

Toward Modular, Portable, Real-Time Software

1

Roger B. Dannenberg and Dean Rubine

School of Computer Science Spark L.P.
Carnegie Mellon University 150 E. 58

th

 St., 35th Floor
Pittsburgh, PA 15213 USA New York, NY 10155 USA
dannenberg@cs.cmu.edu rubine@cs.cmu.edu

ABSTRACT:

 W is a systematic approach toward the construction of event-driven, interac-
tive, real-time software. W is driven by practical concerns, including the desire to reuse
existing code wherever possible, the limited real-time software support in popular operating
systems, and system cost. W provides a simple, efficient, software interconnection system,
giving objects a uniform external interface based on setting attributes to values via asynchro-
nous messages. An example shows how W is used to implement real-time computer music
programs combining graphics and MIDI.

1. Introduction

Real-time interactive music systems are among the
most demanding computer applications. In addition
to the usual algorithm, data structure, and imple-
mentation problems, interactive music systems must
respond to input in milliseconds and deal with a
variety of input and output media. Special structures
are required to satisfy these real-time requirements,
leading to programming styles not supported by
ordinary software development tools or languages.
As a consequence, interactive music applications
tend to be hard to develop and hard to port to new
environments.

We have developed a new software system called
“W” to address these problems. W has roots in con-
straint-based systems (Myers,

et al.

1990), object-
oriented systems (Pope 1991), the CMU MIDI Tool-
kit (Dannenberg 1986), Formula (Anderson and
Kuivila 1990), MAX (Puckette and Zicarelli 1991),
and MIDI (Rothstein 1992), taking good ideas from
each of these. The goal of W is to simplify software
development by incorporating existing software and
by encouraging a modular approach to new software
development.

What is W? W’s primary function is to interconnect
objects within programs. W is a software layer
added to existing objects, modules, and libraries,
resulting in “building blocks” that send and receive
messages. When one object is connected to another,
messages from the first are delivered to the second.
Generally, these messages convey state changes, so
changes to some field in the sending object are
tracked by some field in the receiving object. A
good mental model of this idea is a MIDI connec-
tion between a controller (the sending object) and a
synthesizer (the receiving object).

2. An Example Programming Task

To describe W in more detail, we will show how W
implements an example program specification. Our
example is trivial, but it has many of the elements
that make real implementation difficult. The specifi-
cation is:

start and stop a MIDI sequence using
graphical controls

. Let us examine the issues sur-
rounding the implementation of this program.

2.1 Real-Time Issues

In this program, the timing of MIDI output is criti-
cal, so real-time performance is important. The
interface involves graphics operations which can be
slow. The real-time issue is to prevent graphical
updates from interfering with MIDI timing. In this
specific case, one could assume that no graphical

1

Originally published as: Dannenberg and Rubine,
“Toward Modular, Portable, Real-Time Software,” in

Pro-
ceedings of the 1995 International Computer Music Con-
ference,

International Computer Music Association
(September, 1995), pp. 65-72.

updates take place while the MIDI sequence is play-
ing, but this is not a general solution.

Another approach is to precompute timestamped
MIDI data and send it to a special device driver that
outputs messages according to their timestamps.
This would simplify the programming task, but it is
not always possible to precompute data. This
approach is not a general solution either.

A general solution must preempt long-running, non-
time-critical tasks to service the time-critical ones.
A typical approach is to place time-critical compu-
tations within interrupt handlers. For example, the
Apple MIDI Manager (Apple 1990) calls applica-
tion functions from within system interrupts, and the
Microsoft Windows API allows MIDI handling
functions to be called from within system interrupts.
The advantage of this structure is that interrupts pre-
empt running applications, allowing MIDI process-
ing to proceed with low latency. The disadvantage is
that many system-dependent steps must be taken to
prevent nested interrupts, coordinate interrupts from
multiple sources (e.g. timers and MIDI interfaces),
and communicate with the main application. These
issues make the code system-specific and therefore
non-portable.

This “application + interrupt routines” architecture
is normally limited to two levels: time-critical and
non-time-critical. It is unclear how to implement
multiple tasks, each with different latency require-
ments (

e.g

. audio processing, MIDI processing,
graphical animation processing, musical analyses,
and user-interface processing). Finally, debuggers
and print statements cannot be used to debug inter-
rupt routines.

Another approach uses multiple tasks provided by a
real-time operating system. At the least, this results
in system-dependent communication between the
graphical interface process and the sequencer pro-
cess. Furthermore, these operating systems have rel-
atively small markets; often fewer, more expensive
choices exist for development systems and peripher-
als, especially MIDI and audio.

2.2 Modularity Issues

A great deal of useful software already exists.

Our
goal is to reuse software written by others rather

than write everything from scratch.

 For the example
discussed earlier, we want to use an existing library
to provide the start and stop buttons and existing
sequencer software (

e.g.,

the CMU MIDI Toolkit) to
process MIDI data.

There is much to be learned by looking at a hard-
ware example: Audio/Video systems, which include
component stereo systems, professional audio
equipment, and component video systems. These
have few “data types,”

i.e.

 microphone signals, line-
level signals, video signals, and MIDI signals. Con-
sequently, there are few types of connectors, and
components easily plug together to build systems.
Components are designed by specialists, but they
can be assembled into systems by non-experts.
Components make few assumptions about what
they are connected to.

Compare this to Object Oriented Programming
which, according to conventional wisdom, supports
reusability. There are many data types. Every object
presents “jacks” in the form of methods, but the data
types of these connection points are entire argument
lists. Little can be plugged together without hand-
crafting special purpose interface code, analogous to
soldering special-purpose patch cables. Objects
often work together according to specific, inflexible
designs.

We advocate an alternative, based on the A/V sys-
tems analogy, where objects have an external inter-
face consisting of (mostly) simple data types rather
than complex methods. Almost every interface in
our system consists of operations of the following
form:

SET

Attribute

TO

Value

,
where

Attribute

 is a Lisp-like symbol such as

X

,

TEMPO

, or

FILENAME

, and

 Value

 is a value of type
integer, float, string, or boolean. With only these few
types, it is much more likely that objects will be
simple to interconnect.

As with A/V systems, our components have outputs
as well as inputs. For example, a graphical button
object has an “output port” from which changing
values are sent. External to the button object, a con-
nection can be made to the input of some other
object, such as a sequencer’s start/stop status. In
contrast, object-oriented systems do not have “out-
put ports” or externally defined connections

between objects. Rather, they must hold references
to message targets in internal variables.

The “boxes and wires” approach is only the first
step toward modularity. Previous systems, such as
MAX (Puckette and Zicarelli 1991), PCL (Teitel-
baum 1985), and Bars and Pipes (Fey and Grey
1989), require programmers to work within tightly
constrained runtime environments. This makes it
difficult to reuse pre-existing software. In contrast,
W places minimal restrictions on pre-existing soft-
ware. In effect, W is “software glue” that joins mod-
ules together. Alternatively, W is a “universal
wrapper” that adds a veneer to existing software so
that it can communicate with other W software.

2.3 Portability Issues

One of the most perplexing real-time problems is
portability. Operating systems and tools change rap-
idly; applications that are not portable often become
obsolete just as they mature into something interest-
ing. Portability is harder with real-time applications
because they make heavy use of system-dependent
features to achieve real-time performance. Graphi-
cal interfaces also lead applications to become sys-
tem-dependent because nearly every operating
system offers a different graphics environment.

W promises to quickly leverage existing software
and device drivers for graphics, MIDI, audio, and
other components that could otherwise take months
to implement in a new system. Of course, any well-
designed application could offer reusability, but it is
not clear that anyone understands how to do this.
This may be because the interesting interfaces
involve more than simple subroutine calls. Music
applications are organized around graphical user
interface toolkits, software interrupts, multiple pro-
cesses, shared address spaces, callbacks, and other
operating-system-dependent features. W abstracts
away these system differences.

W also encourages developing objects with simple,
well-defined interfaces. If all MIDI output is
achieved via a connection to a MIDI output object,
programmers will be less inclined to make system-
dependent calls to lower-level MIDI interface func-
tions. At the same time, the designer of the W MIDI
output module will naturally think about how to
define the module in a portable, system-independent

fashion. W guides the developer toward more porta-
ble systems.

3. Implementing the Example
Program

Our example assumes that a library of W objects is
available, including buttons and sequencers. This
assumption makes the implementation very simple.
Later we will look at how to add new objects to W.

3.1 Creating and Connecting Objects

Assume W contains graphical button objects, a
sequencer, and MIDI output. The following (slightly
simplified) code creates a window and button, and
provide labels for two button states. The “Set” func-
tions (

WSetW

,

WSetString

, etc.) set attributes, e.g.

wa_onlabel

, to values, e.g.

“Stop”

:

/* first create some W objects: */

window = WNew(“aWindow”);
wbutton = WNew(“aButton”);

/* put button in window: */

WSetW(To(wbutton), wa_parent, window);
WSetString(To(wbutton), wa_onlabel, “Stop”);
WSetString(To(wbutton), wa_offlabel, “Start”);

The first lines create instances of class

aWindow

and class

aButton

. Then attributes within these
instances are initialized,

e.g.

the

wa_parent

attribute of

button

 is set to the

 window

. The reader
may be puzzled by the

To(wbutton)

 notation. Ordi-
narily, messages are sent from the output port of an
object over pre-established connections. Thus, the
first parameter to

WSetW

 would normally be

self

,
referencing the current object. However, no connec-
tions have been established, yet we still have to
deliver messages. The notation

To(wbutton)

 estab-
lishes a temporary connection from a “dummy”
object to the desired target and returns the dummy
object so that the message will be properly deliv-
ered.

We also need to create a sequencer and load a
sequence (the sequence is loaded as a side effect of
setting the filename attribute):

wseq = WNew(“aSeq”);
WSetString(To(wseq), wa_filename,

“testseq.mid”);

We want to connect the button to the slider, but there
is a minor problem. The button sends messages of
the form “

SET ISON

Boolean

”, but the sequencer

uses the attribute

RUNFLAG

 to start playing. For
this purpose, W provides a special object called a
Transformer to change the attribute name in a mes-
sage and then forward the message to another
object. Below, we create a transformer and make
connections from the button through the transformer
to the sequencer:

t = WNew(“aTransformer”);
WSetW(To(t), wa_to, wseq);
WSetW(To(t), wa_toattribute, wa_runflag);
WSetW(To(t), wa_from, wbutton);
WSetW(To(t), wa_fromattribute, wa_ison);

Connections are made as a side-effect of setting the

TO

 and

FROM

 attributes (coded as

wa_to

 and

wa_from

) of the Transformer. An alternative way to
make connections is to use

WConnect(wbutton, t)

and

WConnect(t, wseq)

. The example is finished
by connecting the sequencer to a MIDI output
object. We will omit this step; it is similar to the
steps already shown.

3.2 Objects and Connections

We now describe in detail how the code from the
previous section works. W objects are referenced by
32-bit identifiers. The identifier has 3 fields, desig-
nating address space, zone, and index. Zones are
described later. For simplicity, let us assume every-
thing is implemented in one zone and address space.
The index field is an index into a table of W objects.
(See Figure 1.) If this were a typical object-oriented
system, W would be a base class and every object in
the system would inherit from it. In contrast, W is a
“glue” layer added to existing objects, so there is no
option of making every object a subclass of W
objects. Instead, each W object contains a pointer to
the “real” object such as a button, MIDI I/O object,
or sequencer. W objects also contain the receive
function address and list pointers that maintain
inter-object connections. In Figure 1, W object 1 (a
Button) is connected to objects 2 and 3 (sequence
players). This figure differs from the code example
in that the intermediate transformer object is omit-
ted and there are two sequence objects.

When a message is sent, the send function iterates
over the Senders list of connections and sends a
copy of the message to each receiver. In this exam-
ple, the receiver’s receive function is called immedi-
ately. In this way, messages can be passed on the

stack with no overhead for message buffering, copy-
ing, and scheduling the receiving task.

Where do messages originate? Any button imple-
mentation will have some provision for calling a
function or method when the user clicks on the but-
ton. This function should call

WSetBool(self,
wa_ison, value)

, where

self

 is the W reference for
the button,

wa_ison

 is the attribute to set, and

value

 is the current state of the button.

3.3 Integrating Objects Into W

We now examine in detail how pre-defined objects
can be used within a W system. In other words, how
do we endow an existing object (

e.g

. a sequencer)
with a W interface? We will use a simplified version
of the sequencer object from the CMU MIDI Toolkit
as an example. W uses a preprocessor to build inter-
faces to objects. The first step is to annotate the
existing C structure definition (usually found in an
“include” file) with some special comments. These
comments (delimited by

 /

*W

and

W*/

) are read by
the preprocessor but ignored by the compiler:

struct seq_struct {
boolean runflag;

/*W in out whenset RunflagChanged W*/

event_type event_list;
long transpose;

/*W in out W*/

Figure 1. W runtime structure. Object 1 is
connected to Objects 2 and 3, which are of the
same type and hence share the receive function
WSeqRecv. Note that no extra fields are added
to pre-existing objects.

RecvFn
ObjAddr
Receivers
Senders

RecvFn
ObjAddr
Receivers
Senders

RecvFn
ObjAddr
Receivers
Senders

1

2

3

WButtonRecv

an instance
of aButton

2 3

WSeqRecv

an instance
of aSeq

an instance
of aSeq

1

1

char filename[MAXTXT];

/*W in out whenset SeqLoad W*/
... many more fields omitted ...

}

These annotations inform the preprocessor what
attributes should be included in the W interface. The
preprocessor also defines the attribute names we
have been using such as

wa_onlabel

 and

wa_from

.
The “

in out

” part specifies the object both receives
and sends

SET

 messages corresponding to that field.
For each field, a “callback” function may be speci-
fied to be called each time the field is set. Thus,
when

runflag

 is set,

RunflagChanged

 will be
called. It might be defined as follows:

void RunflagChanged(seq_type seq)
{

if (seq->runflag) seq_play(seq);
else seq_stop(seq);

}

3.4 Message Types

To complete the programming example, we must
connect the sequencer output to a MIDI object, and
W messages must carry the outgoing MIDI stream.
To pass MIDI data between objects, we could use a

SET

 message for each parameter (

SET STATUS

,

SET
PITCH

,

SET VELOCITY

, etc.), but this approach is
awkward. Instead, W supports messages of type

MIDI

 in addition to type

SET

. W’s

MIDI

messages
use the same mechanisms as

SET

 for object inter-
connection and message delivery. W objects that
exchange

MIDI

 messages are similar to intercon-
nected MIDI applications communicating via the
Apple Midi Manager. W has built-in objects to con-
struct MIDI messages from

SET

able attributes and
to deconstruct MIDI messages into

SET

 messages.

Another message type is

GET

. In some cases, it is
necessary to retrieve values from W objects, and
this is difficult with the asynchronous message-
passing style described so far. For a more synchro-
nous programming style,

GET

 messages request the
value corresponding to an attribute and return the
value. The programmer sends a

GET

 message using
a function call which blocks until a reply is
received.

GET

 is not generally safe for real-time
communication across zones, so it is used only for
special purposes such as debugging and initializa-
tion.

4. Real-Time Support

In the example program, it is not good to use the
same process to handle the graphical user interface
and the MIDI sequencer because slow graphics
operations will interfere with the production of
accurately timed MIDI. Elsewhere (Dannenberg
1993), we have advocated the architecture illus-
trated in Figure 2. This architecture is intended to
support interactive, event-driven real-time systems.
W adheres to this architecture, where the system is
divided into

zones

, each with an associated latency.
Tasks are allocated to zones according to their com-
putational latency requirements. For example all
tasks with very low latency requirements are placed
in a low-latency zone, and all high-latency tasks in a
high-latency zone. In our model, a

task

 is a compu-
tation that is invoked to handle an external event
such as W message arrival, internal events such as a
condition becoming true, or timer events such as the
passage of a 10ms interval. Although “task” conven-
tionally means “process,” we are using it to mean
something as simple as a subroutine call.

Tasks are serviced by a single thread of control per
zone; thread priority increases with decreasing
latency requirements. In other words, tasks which
must be computed with the smallest amount of
delay will preempt tasks with less critical timing
requirements. Our model assumes fixed-priority,
preemptive scheduling, but other schedulers could
be made to work. Furthermore, a zone’s “thread of
control” can be a software interrupt as well as a pro-
cess, provided the preemption and priority assump-
tions are met.

Figure 2. A real-time system composed of three
zones, each of which contains a number of
tasks. Communication between zones is by
messages (with no shared data).

High Priority,
Low Latency

Medium Priority,
Medium Latency

Low Priority,
High Latency

Communication between zones is exclusively
through messages. There are no shared data struc-
tures visible to the programmer. An important impli-
cation is that W objects, as with other data
structures, must each reside in only one zone. Con-
sequently, all operations on a W object must be
compatible with the latency associated with the
object’s zone. Each operation must have a worst-
case computation time which is small compared to
the latency of the zone, and each operation must tol-
erate the latency of the zone. We have not found this
restriction to be a problem, although sometimes,
objects must be designed with this restriction in
mind.

1

Zones provide two programming simplifications.
First, tasks within a zone run to completion without
preemption (each zone has one thread of control).
Thus, there is never concurrent access to data struc-
tures and there is no need for locks, semaphores,
and other safeguards. Each zone is effectively a
monitor (Hoare 1974). (At some implementation
level, zones may communicate through shared
memory buffers and allocate from shared memory
pools, so the

implementation

 must use synchroniza-
tion operations.)

Zones may preempt one another, but concurrent
access to data structures is avoided even in this case.
All communication between zones is restricted to
message passing. Messages are processed only after
the current task runs to completion because there is
only one thread of control per zone. This is similar
to the stack-based scheme called X (Puckett 1986),
but less restricted because messages can pass from
high-priority objects to low-priority objects.

Another nice property of a zone is that tasks are
completed sequentially in the order of arrival. This
means, for example, that the processing of a MIDI

1. For example, loading a sequence may be very slow
compared to the desired latency of a sequence player. It
makes sense to separate sequence readers from sequence
player objects and place them in different zones.
Sequence data, once loaded, can be delivered by a W mes-
sage from the reader object to the player object. To avoid
copying large sequence structures between zones, the
message can carry a pointer so long as the reader and
player never attempt to access the structure simulta-
neously.

note-on will complete before the processing of the
corresponding note-off. Overall, this programming
approach has the flavor of sequential programming,
which is much simpler than concurrent program-
ming.

4.1 Zones in W

Zones play a key role in the design of W. Zones
demand loosely-coupled tasks communicating asyn-
chronously through buffered messages. Only asyn-
chronous communication allows an object to
communicate without blocking, which would have
adverse effects on real-time performance. We also
want one programming paradigm that handles both
intra-zone and inter-zone communication. The mes-
sage-passing style of W is contrary to the synchro-
nous style of object-oriented programming, but it
fits our requirements.

When communication is within a zone, messages
are passed efficiently on the stack. The measured
time to fully process a simple

SET

 message on an
80Mhz IBM Power PC is under 7

µ

s. Buffering and
copying is necessary only when messages travel to
another zone.

Recall that references to W objects have three fields:
the address space, the zone, and the object index.
Within a zone, the receive function is located
directly in the object table and called. To reach
another zone in the same address space, every
address space has a table of “zone objects” which
transfer messages from one zone to another through
message buffers. To reach another address space,
there is a similar table of “address space objects”
which transfer messages across address spaces.
Message transfer may use any mechanism, includ-
ing shared memory, sockets, networks, or even
MIDI.

4.2 Time and Scheduling

All messages carry a timestamp representing the
time at which the message should be acted upon.
Timestamps may be interpreted in two ways. First,
the timestamp can be taken to mean real time. In
this case, a message with a future timestamp is
delayed and delivered at the indicated time. Second,
the timestamp can be used to implement precompu-
tation. In this case, messages are delivered slightly
ahead of time so that computation can take place

before the indicated time rather than after. The inter-
pretation of timestamps is a property of a zone. By
combining a precomputation zone with a real-time
zone, event buffering (Anderson and Kuivila 1986)
can be implemented (see Figure 3). The precompu-
tation zone (A) runs ahead of real-time, producing
output messages with future timestamps. These
messages (e.g. MIDI events) are buffered by the
real-time zone (B) until the indicated timestamp.
Message delivery according to timestamps is the
responsibility of the W message system, so every
zone must provide time-based scheduling and dis-
patch of messages (Dannenberg 1989).

5. Implementation Details

A receive function is required for each type of W
object, and receive functions are error-prone to
implement. The receive function must decode the
message type (

GET

,

SET

,

MIDI

, etc.) and field names
(

ISON

,

RUNFLAG

, etc.). Our preprocessor compiles
a table of field descriptors for each object type. At
initialization time, this table is used to build a hash
table for quick lookup.

W provides an interesting mechanism for object cre-
ation. At initialization time, “class” objects are cre-
ated, representing the types of objects in the system.
To create an instance of a class, a

GET NEW

 mes-
sage is sent to the desired class object. The class
object creates the instance and returns its W refer-
ence.

Entire systems of interconnected W objects can be
saved to disk. This is facilitated by the

SETALL

 mes-
sage (yet another message type), which requests that
an object send

SET

 messages corresponding to all of
its internal state. These messages are captured by an
archiving object and written to a file. Later, the file

Zone A
(precomputation)

Zone B
(real time)

Timestamped
Messages

Figure 3. W implements event buffering by
combining a precomputation (time advance)
zone with a real-time zone.

can be interpreted to recreate a network of W
objects.

SET

 messages are used to restore the inter-
nal state of every object that was archived.

Zones can be implemented in two ways. In a multi-
tasking operating system like Unix or NT, each zone
can be implemented with a conventional thread or
process. In a simpler operating system like the Mac-
intosh or Microsoft Windows, the high-priority pre-
emptive zone must be implemented as a software
interrupt. W will allow software to be ported
between these two rather different configurations
because the details and differences are irrelevant to
and hidden from W programs. In any operating sys-
tem, graphical toolkits are likely to provide their
own “event loop,” so the W zone concerned with
graphical interfaces will likely be driven by “call-
backs” from user interface objects. Again, W pro-
vides great flexibility. The source of flexibility is
primarily the fact that computations in W are rela-
tively short execution sequences represented by
message receive functions. These always execute to
completion and return, so a zone’s thread of control
can come equally well from callbacks, interrupts, or
processes. Communication between zones is strictly
by messages, so any number of implementation
schemes can be devised, depending upon the host
system.

6. Debugging Support

Debugging real-time systems is difficult. Debuggers
often provide little or no support for software inter-
rupts and multiple processes. When they do, tradi-
tional debugging is not always applicable to real-
time programs. With W, objects can be partially
tested and debugged in a single zone where debug-
gers are most effective. Once objects function cor-
rectly, the programmer can switch to multiple zones
to get reliable real-time performance. Little or no
programming is required to make this switch. Some-
times, however, bugs appear only when code is run-
ning as an interrupt handler. With W’s

GET

 and

SET

messages, a programmer has some built-in debug-
ging facilities to examine objects in interrupt han-
dlers and objects running on remote machines.
Furthermore, W connections can be added to moni-
tor state changes and data streams, a practice famil-
iar to MAX programmers. Because messages are
asynchronous, connections that monitor data do not

block processing. We expect little impact on real-
time performance.

7. Conclusions

At present, W exists as a single-zone system with
graphical user interface objects and MIDI I/O. The
W kernel is about 5000 lines of C code, including
the preprocessor. By the time of publication, we
expect to have W running in a true real-time system
with multiple zones.

W is a new approach to structuring interactive real-
time systems. It draws inspiration from a number of
earlier systems. The main goal of W is to use exist-
ing software wherever possible. A primary contribu-
tion is what W does

not

 do. W does not provide
threads, processes, user interfaces, device drivers, or
interprocess communication. What W

does

provide
is a mechanism to “glue” all these components
together into a coherent system. W provides an
abstract computation and communication environ-
ment, which maximizes portability. W is small and
efficient. We believe it is a good solution to making
effective use of existing operating systems, multi-
media devices, and graphical user interface toolkits.

8. Acknowledgments

The authors would like to thank the School of Com-
puter Science at Carnegie Mellon and the IBM Cor-
poration for making this work possible. Belinda
Thom provided valuable feedback on an earlier
draft of this paper.

References

Anderson, D. P. and R. Kuivila. 1986. “Accurately
Timed Generation of Discrete Musical Events.”

Computer Music Journal

 10(3):48-56.

Anderson, D. P. and R. Kuivila. 1990. “A System
for Computer Music Performance.”

ACM Trans-
actions on Computer Systems

 8(1):56-82, Febru-
ary.

Apple Computer, Inc. 1990.

MIDI Management
Tools, Version 2.0

. Apple Programmers and
Developers Association.

Dannenberg, R. B. 1986. “The CMU MIDI Tool-
kit.” In

Proceedings of the 1986 International

Computer Music Conference

, pages 53-56.
International Computer Music Association, San
Francisco.

Dannenberg, Roger B. 1989. “Real-Time Schedul-
ing and Computer Accompaniment.” In System
Development Foundation Benchmark Series.

Current Directions in Computer Music
Research

. Mathews, M. V. and J. R. Pierce, edi-
tors, MIT Press, pages 225-262.

Dannenberg, R. B. 1993. “Software Support for
Interactive Multimedia Performance.”

Interface
Journal of New Music Research

 22(3):213-228,
August.

Fey, T. and M. J. Grey. 1989.

Using Bars and Pipes

.
Decatur, Georgia, 1989.

Hoare, C. A. R. 1974. “Monitors: An Operating Sys-
tem Structuring Concept.”

Communications of
the ACM

 17(10):549-557, October. Erratum in

Communications of the ACM

, 18(2) (Feb. 1975),
page 95.

Myers, B. A.,

et al.

 1990. “Garnet: Comprehensive
Support for Graphical, Highly Interactive User
Interfaces.”

IEEE Computer

 23(11):71-85,
November.

Pope, S. T. (editor). 1991.

The Well-Tempered
Object: Musical Applications of Object-Ori-
ented Software Technology

. Boston: MIT Press.

Puckette, M. 1986. “Interprocess Communication
and Timing in Real-time Computer Music Per-
formance.” In P. Berg (editor),

Proceedings of
the International Computer Music Conference
1986

, pages 43-46. International Computer
Music Association.

Puckette, M. and D. Zicarelli. 1991.

MAX Develop-
ment Package

. Palo Alto, CA.: Opcode Systems,
Inc.

Rothstein, J. 1992.

MIDI: A Comprehensive Intro-
duction

. Madison, WI: A-R Editions.

Teitelbaum, R. 1985. “The Digital Piano and the
Patch Control Language System.” In W. Buxton
(editor),

Proceedings of the International Com-
puter Music Conference 1984

, pages 213-216.
International Computer Music Association.

