
Collaborative Music Creation and Performance with
Soundcool Online

Roger B. Dannenberg
Carnegie Mellon University

Pittsburgh, PA
rbd@cs.cmu.edu

Huan Zhang
Carnegie Mellon University

Pittsburgh, PA
huanz@andrew.cmu.edu

Amit Kumar Meena
Indian Institute of Technology

Indore, India
amitmeena094@gmail.com

Ankitkumar Joshi
University of Pittsburgh

Pittsburgh, PA
ahjoshi@pitt.edu

Amey Kiran Patel
Indian Institute of Technology

Indore, India
ameykpatel@gmail.com

Jorge Sastre
Universitat Politècnica de

València
Valencia (Spain)

jsastrem@upv.es

ABSTRACT
Soundcool Online is a Web Audio re-implementation of the
original Max/MSP implementation of Soundcool, a system
for collaborative music creation. Soundcool has many edu-
cational applications, and because Linux has been adopted
in many school systems, we turned to Web Audio to en-
able Soundcool to run on Linux as well as many other plat-
forms. An additional advantage of Soundcool Online is the
elimination of a large download, allowing beginners to try
the system more easily. Another advantage is the support
for sharing provided by a centralized server, where projects
can be stored and accessed by others. A cloud-based server
also facilitates collaboration at a distance where multiple
users can control the same project. In this scenario, lo-
cal sound synthesis provides high-quality sound without the
large bandwidth requirements of shared audio streams. Ex-
perience with Web Audio and latency measurements are re-
ported.

1. INTRODUCTION
Soundcool [9] is a free system for collaborative audiovisual

creation. It consists of a set of modules such as audio and
video players, effects and mixers, video switchers, and vir-
tual instruments that run in Mac or PC computers as part
of a Max/MSP stand-alone application. These modules can
be controlled with the Soundcool OSC app for iOS or An-
droid smart phones and tablets through local Wi-Fi or at a
distance over the Internet. In 2013, version 1.0 was released,
dealing only with audio, and was tested in a high school mu-
sic class in Spain. Since then, Soundcool has been adopted
by educators in several European Erasmus+ projects and
in the Americas. In 2018, version 3.0 was released adding
video, and now it is a powerful tool for Project Based Learn-
ing in STEAM (Science, Technology, Engineering, Arts and

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2021, July 5–7, 2021, Barcelona, Spain.

© 2021 Copyright held by the owner/author(s).

Mathematics) collaborative projects.
One of the challenges of using technology in education is

the (lack of) availability of computing resources. One of
the original motivations to use mobile devices as controllers
in Soundcool is the simple fact that many students already
have mobile phones they can use. The original implementa-
tion assumed the availability of a Windows or macOS per-
sonal computer to act as “server” and user interface, while
mobile devices act as controllers.

In some schools, there is a push for open-source software
to reduce licensing costs, and there are even special ver-
sions of Linux designed for school use in Spain. The Sound-
cool project was asked to run on this Linux platform, but
that was not possible using the original Max/MSP imple-
mentation. Therefore, we considered other implementation
options and decided to use Web Audio.

With Web Audio, we have a wider range of operating sys-
tems, a fairly device- and system-independent execution en-
vironment (web browsers and HTML5), and thus greater
and simpler portability.

This paper reports on our experience with Web Audio and
HTML5 to implement a flexible, modular sound synthesis
system for collaborative use in education. Related work is
discussed in the next section. Then, we present our motiva-
tion and design goals (Section 3). In Section 4, we describe
some of the challenges of our Web Audio implementation.
In Section 5, we describe how we have designed Soundcool
Online to support collaboration. In Section, 6, we describe
some work to extend the built-in signal processing options of
the Web Audio standard and give some performance mea-
surements to compare built-in signal processing to signal
processing in ScriptProcessorNodes. Finally, Sections 7 and
8 describe future work and present our conclusions.

2. RELATED WORK
There are many music audio projects with an educa-

tional objective, such as EarSketch [3] and BlockyTalky [10].
In the Web Audio sphere, iMuSciCA [5] offers web-based
musical activities to support STEM subject learning, and
Scott Fradkin’s Snap Music (www.fradkin.com/snapmusic-
0.3/tone-snap.html) is a music programming system for chil-
dren.

https://www.fradkin.com/snapmusic-0.3/tone-snap.html
https://www.fradkin.com/snapmusic-0.3/tone-snap.html


A number of virtual synthesizers exist for Web Au-
dio as well, including Synth Kitchen [8] and Zupiter
(z.musictools.live/), and more can be found at Web Audio
Modules (www.webaudiomodules.org/wamsynths/).

Soundcool Online mainly differs from this other work in its
emphasis on collaborative performance, versatile high-level
sound modules, and a large body of supporting materials
and experience in primary and secondary music education.

3. MOTIVATION AND DESIGN
Soundcool [9] is a modular sound synthesis system imple-

mented in software. A feature of Soundcool is that modules
are high-function units akin to plug-in effects or Eurorack
hardware modules. For example, the Soundcool SignalGen
module implements multiple waveforms, FM and AM modu-
lation, a user interface with amplitude and frequency sliders,
and access via Open Sound Control. With such complete
modules, users can focus on making music and have a mini-
mal amount of implementation and configuration to realize
interesting music performance systems.

Given that Soundcool already exists as a stand-alone ap-
plication, the main motivation behind Soundcool Online
is the nearly universal availability of browsers, especially
on Linux, allowing Linux-based systems in schools to run
Soundcool. It is especially attractive that software can run
with little or no modification on different systems.

The second attraction of Web Audio for Soundcool is the
possibility of greater sharing. One of our inspirations is
Scratch, a browser-based visual programming environment
for young people that is immensely popular. [7] Scratch
users can share their creations with peers, see, try, and mod-
ify examples online, and display galleries of their creations.
Inspired by this approach, Soundcool Online allows users to
name and save projects and make them public or private.

Recently, we have been experimenting with network per-
formances using Soundcool. Since the controllers for Sound-
cool objects are mobile devices communicating over Open
Sound Control, it is simple to give access to multiple per-
formers over the Internet and to share the Soundcool screen
and audio with all the performers using a third-party com-
munication system such as Zoom or Microsoft Teams. Web
Audio offers the possibility of setting up communications
through a Soundcool server, which is simpler than dealing
with IP addresses and port numbers needed to configure
Open Sound Control.

3.1 Project and Modules
In Soundcool Online, users design modular sound control

in Projects. The Project panel provides a list of available
modules, which users can connect and control. Given that
Soundcool Online is running on a cloud server, projects can
be saved and shared. In terms of layout, we currently adopt
a column view interface where modules are stacked in col-
umn with even margins. Rather than using lines or “wires,”
modules are interconnected by clicking on an output, then
clicking on an input. The output and input boxes indi-
cate the connection status, and hovering over a connection
box highlights all the connected modules to make inspection
easy.

Underlying each module, we employ the Web Audio API
to implement audio processing. In Figure 2, we show the
Web Audio nodes composing a Soundcool delay module,
where users are allowed to control delay time and feedback.

Figure 1: A sample project with Player, DirectInput, and
SignalGen modules.

Most modules have input (button In generally at the top left)
and output (button Out generally at the top right). More
implementation and analysis of modules will be illustrated
in Section 4 and 6.

Figure 2: Soundcool Online’s Delay module (left) and its Web
Audio implementation (right).

For Soundcool Online, we have (so far) implemented
the following modules: SignalGen, Player, SamplePlayer,
Mixer, Delay, Transposer, Pan, Oscilloscope, Spectroscope,
GranSynth, DirectInput (microphone input), and Speaker (au-
dio output).

3.2 New Features
Besides saving and sharing projects, we provide user func-

tionalities that manage projects conveniently, such as re-
trieving recent projects, exporting or importing project as
JSON files, and managing configurations. A dashboard
provides quick access to a user’s personal projects and to
projects shared by others.

Although Soundcool projects often incorporate audio sam-
ples and loops, we are concerned about storing audio con-
tent, which could create a considerable demand for storage
and bandwidth. Although we currently store samples on
our server, we consider it a “feature” that users can obtain
sounds from other online sources such as Freesound. Figure
3 illustrates our server page where users click “Add Online

https://z.musictools.live/
https://www.webaudiomodules.org/wamsynths/


Sound”to add a sound to their library. Any Soundcool mod-
ule that uses a sound, e.g. Player, has a button to select a
sound from the user’s library for that module.

Figure 3: User sound inventory page.

4. IMPLEMENTATION
Our implementation consists of three major parts:

• Audio modules are the basic signal processing modules
seen by Soundcool users. These are of course imple-
mented using the Web Audio API.

• Soundcool module interfaces and the overall graphi-
cal user interface are implemented in Javascript. The
interface components are designed using the popular
framework React, and the application state is man-
aged using the Redux framework.

• The backend consists of storage (we support both
SQLite and MySQL databases), project serving and
saving, and an Open Sound Control interface, all im-
plemented with Node.js and React.

Web Audio poses some interesting challenges for the imple-
mentation of Soundcool Online, and we discuss some imple-
mentation details and limitations that we have encountered.

4.1 Limitations of AudioNodes
Like many computer music systems, Web Audio is based

on connecting simple predefined signal-processing modules
(unit generators or “AudioNodes” in Web Audio terminol-
ogy) to implement signal creation and processing algorithms.
This is a convenient approach, but unlike most program-
ming languages where almost any algorithm can be imple-
mented, unit generator libraries are never “complete.” I.e.,
there are interesting, reasonable signal processing algorithms
that cannot be reasonably implemented using existing unit
generators. This is a well-known and long-standing problem
of computer music languages. [1]

The current “escape” provided in Web Audio is the Script-
ProcessorNode that allows signal processing to be performed
directly using JavaScript at the possible cost of speed and la-
tency. We used a ScriptProcessorNode to implement a gran-
ular synthesis module for Soundcool, and we give further de-
tails on this in Section 6. We expect that AudioWorklet [2]
will replace ScriptProcessorNode, but questions about real-
time capabilities and availability of the new AudioWorklet
feature in various browsers led us to use ScriptProcessorN-
ode for our first implementation.

4.2 Limited Bandwidth in Schools
Another problem we face is the availability of Internet con-

nectivity and bandwidth in primary and secondary schools.
Often, networks are limited or even restricted. This is es-
pecially a problem for Soundcool projects that make use of
audio files, resulting in project sizes of tens of megabytes.
The upload and download times can be prohibitive.

For situations where bandwidth is limited, we provide a
locally executable version of Soundcool Online. This exe-
cutable is easily created using the pkg package, which gen-
erates a Node.js application in the form of an executable bi-
nary. This makes installation very simple because the user
merely downloads and runs the application to start a local
server. Once the server is running, users can connect either
on the same machine or from some other machine on a local-
area network, for example a laptop connected in a classroom
by Wi-Fi.

The local executable version uses SQLite for storage, and
SQLite in turn uses an ordinary local file. This eliminates
the need to install and configure a database server. Thus,
a classroom with only Wi-Fi and local computing can run
Soundcool Online with fast local storage, the ability to sup-
port multiple client machines with Soundcool running in
browsers, and multiple mobile devices controlling Sound-
cool modules over Open Sound Control, with practically zero
configuration.

4.3 Implementation Tools
Another challenge of the Web Audio approach is the large

number of tools that increase the complexity of the applica-
tion, as opposed to the monolithic implementation of Sound-
cool in Max/MSP.

As mentioned previously, Soundcool Online is imple-
mented in Javascript under the Node.js environment. In the
front-end graphical user interface design, the React frame-
work utilizes jsx syntax, a combination of Javascript and
HTML, to create more intuitive React components. In the
development, we utilized npm, a package manager for Node
JavaScript, to keep track of necessary libraries and hundreds
of dependencies. In the locally executable version, these de-
pendencies are compiled and linked with the pkg library to
create a self-contained executable with no external depen-
dencies on the Node.js environment.

For Soundcool Online, we serve the project with Amazon
AWS ElasticBeanstalk, a service for deploying and scaling
web applications. Under this service, we run the application
on an EC2 server, and keep the SQLite as database manager
for objects in S3 storage. In order to achieve collaboration
and sharing, we also implemented login services in the back
end and store user accounts in databases.

5. COLLABORATION

5.1 Shared control over OSC
With Open Sound Control, we can set up communication

between mobile devices and the server. Latency is critical,
and we performed the following latency test:

• Create a project, and connect a mobile phone Sound-
cool App to a Player module in the project.

• Load a clear click sound into the Player module.



Location Touch Network Web Total
Screen Audio Measured

China 90 260 52 410
Pittsburgh 90 33 45 190

Local 90 6 45 150

Table 1: Latency estimates (ms).

• Tap the play button on the phone to start the sound
from the Player module.

• From an audio recording, measure the time between
audibly tapping the control and the audio output of the
click sound, giving an end-to-end estimation of system
latency using OSC control.

Our assumption is that the overall latency measured above
can be roughly broken down into four parts, as follows:

• Touch screen latency: Latency includes the re-
sponse time of the mobile device, from tapping
the screen until an OSC UDP packet is trans-
mitted. We do not have network measurements,
but GameBench reports around 90 ms response
times for graphics response on both iPhones and
Galaxy devices, as measured with a high-speed cam-
era (blog.gamebench.net/touch-latency-benchmarks-
iphone-xs-max-galaxy-note-10). These measurements
include game graphics but not message transmission
over Wi-Fi, so it is only an approximation for our ap-
plication.

• Network latency: We used the command ping to mea-
sure the time it takes for network transmission to the
Soundcool server, which is currently located in Ohio,
US. We take the average round-trip time, and we re-
port measurements from both China (over 11,000 km)
and Pittsburgh (about 200 km). The “Local” location
refers to the Soundcool server running on the same
laptop as the browser, and the Network time there is
an estimate of OSC over Wi-Fi plus inter-process com-
munication times.

• Browser and Audio latency: The time that Web Au-
dio needs to respond to an event with audio output.
This is mostly due to audio buffers, but includes front-
end scheduling and processing time. To estimate this
component, we simply measure the time it takes for
a GUI button click to start the player, without going
through OSC control. This is measured by recording
the mouse click and sound output with a microphone
and analyzing the result. Of course, this uses mouse
event processing that is not strictly comparable to re-
acting to an incoming network message, but the major
component, audio latency, is the same.

• Server response latency: In principle, we could sub-
tract estimates for other time components from the
total to estimate server processing time, but we sus-
pect the server time is on the order of a few ms, which
cannot be resolved with these measurements.

Although latencies in Table 1 seem high, it should be
noted that human response time for critical listening and
adjusting faders is on the order of hundreds of millisec-
onds.[4] While it might not be possible to play Soundcool
modules like conventional instruments, this delay is reason-
able for collaborative performances that involve cuing am-
bient sounds—but not in rhythm—and adjusting filters, re-
verberation, gain, and pitch. In fact, we have been perform-
ing with Soundcool over the Internet using Zoom to share
screens and audio where the delays are as high as 500 ms
(see for example https://youtu.be/kRp4SMfpL0Y?t=5532).

As an alternative to using a cloud server, we can run a
local Soundcool Online server at home or in the classroom.
However, even with no network delay, we can estimate Touch
Screen delay plus Web Audio delay to be around 140 ms.
(And this is confirmed with an actual measurement of 150
ms.) We can conclude that, compared to Soundcool imple-
mented in Max/MSP, the Web Audio version adds about
50% to the latency, and putting the server in the cloud adds
another 20%.

Note that audio latency varies among browsers and
operating systems. Also, at least on recent Mac-
Book Pro computers, approximately 10 ms can be
saved by using an external audio interface as opposed
to built-in audio. (www.cs.cmu.edu/~rbd/blog/latency-
blog22sep2020.html). We used built-in hardware on the as-
sumption that this would be typical for Soundcool users.

5.2 Mirrored Soundcool Projects
In return for some additional latency, the cloud-based

server solution offers an interesting opportunity for collabo-
rative performance over the web. Instead of sharing a screen
and low-quality audio over a conferencing system such as
Zoom, we can, in principle, run “clones” of a Soundcool
project locally for every performer and for audiences too.
Local copies of the project can compute and deliver high-
quality audio. Control can be achieved by sending copies
of all control changes to every instance of the Soundcool
project. Due to variations in network timing, not every in-
stance will compute exactly the same sound, but given the
overall response time, small timing variations should not be
critical.

To enable this type of distributed performance control and
synthesis, we plan to extend our server with the notion of a
“performance”which is a group of players that operate copies
of the same project (patch) and share all control changes.

6. EXTENSIONS VS. BUILT-IN DSP
One of the limitations of Web Audio is the fixed set of DSP

functions that are provided. Without plug-ins or dynami-
cally loaded libraries, the extension mechanisms are limited.
In the original Soundcool application, we often use multi-
ple VST plug-ins, and Soundcool offers a VST Host module
which makes this very easy.

For the Web Audio implementation, a Web Audio plug-in
standard would be extremely helpful in providing a user-
oriented extension mechanism for Soundcool Online. Letz
et. al. propose a Web Audio Plugin solution based on the
FAUST DSP audio language [6].

Our current implementation uses only standard Web Au-
dio Nodes for DSP with one exception: Our GranSynth gran-
ular synthesizer module uses Web Audio’s ScriptProcessorN-
ode (SPN) to enable filling the delay buffer and scheduling

https://blog.gamebench.net/touch-latency-benchmarks-iphone-xs-max-galaxy-note-10
https://blog.gamebench.net/touch-latency-benchmarks-iphone-xs-max-galaxy-note-10
https://www.cs.cmu.edu/~rbd/blog/latency-blog22sep2020.html
https://www.cs.cmu.edu/~rbd/blog/latency-blog22sep2020.html


grains in the future to be implemented in JavaScript. We
used SPN because the newer Audio Worklet implementation
was not available on all browsers.

We found that we needed SPN buffer sizes of 2048 sam-
ples to avoid most dropouts, but even larger buffers do not
eliminate all problems. Depending on the browser used, this
adds a delay of either one or two buffer lengths (about 46 or
93 ms at 44100 Hz sampling rates for 2048 sample buffers).
This latency is tolerable for this particular effect, but Au-
dio Worklets combined with disciplined programming with
WebAssembly should provide more reliable scheduling, less
variability in execution times, and lower latency.

7. FUTURE WORK
So far, we have created a basic set of modules to support

simple Soundcool projects. The original Soundcool applica-
tion has many more modules such as Sequencer, Filter, Key-
board and Router as well as supporting synthesizers through
the VST Host module. We expect to extend Soundcool On-
line with similar capabilities.

Soundcool also supports video processing. Live camera
input, video playback, and even full-screen rendering have
become quite practical in modern browsers, and we plan to
add video modules to Soundcool Online.

We have already mentioned the possibility of perfor-
mances where Soundcool projects are replicated in the
browser of each performer to provide high-quality audio.
We use existing Soundcool Apps on mobile devices as con-
trollers, but since controls pass through the Soundcool On-
line web server, it makes more sense to re-implement the
Soundcool App in the mobile device browser and make the
connection through Web Sockets or other web technology
rather than Open Sound Control. This would eliminate the
need to download and install an App and to configure Open
Sound Control addresses and ports.

8. CONCLUSIONS
Soundcool Online takes advantage of Web Audio and

other Web technologies to implement a simple and powerful
modular synthesizer. We have used Soundcool extensively in
its original form as a laptop/desktop application. We believe
Soundcool Online has the potential to reach a much larger
group of users, especially young people for whom Soundcool
was intended. The shared cloud environment of Soundcool
Online is ideally suited to the collaborative nature of Sound-
cool, and we look forward to developing our current experi-
mental installation of Soundcool Online into a very capable
system for education and collaborative music performance.

9. ACKNOWLEDGMENTS
We would like to thank Manuel Sáez and Saúl Moncho

for their early prototyping and testing contributions to the
project and their work on the Soundcool Team. We also
wish to acknowledge many contributions by supporters and
members of the Soundcool project (soundcool.org).

10. REFERENCES
[1] E. Brandt. Temporal Type Constructors for Computer

Music Programming. PhD thesis, Carnegie Mellon
University Computer Science Department, 2002.

[2] H. Choi. Audioworklet: the future of web audio. In
Proceedings of the 2018 International Computer Music
Conference, ICMC 2018, Daegu, South Korea, August
5-10, 2018. Michigan Publishing, 2018.

[3] J. B. Freeman, B. Magerko, D. Edwards, R. Moore,
T. McKlin, and A. Xambo. Earsketch: A steam
approach to broadening participation in computer
science principles. In 2015 Research in Equity and
Sustained Participation in Engineering, Computing,
and Technology (RESPECT), pages 1–2, 2015.

[4] A. Jain, R. Bansal, A. Kumar, and K. Singh. A
comparative study of visual and auditory reaction
times on the basis of gender and physical activity
levels of medical first year students. Int J Appl Basic
Med Res, 5(2):124–127, May-Aug 2015.

[5] K. Kritsis, M. Bouillon, D. Mart́ın-Albo, C. Acosta,
R. Piéchaud, and V. Katsouros. imuscica: A web
platform for science education through music
activities. In A. Xambó, S. R. Mart́ın, and G. Roma,
editors, Web Audio Conference WAC-2019, WAC ’19,
Trondheim, Norway, 2019. NTNU.

[6] S. Letz, S. Ren, Y. Orlarey, R. Michon, D. Fober,
E. Aamari, M. Buffa, and J. Lebrun. Faust online ide:
dynamically compile and publish faust code as
webaudio plugins. In A. Xambó, S. R. Mart́ın, and
G. Roma, editors, Proceedings of the International
Web Audio Conference, WAC ’19, pages 71–76,
Trondheim, Norway, December 2019. NTNU.

[7] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
Scratch: Programming for all. Commun. ACM,
52(11):60–67, Nov. 2009.

[8] S. Rudnick. Synth kitchen. In A. Xambó, S. R.
Mart́ın, and G. Roma, editors, Proceedings of the
International Web Audio Conference, WAC ’19, page
143, Trondheim, Norway, December 2019. NTNU.

[9] S. Scarani, A. Muñoz, J. Serquera, J. Sastre, and
R. B. Dannenberg. Software for interactive and
collaborative creation in the classroom and beyond:
An overview of the soundcool software. Computer
Music Journal, 43(4):12–24, Winter 2019.

[10] R. Shapiro, A. Kelly, M. Ahrens, B. Johnson,
H. Politi, and R. Fiebrink. Tangible distributed
computer music for youth. Computer Music Journal,
41(2):52–68, 2017.

https://soundcool.org

	Introduction
	Related Work
	Motivation and Design
	Project and Modules
	New Features

	Implementation
	Limitations of AudioNodes
	Limited Bandwidth in Schools
	Implementation Tools

	Collaboration
	Shared control over OSC
	Mirrored Soundcool Projects

	Extensions vs. Built-in DSP
	Future Work
	Conclusions
	Acknowledgments
	References

