
2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 19-22, 2003, New Paltz, NY 

 

Polyphonic Audio Matching and Alignment for Music Retrieval 

Ning Hu, Roger B. Dannenberg and George Tzanetakis 

Computer Science Department, Carnegie Mellon University 
5000 Forbes Avenue 

Pittsburgh, PA 15213-3891 USA 
ninghu,rbd,gtzan@cs.cmu.edu 

ABSTRACT 

We describe a method that aligns polyphonic audio 
recordings of music to symbolic score information in standard 
MIDI files without the difficult process of polyphonic 
transcription. By using this method, we can search through a 
MIDI database to find the MIDI file corresponding to a 
polyphonic audio recording. 

1. INTRODUCTION 

For most pieces of classical or popular music, there are 
printed scores, audio recordings, and often MIDI files created 
by manual transcription or score conversion. One of the 
challenges in Music Information Retrieval (MIR) is to find 
correspondences among these different music representations. In 
this paper, we propose a method to match and align polyphonic 
audio with MIDI data. 

Our work is motivated by a Query By Humming (QBH) 
music retrieval system [1]. In QBH systems, typically audio 
queries are matched against a symbolic database, because 
matching to audio is simply too difficult. Therefore, we need 
symbolic representations (e.g. MIDI) corresponding to audio 
(e.g. MP3) files. One strategy is to search the web for MIDI files, 
but using filenames is not a reliable method to insure that the 
files correspond. One important goal of our work is to search for 
MIDI files that match audio. 

The problem is: Given an audio recording, find the 
corresponding standard MIDI file (or vice versa) from a 
database. The matched audio and MIDI files should be as close 
to the actual score as possible, but the timing or even keys might 
be quite different. For example the MIDI data may be a “flat” 
performance using exact tempo markings from a score, while the 
audio may be an expressive performance by musicians. 

A “standard” approach to this problem might be to perform 
some sort of polyphonic transcription on the music and then use 
a symbolic score-matching algorithm [2] to compare the query 
with every target in the database [3]. Unfortunately, accurate 
polyphonic transcription is yet to be achieved, and the error 
rates of the best systems are sufficiently high as to make 
matching difficult in many cases. 

We present an alternative in which matching is performed 
on acoustic features rather than symbolic ones. We directly map 
MIDI data to corresponding audio features, and use a dynamic 
time warping algorithm [4] to align the resulting sequences. The 

result not only tells us the optimal alignment between the audio 
and MIDI data, but also returns a score reflecting how confident 
we are to say the audio and MIDI data are truly correspondent. 

Our work is closely related to that of Orio and Schwarz [5], 
who also use dynamic time warping to align polyphonic music 
to scores. They obtain accurate alignment using small (5.8ms) 
analysis windows, and use a measure called Peak Structure 
Distance, which is derived from the spectrum of audio and from 
synthetic spectra computed from score data. In contrast, we use 
the chromagram, described below. Another novel aspect of our 
work is that we have demonstrated success with popular vocal 
music, in spite of obvious discrepancies between MIDI data and 
vocal performance. Finally, our work is motivated by MIR 
rather than score following or alignment. 

2. POLYPHONIC AUDIO MATCHING 

2.1. The Chroma Representation and Other Features 

First, we convert audio data into discrete chromagrams: 
sequences of chroma vectors. The chroma vector representation 
is a 12-element vector, where each element represents the 
spectral energy corresponding to one pitch class (i.e. C, C#, D, 
D#, etc.). To compute a chroma vector from a magnitude 
spectrum, we assign each bin of the FFT to the pitch class of the 
nearest step in the chromatic equal-tempered scale. Then, given 
a pitch class, we average the magnitude of the corresponding 
bins. This results in a 12-value chroma vector. Each chroma 
vector in this work represents 0.25 seconds of audio data (non-
overlapping). 

The exact details of the chroma computation concerning 
how to deal with low-frequency bins that span more than one 
half-step, whether to average magnitude or sum power, etc., are 
not critical. Our work differs from the original chroma vector 
work [6] in that we use linear rather than logarithmic amplitudes. 

The reason chroma might be good for this application is that 
the chroma vector depends on the pitch classes of strong partials 
in the signal. By design, all spectral energy is collapsed into one 
octave; chroma vectors are not sensitive to spectral shape, yet 
they are sensitive to prominent pitches and chords. Since we are 
comparing MIDI data to acoustic data, it is good to focus on 
pitch classes and more-or-less ignore details of timbre and 
spectral shape. 

Besides the chroma representation, we considered features 
based on the pitch histogram [7] and mel frequency cepstral 
coefficients (MFCC). In Section 3, we compare the performance 
of these features for our task. 
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A pitch histogram is calculated by performing automatic 
multiple pitch detection for each frame. The four most 
prominent detected pitches are converted to pitch class and the 
results are accumulated in a histogram. 

MFCC is a perceptually motivated spectrum representation 
that is widely used not only in speech recognition but also for 
music modeling [8]. MFCC are calculated every 23 milliseconds 
and averaged across every 0.25 seconds. A variant we call 
NMFCC normalizes the MFCC vectors across each audio file so 
that they have mean 0 and standard deviation 1. 

2.2. From MIDI to Chroma 

The second step is to convert MIDI data to chromagrams. 
Our initial experiments were done conservatively. We first 
converted MIDI data to audio using a MIDI synthesizer, and 
then the rendered audio was converted to chromagrams. For 
these experiments, we used Timidity (http://www.onicos.com/ 
staff/iz/timidity/index.html), which generates audio files from 
standard MIDI files. 

We can also use a direct mapping from MIDI to 
chromagrams. In Figure 1, we show a score where each whole 
note is a piano sound with duration of 0.25 second played via 
MIDI and Timidity. We converted the rendered audio to a 
chromagram. The comparison between the original score and 
the generated chromagram demonstrates the obvious 
relationship between them. 

 

 
Figure 1. Relationship between score and chromagram. 

To compute the chromagram directly from MIDI data, we 
first associate each pitch class with an independent unit chroma 
vector – the chroma vector with only one element value as 1 and 
the rest as 0; then, where there is polyphony in the MIDI data, 
the unit chroma vectors are simply multiplied by the loudness 
factors, added and normalized.  

In addition to timbre and loudness, this approach ignores 
many other details that would be present in synthesized sound, 
including envelopes and vibrato.  It is particularly hard to map 
the MIDI data with percussion instruments to chromagrams. 
Nevertheless, this simplified direct mapping has little impact on 
the results.  

2.3. Matching Audio to MIDI 

After computing chroma for audio recordings and MIDI 
data, we obtain two sequences of vectors. We want to find a 
correspondence between the two sequences such that 
corresponding vectors are similar. One way to think about this 
problem is that we will modify the tempo of the MIDI data in 
order to obtain the best agreement between the resulting 
sequences of vectors. 

We must first define what “agreement between vectors” 
means. We first normalize the vectors to have a mean of zero 
and a variance of one. The normalization reduces differences 
due to absolute magnitude (loudness), which seems to be a good 
idea because loudness in MIDI files is rarely calibrated to 
absolute levels. We then calculate the Euclidean distance 
between the vectors. The distance is zero if there is perfect 
agreement. Figure 2 shows a similarity matrix where the vertical 
axis is a time index into the acoustic recording, and the 
horizontal axis is a time index into the MIDI data. The intensity 
of each point is the distance between the corresponding vectors, 
where black represents a distance of zero. 
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Figure 2. Similarity matrix for Beatles' "I Will". 

The dark diagonal represents a path where the vectors are 
near one another. This path is the alignment we are after. Notice 
that the tempo of the MIDI performance [9] is substantially 
faster than the audio [10], so the acoustic recording is longer 
than the MIDI data. Also the repetition at the beginning of the 
song yields additional off-diagonal paths where the first repeat 
of the acoustic data matches the second repeat of the MIDI data 
and vice versa.  

Although the path is visually clear in the figure, we need an 
automated method to locate the path. Alignment is computed 
using a dynamic time warping (DTW) algorithm. DTW 
computes a path in a matrix where the rows correspond to one 
vector sequence and columns correspond to the other. The path 
is a sequence of adjacent cells, and DTW finds the path with the 
smallest sum of distances. 

For DTW, each matrix cell (i,j) represents the sum of 
distances along the best path from (0,0) to (i,j).  We use the 
calculation pattern shown in Figure 3 for each cell. The best 
path up to location (i,j) in the matrix (labeled “D” in the figure) 
depends only on the adjacent cells (A, B, and C)  and the 
distance between the  vectors corresponding to row i and 
column j. The DTW algorithm requires a single pass through the 
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matrix to compute the cost of the best path. Then, a 
backtracking step is used to identify the actual path. We tried 
other formulations of DTW [11]; however, the difference 
between the resulting optimal paths is often too subtle to tell 
which one is best. 

 

Figure 3. Calculation pattern for cell (i,j). 

Using DTW, we can use the similarity matrix in Figure 2 to 
identify the path shown by the white line in Figure 4. As shown 
by the path, there is some non-matching MIDI at the beginning 
and non-matching audio at the end of the song. 
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Figure 4. The optimal alignment path is shown in white 
over the similarity matrix of Figure 2. 

An alternative to dynamic time warping is the hidden 
Markov model (HMM), which might lead to improved 
performance. However, HMM requires careful design and 
training. Since we have achieved good results with a simple 
model and no training, we believe our approach is attractive for 
a variety of applications. 

After computing the optimal alignment between any audio 
recording and MIDI file, we can easily compute the average 
distance along the path. This turns out to be a useful feature to 
tell whether the audio recording and MIDI file represent the 
same piece of music. On one hand, when matching and 
alignment are possible, we would expect to see a low average 
distance along the alignment path. On the other hand, if we use 
MIDI data that is unrelated to the audio, then even the best path 
should exhibit a large average distance.  

3. RESULTS AND ANALYSIS 

3.1. Features Comparison 

We chose 10 acoustic recordings of Beatles’ songs as 
queries and rendered their corresponding MIDI files to audio as 

targets. From these audio files, we computed the following 
representations: chromagram, pitch histogram, and MFCC. 

For each query, the program matches its particular feature 
sequence against that of every target in the database and returns 
the average distance along the path. Then the targets are sorted 
according to the average distance. 

Table 1 shows the experimental results for features 
comparison. The first row “Top 1” tells how many correct 
matches are ranked first for each feature. The second row 
“MRR” is the mean of the reciprocals of the ranks of the correct 
matches (so 1 is best, 0 is worst). Overall, chroma returns the 
best result, and pitch histogram is the second best, while the 
results from MFCC and NMFCC are essentially random. This 
confirms that pitch-based representations, especially chroma, are 
better choices for this task. 

Table 1. Features Comparison. 

Features Chroma Pitch 
Histogram 

MFCC NMFCC 

Top 1 9 7 0 1 
MRR 0.95000 0.81667 0.21306 0.30361 

3.2. Music Retrieval Using Chroma 

For music retrieval using chroma, we set up a larger scale 
experiment with 51 acoustic recordings as queries and 259 
MIDI files as targets in the database. Both the queries and 
targets are Beatles’ songs. 

The results are good, in spite of the fact that the songs 
feature vocal and percussion prominently and the music styles 
are similar (they are all Beatles’ songs). If we use classical 
music as the queries and targets instead, the results should be 
even better. Figure 5 shows the rank distribution of correct 
matches from the experiment. 40 out of 51 queries returned the 
correct match ranked among top 10, and 25 of them are ranked 
first. 

 

Figure 5. Rank distribution of correct matches. 

Of course, the smaller the average distance value, the more 
confident we are to say it is a correct match. Figure 6 shows the 
distribution histograms of the average distance values on those 
correct and wrong matches. They are made up of 51 and 13676 
data points respectively, and both are normalized to 1 so that the 
shapes are comparable. 

Another feature of the polyphonic audio matching is the 
ratio between the average distance along the path and the 
average distance value in the matrix. The average distance along 
the path is always lower than the average matrix value as 
indicated by ratio values less than one. However, we found this 
feature less effective than the average distance value along the 
path in predicting successful matches.  
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Figure 6. Distribution histograms of the average 
distance values on correct and wrong matches. 

4. FUTURE WORK AND CONCLUSIONS 

The method we describe in this paper is simple and easy to 
implement. There are many possible ways to improve the 
performance. A neural network might output the most likely 
chroma vector for each distinct polyphonic MIDI frame, and we 
could replace the simple dynamic time warping with a hidden 
Markov model. For better ranking of the matches, we can 
extract various features from the optimal path found by DTW 
including average distance value along the path, the ratio 
between the average distance along the path and the average 
distance value in the matrix, and the smoothness measurement 
of the path. Machine learning techniques can then be applied to 
build a better classifier. The current system runs slowly because 
of the DTW algorithm. We can use some tricks to speed up 
matching, such as only computing the cells close to the diagonal, 
as most optimal paths are along diagonal. A more advanced 
method would be approximate or exact indexing of DTW [12]. 

On the other hand, we appreciate the directness and 
simplicity of the current method. Matching polyphonic audio 
recording of music to symbolic score information is good not 
only for music search, but it also enables interesting applications, 
for instance, polyphonic score following, intelligent audio 
editors and analysis of expressive performance. We discuss 
those possible applications in more detail in another paper [13]. 

Many computer music studies and applications focus solely 
on either signal representations (namely audio data) or symbolic 
representations (specifically scores, MIDI and note lists) of 
music. Many lower-level tasks, such as beat tracking [14] and 
fundamental estimation [15], are performed on features 
extracted from audio. Operations at higher levels rely upon 
symbolic representations, for example, Music Retrieval based 
on melody contour and structural analysis [16]. Both the signal 
and symbolic representations have their advantages and 
disadvantages. If we can forge links between signal and 
symbolic representations, we can more fully utilize features and 
operations at different levels to solve a wider range of problems. 
In this paper, we suggest one possible way to automatically 
identify MIDI files that correspond to audio recordings. We 
believe the resulting combinations of audio and MIDI 
transcriptions will find many interesting applications. 
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