might
be quite different. For example the MIDI data may & “flat”
performance using exact tempo markings from a sednge the
audio may be an expressive performance by musicians

A “standard” approach to this problem might be &fprm
some sort of polyphonic transcription on the masid then use
a symbolic score-matching algorithm [2] to comptre query
with every target in the database [3]. Unfortungtelccurate
polyphonic transcription is yet to be achieved, dhd error
rates of the best systems are sufficiently hight@smake
matching difficult in many cases.

We present an alternative in which matching is qrenéd
on acoustic features rather than symbolic onesdiWéetly map
MIDI data to corresponding audio features, and aisynamic
time warping algorithm [4] to align the resultinggaiences. The
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result not only tells us the optimal alignment betw the audio
and MIDI data, but also returns a score reflectiog/ confident
we are to say the audio and MIDI data are trulyespondent.

Our work is closely related to that of Orio and Balv [5],
who also use dynamic time warping to align polygbhanusic
to scores. They obtain accurate alignment usingl H.8ms)
analysis windows, and use a measure called Pealct@te
Distance, which is derived from the spectrum ofiawhd from
synthetic spectra computed from score data. Inrasfjtwe use
the chromagram, described below. Another novel @spleour
work is that we have demonstrated success with |popocal
music, in spite of obvious discrepancies betweeBIMiata and
vocal performance. Finally, our work is motivateg MIR
rather than score following or alignment.

2. POLYPHONIC AUDIO MATCHING
2.1. The Chroma Representation and Other Features

First, we convert audio data infiscrete chromagrams
sequences of chroma vectors. The chroma vectoeseptation
is a 12-element vector, where each element repseste
spectral energy corresponding to one pitch class @, C#, D,
D#, etc.). To compute a chroma vector from a magieit
spectrum, we assign each bin of the FFT to thémitess of the
nearest step in the chromatic equal-tempered s€aém, given
a pitch class, we average the magnitude of theesponding
bins. This results in a 12-valughroma vectar Each chroma
vector in this work represents 0.25 seconds ofaddta (non-
overlapping).

The exact details of the chroma computation coriegrn
how to deal with low-frequency bins that span mthran one
half-step, whether to average magnitude or sum poste., are
not critical. Our work differs from the original @ma vector
work [6] in that we use linear rather than logaritb amplitudes.

The reason chromaightbe good for this application is that
the chroma vector depends on the pitch classesaofgspartials
in the signal. By design, all spectral energy ibapsed into one
octave; chroma vectors are not sensitive to spesirape, yet
they are sensitive to prominent pitches and ch@uwe we are
comparing MIDI data to acoustic data, it is goodfdous on
pitch classes and more-or-less ignore details mbré and
spectral shape.

Besides the chroma representation, we considerdrés
based on the pitch histogram [7] and mel frequecegstral
coefficients (MFCC). In Section 3, we compare thefgrmance
of these features for our task.
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A pitch histogram is calculated by performing au&im
multiple pitch detection for each frame. The fourosin

prominent detected pitches are converted to pilabscand the

results are accumulated in a histogram.

MFCC is a perceptually motivated spectrum represimt
that is widely used not only in speech recognitiut also for
music modeling [8]. MFCC are calculated every 28isaiconds
and averaged across every 0.25 seconds. A variantall
NMFCC normalizes the MFCC vectors across each dildiso
that they have mean 0 and standard deviation 1.

2.2. From MIDI to Chroma

The second step is to convert MIDI data to chrouaug:
Our initial experiments were done conservativelye \fitst
converted MIDI data to audio using a MIDI synthesjzand
then the rendered audio was converted to chromagré&aor
these experiments, we used Timidity (http://wwwomsicom/
staff/iz/timidity/index.html), which generates aadfiles from
standard MIDI files.

We can also use a direct mapping from MIDI
chromagrams. In Figure 1, we show a score wherk e&aole
note is a piano sound with duration of 0.25 secplaged via
MIDI and Timidity. We converted the rendered aud® a
chromagram. The comparison between the originateseod
the generated chromagram demonstrates the

relationship between them.
I
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Figure 1.Relationship between score and chromagram.

To compute the chromagram directly from MIDI data
first associate each pitch class with an independeit chroma
vector — the chroma vector with only one elemefieas 1 and
the rest as 0; then, where there is polyphony énMHDI data,
the unit chroma vectors are simply multiplied by tloudness
factors, added and normalized.

In addition to timbre and loudness, this approagioies
many other details that would be present in syitbdssound,
including envelopes and vibrato. It is particufdnard to map
the MIDI data with percussion instruments to chrgrams.
Nevertheless, this simplified direct mapping héelimpact on
the results.

obvious
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2.3. Matching Audioto MIDI

After computing chroma for audio recordings and MID
data, we obtain two sequences of vectors. We waiiintd a
correspondence between the two sequences such
corresponding vectors are similar. One way to thabkut this
problem is that we will modify the tempo of the MIBata in
order to obtain the best agreement between theltirgsu
sequences of vectors.

We must first define what “agreement between vsttor
means. We first normalize the vectors to have anntdazero
and a variance of one. The normalization reducéerences
due to absolute magnitude (loudness), which seerbe & good
idea because loudness in MIDI files is rarely calied to
absolute levels. We then calculate the Euclideastadce
between the vectors. The distance is zero if therperfect
agreement. Figure 2 showsiailarity matrixwhere the vertical
axis is a time index into the acoustic recordingd ahe
horizontal axis is a time index into the MIDI dafde intensity
of each point is the distance between the correfipgrvectors,
where black represents a distance of zero.

Acoustic Recording (s)

Figure 2 Similarity matrix for Beatles' "l Will".

The dark diagonal represents a path where the rngeere
near one another. This path is the alighment weiee. Notice
that the tempo of the MIDI performance [9] is salnsially
faster than the audio [10], so the acoustic reogrds longer
than the MIDI data. Also the repetition at the legng of the
song yields additional off-diagonal paths where fil& repeat
of the acoustic data matches the second repebedtDI data
and vice versa.

Although the path is visually clear in the figureg need an
automated method to locate the path. Alignmentomputed
using a dynamic time warping (DTW) algorithm. DTW
computes a path in a matrix where the rows cormedgo one
vector sequence and columns correspond to the.dtherpath
is a sequence of adjacent cells, and DTW findgp#ik with the
smallest sum of distances.

For DTW, each matrix celli,{) represents the sum of
distances along the best path from (0,0)if9. ( We use the
calculation pattern shown in Figure 3 for each.c€he best
path up to locationi{) in the matrix (labeled “D” in the figure)
depends only on the adjacent cells (A, B, and G)d the
distance between the vectors corresponding to iroand
columnj. The DTW algorithm requires a single pass throtingh
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matrix to compute the cost of the best path. Than,
backtracking step is used to identify the actuahps&Ve tried

other formulations of DTW [11]; however, the diferce

between the resulting optimal paths is often tobtlsuto tell

which one is best.
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D = M ;= min(A,B,C)+dist(i.j)
Figure 3.Calculation pattern for cell (i,j).

Using DTW, we can use the similarity matrix in Rig2 to
identify the path shown by the white line in Fig4reAs shown
by the path, there is some non-matching MIDI athibginning
and non-matching audio at the end of the song.
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Figure 4.The optimal alignment path is shown in white
over the similarity matrix of Figure 2.

An alternative to dynamic time warping is the hidde
Markov model (HMM), which might lead to improved
performance. However, HMM requires careful designd a
training. Since we have achieved good results aiteimple
model andho training, we believe our approach is attractive fo
a variety of applications.

After computing the optimal alignment between anglia
recording and MIDI file, we can easily compute theerage
distance along the path. This turns out to be &ulfmature to
tell whether the audio recording and MIDI file repent the

same piece of music. On one hand, when matching and

alignment are possible, we would expect to seenadeerage
distance along the alignment path. On the othed hdnwe use
MIDI data that is unrelated to the audio, then etlebest path
should exhibit a large average distance.

3. RESULTSAND ANALYSIS

3.1. Features Comparison

We chose 10 acoustic recordings of Beatles’ sorgys a

queries and rendered their corresponding MIDI fiteaudio as
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targets. From these audio files, we computed thiviong
representations: chromagram, pitch histogram, arGC®1

For each query, the program matches its partidelaiure
sequence against that of every target in the dsgéadiad returns
the average distance along the path. Then thetsasge sorted
according to the average distance.

Table 1 shows the experimental
comparison. The first row “Top 1” tells how manyriect
matches are ranked first for each feature. The rgskaow
“MRR” is the mean of the reciprocals of the rankshe correct
matches (so 1 is best, 0 is worst). Overall, chroetarns the
best result, and pitch histogram is the second, vdsie the
results from MFCC and NMFCC are essentially randdtris
confirms that pitch-based representations, espgciatoma, are
better choices for this task.

Table 1.Features Comparison.

Features | Chroma | Pitch MFCC | NMFCC
Histogram

Topl 9 7 0 1

MRR 0.95000 | 0.81667 0.21306 0.30361

3.2. Music Retrieval Using Chroma

For music retrieval using chroma, we set up a lasgale
experiment with 51 acoustic recordings as queried 259
MIDI files as targets in the database. Both theriggeand
targets are Beatles’ songs.

The results are good, in spite of the fact that $bags
feature vocal and percussion prominently and thsienstyles
are similar (they are all Beatles’ songs). If wee udassical
music as the queries and targets instead, thetsesubuld be
even better. Figure 5 shows the rank distributidncarrect
matches from the experiment. 40 out of 51 queeésrned the
correct match ranked among top 10, and 25 of thenramked
first.

L
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Figure 5.Rank distribution of correct matches.

Of course, the smaller the average distance véhgemore
confident we are to say it is a correct match. fédhishows the
distribution histograms of the average distanceieslon those
correct and wrong matches. They are made up oh8118676
data points respectively, and both are normalieet 40 that the
shapes are comparable.

Another feature of the polyphonic audio matchingttis
ratio between the average distance along the path the
average distance value in the matrix. The averéjartte along
the path is always lower than the average matrikievaas
indicated by ratio values less than one. Howeverfaund this
feature less effective than the average distantee\along the
path in predicting successful matches.

results for features
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The method we describe in this paper is simple eagy to
implement. There are many possible ways to imprdwe
performance. A neural network might output the midstly
chroma vector for each distinct polyphonic MIDIrfre, and we
could replace the simple dynamic time warping vétthidden
Markov model. For better ranking of the matches, vem
extract various features from the optimal path fbloy DTW
including average distance value along the patle, ititio
between the average distance along the path andvirage
distance value in the matrix, and the smoothnesssurtement
of the path. Machine learning techniques can treeagplied to
build a better classifier. The current system rsiosvly because
of the DTW algorithm. We can use some tricks toespeap
matching, such as only computing the cells clogh¢odiagonal,
as most optimal paths are along diagonal. A monaarsced
method would be approximate or exact indexing ofAD[L2].

On the other hand, we appreciate the directness and
simplicity of the current method. Matching polyploraudio
recording of music to symbolic score informationgisod not
only for music search, but it also enables inténgsapplications,
for instance, polyphonic score following, intellige audio
editors and analysis of expressive performance. digeuss
those possible applications in more detail in aeoffaper [13].

Many computer music studies and applications fcaisly
on either signal representations (namely audio)aataymbolic
representations (specifically scores, MIDI and nbigs) of
music. Many lower-level tasks, such as beat tracki®] and
fundamental estimation [15], are performed on festu
extracted from audio. Operations at higher levely upon
symbolic representations, for example, Music Re#liebased
on melody contour and structural analysis [16].Btite signal
and symbolic representations have their advantaged
disadvantages. If we can forge links between sigaiadl
symbolic representations, we can more fully utifieatures and
operations at different levels to solve a widemgenof problems.
In this paper, we suggest one possible way to aatioaily
identify MIDI files that correspond to audio recorgs. We
believe the resulting combinations of audio and MID
transcriptions will find many interesting applicats.
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