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Abstract

In computer graphics, considerable research has been conduateehatistic human motion synthesis. However,
most research does not consider human emotional aspects, whiatrstitiagly affect human motion. This paper
presents a new approach for synthesizing dance performance matel@out music, based on the emotional
aspects of dance performance. Our method consists of a motion analysisic analysis, and a motion synthesis
based on the extracted features. In the analysis steps, motion and musie fezctors are acquired. Motion vec-
tors are derived from motion rhythm and intensity, while music vectors aiesifrom musical rhythm, structure,
and intensity. For synthesizing dance performance, we first find catediotion segments whose rhythm features
are matched to those of each music segment, and then we find the motimnssgt whose intensity is similar
to that of music segments. Additionally, our system supports having amineatotrol the synthesis process by
assigning desired motion segments to the specified music segmentspéhmental results indicate that our
method actually creates dance performance as if a character was listanthgxpressively dancing to the music.

Categories and Subject Descriptdescording to ACM CCS) 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and RealismAnimation; J.5 [Arts and Humanities]: PerformingMusic

1. Introduction motion to the musical sounds they are listening to. Although

this ability may appear amazing, actually these performers

the most important topics in computer graphics research. do qot create these motlons, but rather combine approprlqte
motion segments from their knowledge database with music

Most of the motion synthesis techniques use motion cap- their kev t rform their uni movements. Consider
ture data and synthesize new motion whose features are s Neir key 1o perlo €r unique movements. t-onsider-

synchronized with external input signals such as trajec- Q?O;h'5022'rl]'ggtgﬁsar?t:qeg]tzggget\éeetthag f(l zﬁgcgnm(;t;or;:tasl.s
tories designed by user&KGP0Z, environmental obsta- 9 : Wi usict W wing asp '

cles LCR*02], speech information§DO"04], motion of e The rhythm of dance motions is synchronized to that of
another characteHGPO04, and so on. The issue surround- music.

ing these techniques is what kinds of cues are used to searchy The intensity of dance motions is synchronized to that of
the appropriate motions from the large amount of data ina  mysic.

motion database. Animators need to choose suitable cues in
order to create the motion sequences they really want. The first assumption is derived from the fact that almost all
. .. people can recognize the rhythm of music, and they can clap
This paper proposes a new approach for synthesizing or wave their hands and dance to music. The second assump-

dange ”.‘O“OI” well matct:ed 0 tTIUS.'C’ and our a;ppro_?ﬁh usesltion is derived from the fact that people feel quiet and relaxed
music signais as a cue lo synthesize new motion. The goal,, o, listening to relaxing music such as a ballad, and they

Of. th_|s approach IS a reallzatlon' .Of a dance algorlth_m .that feel excited when listening to intense music such as hard
mimics human motions. The ability to dance to music is a rock music

natural born skill for a human. Everyone has experienced
a desire to move their bodies while listening to a rhythmic Our approach consists of three steps: a motion analysis,
song. Hip-hop dancers can simultaneously compose a dancea music analysis, and a motion synthesis based on the ex-

Synthesizing realistic human motion is currently one of
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tracted features. In the motion analysis step, we analyze Stone et al. $DO*04] proposed a method whose ap-
rhythm and intensity features of input dance motions, and proach is quite similar to ours in that input sound signals
assign the features to each motion in a database. The anal-are considered. The purpose of their method is to synthe-
ysis methods depend on recent studies about the emotionalsize utterance performance by extracting emphasis features
aspects of human motions. Using these features, our systemof motion and speech data and synchronizing them. How-
finds the sequence of motion segments matched to input mu- ever, their feature extraction needs many manual processes,
sic sequence with respect to the rhythm and the intensity and is accordingly a very time-consuming system for syn-
of the music. In the music analysis step, first, we analyze thesizing new utterance motions.

a structure of input music sequence, and extract music seg- . . . .
ments based on the structure analysis results. Next, musical Kim et aI_. [KPSO0d proposed a_rhythmlc motion s_ynthe5|s
method using the results of motion rhythm analysis. But us-

rhythm and intensity features are extracted, and are assigned. hei hod icd d h hvthim i |
to each music segment. Finally, our method automatically |:gt_e|r_m_(|et 0 ,kr]nusuf: hata nee]_sto avear Vt.“.“ mte_rva
synthesizes new dance motion by interpolating between the t _a_t 's similarto t ‘f.ﬂ ofthe resu ting ”?°“°”a and itis qun_te

. I . difficult to apply this method with various kinds of music
motion segments. Additionally, our system has a user inter- data
face that enables animators to control the synthesis process ’
by choosing desired motion segments well matched to music ~ Miiller et al. [MRCO5 proposed a motion-retrieval
segments. For example, animators can set key motions in themethod based on motion contents, which is a similar ap-
motion database for desired music segments, such as settingproach to ours. However, the motion contents considered in
a jumping motion to the final scene of the song, or a punch our approach are defined based on human emotional aspects,
motion to a particular sudden sound in the music. while those in their method were defined based on specified

The remainder of this paper is organized as follows: we 10Nt position/angle.

first present related work on motion capture-based anima-
tion and music signal processing in SectidnThen Sec-
tion 3 introduces a concept of our approach, which depends
on human emotional aspects. Our motion and music analysis Computational analysis methods for a music scene are im-
methods are described in Sectidrand Sectiorb, respec- portant for understanding how humans recognize musi-
tively. Section6 describes a dance motion synthesis algo- cal features, and are called Computational Auditory Scene
rithm using results of analyses. In Sectigruser interfaces Analysis. Bre9QCB93. In particular, for dance motion syn-

of our system for designing resulting motion are shown. The thesis, we believe that rhythm features, rhythm structure, and
experimental results are shown in Sect®miscussion and musical intensity are very important.

conclusions are presented in Sect®mand SectionlO re-

2.2. Auditory Scene Analysis

Most humans have an ability to recognize rhythm and

spectively. rhythm structure. When people hear music, they tap their

feet, wave their hands in time with the music, and discover
2. Related Work the ability to dance to the music even if they are children
2 1. Data-driven Character Animation or beginners. Many researchers are working on the rhythm

. . tracking method considering these abilities.
In computer graphics, research on motion capture-based

character animation has been well studied. To reuse motions In the case of MIDI signals, parameters of various mu-
efficiently, methods to edit motion data have been proposed sical features such as onset, pitch, and volume are easily
using signal processing methods such as a filter bank or dy- obtained and the most useful in rhythm trackirigH89,
namic programmingBW95], or warping the motion to sat- Ros92. However, it is quite difficult to extract most of these
isfy a given time and positionW}P95. Some researchers ~ musical features from audio signals, and considerable re-
have proposed eetargetingmethod, in which motion cap- search has been done on rhythm tracking for audio signals.
ture data are transferred to new characters while retaining Most of the rhythm tracking methods for audio signals are
important constraints3le98 LS99. based on the knowledge of the onset compong&nti94
LZ03]. Goto [Got0]] proposed a real-time rhythm tracking
method based on not only the onset component, but also
chord changes and drum sounds for rhythm structure anal-
ysis. Scheirer$ch9§ proposed an offline rhythm tracking
method for music that signifies rhythm changes by notations
such asccel.andrit. There are methods that can predict the
musical rhythm by using kalman filteringCKDHO01] and
bayesian networkMSO5NTO4].

Recently many researchers have focused on using a mo-
tion database. One of the representative methoddds
tion Graph which is constructed by connecting motion cap-
ture data and tracing a motion graph to synthesize new mo-
tions depending on the users’ input such as path or environ-
mental obstaclesKiGP02 PB02 AF02, LCR*02, LWS02.
Motion databases also enable learning of motion patterns
for extracting style component8H00, GMHP04 HPPO4,
to make path planning easier while considering geometric, = Most musical songs have repeating patterns and promi-
kinematic, and posture constraint§{H04]. nent structure, and musical structure analysis methods have

(© The Eurographics Association and Blackwell Publishing 2006
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been used to accomplish applications such as music sum-musical players and dancers try to keep the structure from
marization. In general, repeating patterns are considered asbeing violated during their performances. We extract repeat-
melody similarity. In order to extract the melody similar- ing patterns to detect the musical structure, and obtain mu-
ity, musical intensity features that are extracted from spec- sic segments from the music sequence. The other important
tral components{C00, WLZ04,SXWS04 or amplitude en- component isnusic intensityPeople feel various emotions
velopes [Z03] are used. depending on musical mood, and the same is true for dance

performance. For musical mood analysis, we mainly focus

on music intensity, one of the effective factors for musical
3. Concept of Our Method mood. We extract the music intensity compongHft'S'® us-

Our approach uses musical information as a cue to retrieve ing the energy of the melody line. Accordingly, a music fea-
motion segments from a motion capture database. We startture vector for each music segment is obtained:

by discussing a human perceptional model based on the re- ) FRMusic(f.M)

lationship between human motions and music. To define this MusicFeature(f; M) = { FMusic(ffM) } - @
music and motion relationship model, previous studies of ! '

human dance motion analysis are of great help. Our motion synthesis step extracts the most appropriate

Laban, who is famous for his novel dance description motion segment sequence by evaluatihg motion and music
method called “Labanotation,” is a pioneer in the study of featL_Jres. First, we det_ect candidate motion segments for (_each
this issue. He has studied human emotional aspects of bodymUSIC segm(_ent by _usmg rh_ythm features. Then, connections
movements [[U60]. According to his theory, the emotion  °€tween neighboring motion segments are analyzed, and
of human motion comes from motion features consisting of MOtion segment sequences that look like natural motions are
“effort” and“shape” components. The effort component is _obtamed. Finally, the best_motlon s_equence is selected and
defined as the movements of body portions, and the shape Ntérpolated from the remaining motion sequences by evalu-
component is defined as the shape of elements he calls “key_atlng the similarity between the motion and music intensity
poses.” More recently, Nakata et aN¥ISOZ have tested ~ COMPonents.
the validity of Laban’s theory by using their small robot and
user studies. Although they could not find a significant re- 4. Motion Feature Analysis
lationship between the shape component and any emotions
they found that théweight effort” component, one of the
effort components, is closely related to the excitement of the
motion. Laban defined the weight effort component as the
strength of movement, and Nakata considered them physi-
cally as the linear sum of rotation velocity of each body joint.
We use these metrics to define the motion intensity compo- #-1- Human Model
nentfRMetion, We first convert motion capture data into our simple human
body model. Figurel illustrates our human model. In our
model, a human pose at each frame is converted ibtmdg
center coordinatein which we set the origin to the waist
position in the global coordinate;coordinatery to the di-
rection from left to the right thighy-coordinatery to the
forward direction of the body, andcoordinate z to a verti-
cal upper direction. The length of each coordinate vector is
set to 1.vp is a unit vector representing the direction of the
n-th body link in the coordinat¢R,t}, andln represents the
length of then-th body link.

'As described in Sectior8, our motion analysis method
strongly relies on Laban’s weight effort component. In this
section, we describe our definition of the weight effort com-
ponent and how to extract the motion features.

Additionaly, we have developed a method that ana-
lyzes the relationship between stop motions and musical
rhythm, and the results indicate that musical rhythm has a
strong connection with motion elements called “motion key-
poses” BNIO4. Accordingly, our motion analysis method
extracts the local minimums of the weight effort component
in order to extract the motion rhythm featug&'°°". A mo-
tion feature vector for each frame is obtained via the motion
feature analysis:

MotionFeature(f) = { RO f } 1)

FlMotion(f) 4.2. Weight Effort

According to Laban’s definition, the weight effort compo-
nent represents the strength of motion. Thus, we define the
weight effort componen®V as the linear sum of approxi-
mated instantaneous momentum magnitude calculated from
the link and body directions:

The next issue is to extract musical features. We believe
that there are three important musical features for dance per-
formance. One isnusical rhythm As everyone has expe-
rienced, there is a very close relationship between musical
rhythm and motion rhythm. We consider musical knowl-

edge about what is called “the onset component” to estimate W(f)= 5, aj arccos \\:\%RI . lvgﬁ;‘ )
musical rhythmFMUSC. Another important factor isnusic ' [ o) ' (141)
structure which consists of several musical phrases. Both +3je iy ACCOR iy ) (3

(© The Eurographics Association and Blackwell Publishing 2006
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Figure 2: The motion feature vector of an example motion.
Figure 1: Our human body model. The shape and pose are Motion rhythm and intensity components are obtained from

described by the base matr{R,t} and the 17 vectorsn.
The lengths of the body links are given gy Our method
converts the pose at each frame into this coordinate.

“weight effort” of body movement. Motion rhythm compo-
nent is the local minimums of the weight effort component
(dashed lines), and motion intensity comes from the average

of weight effort and forward translation of the body within
the neighboring motion rhythm frame.

whereq; is a regularization parameter for théh link. These

regularization parameters depend on which parts we recog-

nize as important for dance expression. For example, if we for dance performance are music structure, rhythm, and in-
recognize the hands and feet as importargorrsponding to tensity. In this section, we describe how to acquire the music
them will be greater than those corresponding to other parts. segments and to extract the musical rhythm and intensity.

4.3. Motion Rhythm Feature 5.1. Constant Q Transform

Considering the characteristics of the weight effort compo- Music is different from speech in that music consists of a se-
nent, the local minimums of this component indicate stop quence of notes whose frequencies are already defined. Ide-
motions, which are impressive instances for dance perfor- ally, it is most appropriate for extraction of musical features
mance. We recognize these local minimums as motion “key- that music signals are converted into a note sequence. But

poses,” and define the motion rhythm featuF§<°" as fol-
lows:

FF'sztion(f) _ 1 ifW(f)isaround the local minimum
0 otherwise

“

4.4. Motion Intensity Feature

It was validated that motion intensity is related to momen-
tum and forward translation. We obtain instant motion inten-
sity | from the momentunw and the speed of the forward
directionry - t:

1(f) =W(f)- (LO+K-ry(f)-i(f)), )

wherek is a regularization parameter between the weight

most of the frequency component extraction methods such
as Fourier transform do not consider this musical aspect. In
order to extract frequency components representing music
notes more accurately, we use constant Q transform (CQT)
proposed by Brown et alBro90. The CQT method sets the
bank of filters whose center frequencies represent musical
notes, and enables extraction of the spectral energy of each
note.

In our approach, we extract the spectral energies of the 37
semi-tones (over three octaves from the C3 note to the C6
note) from audio signat(n) as follows:

Ne—1
- Nik 5 X0 exp(—iz’;,fr‘), @)

n=

X (k)

effort and the speed. Finally, we calculate the average of the Wherej represents/—1, X (k) represents the spectral power

instant motion intensity from the previous motion keypose
f to the next one} |, and set it to the motion intensity:

R
fi+1 | (I)

Motion
RO (=Y m— /7
i=TR il —fR+1

(6)

5. Music Feature Analysis

When people listen or dance to music, they extract some mu-
sical features from an audio signal. The important features

of thek-th note,Ny is the window size, and represents the
sampled frame. According to music theory, the frequency of
thek-th note is calculated as

. zk/ Noctave’ (8)
where fy is the minimal frequency that we are interested in
for analysis and is set to 130.8 Hz, the pitch of the C3 note,
andNoctavedenotes the number of semi-tones in one octave
and is typically set to 12 is a constant ratio of frequency
to resolution:

Q = fi/ (s — fi) = 1/ (2 Nocme _ 1,

fk= "o

©)
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Figure 3: An example of fundamental tone and its overtones.
When a sound ‘A’ whose frequency is around 110Hz is pro-
duced, its overtones, whose frequencies are integral multi-
ples of the fundamental tone, are also produced.

and accordingly the window sid is set as:

N = [ fsQ/ fi],

wherefs represents the sampling rate of the input audio sig-
nal. Our method uses the hamming window function, and
shifts it by some interval, and then calculates the CQT com-
ponent until the window reaches the end of the music, like
the short-time FFT calculation. In the following section,
X(t,k) denotes the spectral power loth note att-th tem-
poral frame.

(10)

5.2. Music Segment Retrieval

With respect to musical structure, we use the following
knowledge:

Knowledgel Music structure consists of the repetition of
several phrases.

The goal of this analysis is to extract the patterns of the re-

proposed by Lie et alVWLZ04]. First, we calculate the auto-
correlation of the elements of difference vector:
N—m—1
rij(m) = z Avij (n+m) - Avjj (n), (12)
n=0

where Avjj (n) is the absolute difference of theth CQT
feature vector element between thth and j-th temporal
frames:

Avij(n):|X(i,n)—X(j,n)|, (12)

andN is the number of the elements of CQT feature vectors.
If the CQT feature vectors contain the same pitch sound, the
peaks ofrjj (m) will have harmonic intervalghat are based

on the characteristics of the overtones, and if not, the peaks
will appear without this interval. In detail, if the vectors con-
tain the same pitch, the peak gf (m) will strongly appear
atm=0,12,19 24,29 etc., which represent the fundamen-
tal frequencyfy and its integral multiples &, 3fy, 4fp, 5fp.

This characteristic is modeled as the spiral ar@pd01],

and the elements of the weighting vectaim) for r (i, j)
[rij (0),rij (1), - ,rij (N)]" are represented as

1
T A
whereA is a normalization factor to satisfy,,w(m) = 1,
and

w(m) = 1 [p(7mmod 12 —p(0)|, (13)

mrt

(m) = [sinmn cos M
M) =18IN—57,0857 3
Accordingly, the distanc® between two CQT feature vec-
tors is considered the neighboring frames and evaluated as
follows:

I (14)

1 N1

D(i’j):TNr wr(i+k, j+k),
k=

=N,

(15)

peating phrases and to segment the music by the extractedwherew represents the weighting vector, anbl; 2s the

repeating patterns.

Some phrases may be repeated, performed by the differ-
ent instruments (e.g., one phrase is performed by a vocalist,
and the repeat is performed by the guitar). However, peo-

ple can easily recognize that they are the same phrases, and
therefore the structure analysis method should depend on the

sequence of the notes, but not be affected by the timbre of the
instruments.

Figure3 shows a mechanism of timbre. The timbre of ev-
ery instrument has a basic characteristic that it always con-
sists of a fundamental tone and its overtones, whose frequen-
cies are integral multiples of the fundamental frequency, but
the energies of the overtones differ from one instrument to
another. That is, it is difficult to extract accurate repeating
patterns directly in the frequency domain.

In order to find the repeating patterns, we use CQT fea-
ture vectors, and evaluate them with a structure-based simi-
larity measurement that is independent of the timbre effects

(© The Eurographics Association and Blackwell Publishing 2006

range for the distance calculation.

Once the distance function is defined, we can get the sim-
ilarity matrix S whose elements are the similarity measure-
ments ¥D(i, j), and then convert it tdme-lag matrixT:

1
D(,i+j)
Figure 4 shows examples of these matrices. In this figure,
the brighter regions show the greater similarity, and sev-
eral white horizontal lines appear clearly in the time-lag ma-
trix. These lines denote the repeating patterns. By extracting
them, we can acquire the repeating phrases, and analyze the
structure of the input music. In detail, erosion and dilation
operators that are often used in image processing are applied
to make the lines more clear, and then the lines can be ex-
tracted with a thresholding process. Finally, music segments
are extracted by dividing the music sequence at the bound-
aries of resulting repeating phrases. The other musical fea-
tures are extracted and assigned to each music segment.

Tij =Sivj = (16)
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(b) (© (d)

Figure 4: An example of repeating pattern analysis steps.
(a) Similarity matrix, (b) time-lag matrix, (c) time-lag ma-
trix after erosion and dilation operations, and (d) result of
repeating phrases extraction.

(@)

5.3. Music Rhythm Feature

To extract the musical rhythm, we use the following knowl-
edge:

Knowledge2 A sound is likely to be produced with the tim-
ing of the rhythm.

Knowledge3 The interval of the onset component is likely
to be equal to that of the rhythm.

So we consider the onset component for estimating the musi-
cal rhythm. Figures illustrates the onset component extrac-
tion. First, using Knowledge2, we calculate the onset com-
ponent of thek-th note, which is the power increase from the
previous temporal frame— 1 defined asl(t, k) [Got01].

max(X(t,k), X(t + 1,k)) — PrevPow

d(t,k) = (min(X(t,k),X(t+1,k)) > PrevPow,
0 (otherwise
17)
where
PrevPow= max(X(t — 1,k),X(t — 1,k £ 1)). (18)

By calculating total onset componeft) = ¥, d(t,k), we
can determine the total intensity of the sounds produced at
thet-th temporal frame.

Using Knowledge3, we calculate the auto-correlation
function of D(t) to estimate the average rhythm interval.
Then, the starting time is estimated by calculating the cross-
correlation function betweeB(t) and pulse sequence whose
interval is the estimated rhythm interval. However, in prac-
tice, a rhythm interval may change slightly due to the
performers’ sensibilities, etc., and errors caused by these
changes make rhythm tracking impossible. So, considering
Knowledge?2 again, our method tracks the local maximum
around the estimated rhythm. The musical rhythm feature

FRMusic ¢

is defined as follows:
Music, . | 1 if fin Mis estimated rhythm time
R (f’M)_{ 0 otherwise ‘

(19)

5.4. Music Intensity Feature

To extract music intensity, we use the following knowledge:

Energy

Note ID

k+1

Figure 5: An illustration of onset component extraction.
First, the maximum among(X— 1,k) and X(t — 1,k+1) de-
scribed asPrevPow and the minimum between(tXk) and
X(t,k+1) described a€urPoware extracted. Then, the dif-
ference between CurPow and PrevPow is calculated. If the
difference is larger than 0, d,k) is the difference; other-
wise, dt,k) is 0.

Knowledge4 The spectral power of a melody line is likely
to increase during increasing intensity in the music.

Knowledge5 A melody line is likely to be performed using
a higher range than the C4 note.

Many surveys on auditory psychologiR¢a9§g say that
our ears tend to recognize only the sound whose spectral
power is the strongest among the neighboring frequency
sounds, which is often used in many audio signal compres-
sion algorithms such as MP3. Accordingly, a temporally av-
erage CQT feature vectof within a music segmeniM is
calculated to figure out which note sounds are produced in
the music segment:

1

M| &

X(M, k) = X(t,k) (20)

where | M| denotes the number of the CQT feature vec-
tors in M, and then the local peak&eax Of each average
CQT feature vectors are picked UseaT,k) = X(M, k)

if X(M, k) > X(M,k=£1), otherwiseXpea M, k) = 0. In
order to extract music intensity featuf®''s’, we approxi-
mately calculate th&ound Pressure Levekhich considers
the humans’ auditory properties and is related to both the
amplitude and the frequency:

) C6
FIMUSIC(f;M) — lleO( Z xpeak(M7k)2 . sz) (21)
k=C4

6. Motion Synthesis Considering Motion and Music
Features

The final step of our approach is to synthesize new dance
motions considering both the motion and music feature vec-
tors. The main purposendproblem of this step are to select

the motion segment set from the motion database with as low
a loss of correlation as possible. In order to achieve this, we
perform three steps to synthesize a new dance motion. Fig-
ure 6 gives an overview of our motion synthesis algorithm.

(© The Eurographics Association and Blackwell Publishing 2006
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Music segments & Music rhythm feature

Music signal Vocap DB 6.2. Connectivity Analysis of Motion Segments
T v
( Rhythm matching Je-—| BBS Whether or not synthesized motion looks natural strongly
v v v v ] depends on connectivity analysis. In this step, we consider

S \ A\
. \_L Connectivity analysis ] L .

Candidate motion segments l

both the posture similarit¥pose and movement similarity
Smove. Posture similaritySyose between thé*-th frame of
the motion segmen# and thejB-th frame of the motion
segmentB is defined as the angular similarity of the link

B ———

——— [D:\:, e

e

— =D i egm
s —— SR i direction vectors:
Music intensity Motion segment seq. Motion intensity
------------------ Histogram matching S A B FA B
oseli™,J7) =S Br-vi(i™)-vi(j”) (23)
Resulting motion  E— — [H]] ’ ’

Figure 6: Overview of our motion synthesis algorithm. For  \herep, is a regularization factor for theth link. With

each music segment, candidate motion segments are Ob'regard to movement similarit§move, We use velocity vec-
tained from a motion-capture database by evaluating the tors in homogeneous coordinates, since the angular distance
similarity with music rhythm components. Then, all possible measure of their unit vectors in the homogeneous coordi-
motion segment sequences can be acquired by connectivitynates account for the differences in both direction and mag-

analysis between neighboring motion segments. Finally, we nitude. Specifically, movement similari§oveis calculated
evaluate the similarity of the intensity components between g5 follows:

the motion segments and the music segments.
Smoveli™, %) = M1 glh(vi (%) = vi (i) -h(¥ (i)}

~glh(vi (%) =vi (i) - h(w (7%))].(24)
First, we evaluate the similarity of the rhythm components,
and detect the candidate motion segments strongly corre- whereg[x] denotex if x > 0, otherwise 0, andis calculated
sponding to each music segment. Then, we apply connec- from the original input motion sequence, not the candidate
tivity analysis, which checks if synthesized transition motion motion segment. Through, an input 3D vectorx,y,2)" is
between the neighboring motion segments looks natural, and converted to the 4D unit vectdx, y, z, 1)T/\x,y, z,1]. Thatis,
extract the possible sequences of motion segments. Finally, Eq. 24 evaluates the similarity of the directions between the
we analyze the similarity of their intensity components be- original movement in the input motion sequence and the mo-
tween the music segments and the selected motion segmention to be synthesized. Finally, connectivity is analyzed from
sequences, and synthesize new dance motions by connectindoth Syose and Smove between the end frame of one motion
the motion segments with each other. segment and the beginning frame of the neighboring motion
segments. From the results of the connectivity evaluation,
we obtain the candidate sequences of the motion segments

that satisfy the requirements for similarity with the rhythm
This step extracts the candidate motion segments from ev- features and naturalness of the synthesized motion.

ery input motion sequence, considering motion and music

rhythm components. To include more detail, we focus on

one input motion sequence whose length jgion and a

music segmeni\ whose length id nusic In our method, 6.3. Similarity Measurement of Intensity Components
we allow a slight stretching of the duration of the input mo-
tion sequence. Thus, on the similarity measurement of their
rhythm components, we consider not only the rhythm com-
ponents but the scaling paramessf [0.9 1.1] and the off-
set parametef,, which represents the frame from which a
motion segment starts. We extract the scaling paranseter
which maximizes the similarity measurement

6.1. Similarity Measurement of Rhythm Components

Next, we evaluate the intensity components of the candidate
sequences of the motion segments and input music. In order
to find the globally optimal solution, we consider the time
series of the intensity features as a histogram, and the Bhat-
~ tacharyya coefficien{ai67] is considered to relatively eval-
uate the similarity between the motion and music intensity
histograms. Hence, we finally obtain the motion segment se-

s—arg maXLmusic FUSIC £ A1) - FMIOUON (5. f 4 o) 22) quenceD that maximizes the Bhattacharyya coefficient:
s YZO FF'%AUSiC(f;./\/l)—l-FRMOtion(S f+fo) - '
R FIMusw(j) FlMotlon(j)
for eachfo € [0, Lmotion— Lmusid- D=arg D@g)s(; ZKFIMUSiC(k) ' S keD |:|Motion(k)7 (25)

We extract all possible sets (, fo) for each input of mo-
tion sequence, and apply a simple thresholding process to whereCS represents the candidate sequences of the motion
the parameter sets. Using the remaining parameters, we cansegments after the analyses of rhythm similarity and connec-
extract candidate motion segments for each music segment. tivity.

(© The Eurographics Association and Blackwell Publishing 2006
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Table 1: Results of Rhythm Tracking

Title (Genre) Rhythm [sec] ([bpm])

Again(pops) 0.459 (131)

Tonite(pops) 0.476 (126)
Carmen Suitéclassic) 0.417 (144)
Nutcracker Suitéclassic) 0.714 (84)

Figure 7: Our user interface for designing motion. A user

can confirm the music and motion segments by selecting andthe CMU Motion Capture Database. They were all captured
double-clicking an item out of the lists in which the music with an optical motion-capture system produced by Vicon,
segments and their corresponding motion segments are dis-and their sampling rate is 120Hz. The length of music data
played from left to center, respectively. The process of de- used for our experiments was about 60 seconds, and the sam-
signing motion is just assigning the desired motion segment pling was 16bit stereo at 44kHz.

to the music segment. The resulting motion is displayed in

the top-right window. Results of Music Analysis We first show the results of

the music feature analysis. We applied the rhythm tracking
method to 13 music data sets that contain classical music,
rock, jazz, and so on. Ten out of them correctly tracked the
6.4. Transition Motion Generation rhythm. The accompanying music data show that our rhythm

The resulting motion sequence is acquired by connecting the tracking method can estimate music rhythm co_rrectly. Ta-

best matched motion segment sequence. For posture, we us®'€ 1 Shows a part of the successful rhythm tracking results.
a spline function considering the first and second order dif- ~dditionally, the music intensity analysis was also success-
ferential to interpolate the motion segments. For the position ful. However, the structure analysis sometimes failed, espe-
of a character, we pay attention to the position and posture Cially when it was applied to jazz music. This is because

relative to the ground in order to avoid effects such as sliding 1222 music often containsd-lib whose melody lines rarely

or being stuck in one position. repeat.

Results of Dance Performance Synthesigigure8 shows
7. Interface for Designing Dance Motions the synthesized motion for popular musigdain” The ac-
companying video shows that the rhythm and intensity of
Our method can synthesize new dance performances well the resulting motion are well matched to those of the input
matched to input music. However, the resulting motion se- yysic.
quence does not reflect the animators’ design. For example,
some animators may want a character to jump when vocal ~ Figure 9 shows another synthesized motion for popular
input music says,Jump’ music “Tonite” The accomponying video also shows that
our method works well. Figurg0 shows the features of the
. : - -~ synthesized motion and the input music. In this figure, the
Figure7 shows our interface that enables animators to design yellow line and the light blue line show the motion rhythm

moélohns. The :Tﬁ “Sht showhs the mus(ljc segment sequence, component and the music rhythm component respectively,
and the central list shows the extracted motion Segments Cor- 5, the plye line and the red line are the intensity histograms

respondi_ng to the cu_rrently assigned music s_egment. A USET 5t motion and music segments. We can easily confirm that
can confirm the music segments and the motion segments by ¢ of the musical rhythm is matched to the motion rhythm,

selecting and doublg-cllcklng an item out of the lists. _Usmg and the distributions of the intensity components are quite
our system, the desired motion segment can be assigned to

the music segment as animators want. It is conceivable that similar.

there are no candidate sets of the motion segments that satComputational Cost The synthesis step takes much longer
isfy the assigned design. If so, our system re-evaluates thethan the other analysis steps. Especially, the connectivity
motion and music features under this constraint. analysis between neighboring candidate motion segments is
the most time-consuming process, because all possible sets
of the neighboring segments are checked. In the case of us-
ing the musidAgain, it takes around 10 minutes to synthesize
We have experimented in our proposed method with our motion from input music data one minute long and around
motion database consisting of break dance, Indian dance, 27 motion data sets (about 520 sec in total) with Pentium-4
and simple dance motion, which are all downloaded from 2.8GHz PC.

Our system supports the designs animators often have.

8. Experiments

(© The Eurographics Association and Blackwell Publishing 2006
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1

Figure 8: The synthesis result for music “Again.”

9. Discussion

Our algorithm can synthesize new dance motion consider-
ing musical and motion rhythms, and musical and motion
intensities. This is based on two ideas: 1. motion rhythm is
correlated with musical rhythm, and 2. music intensity and
motion intensity have a direct correlation. Our contribution
is, with regard to CG animation, to automatically synthe-
size motion that synchronizes input music signals, and to
take motion expressions extracted from Laban’s weight ef-
fort component into consideration. With regard to artificial
intelligence, we have been able to imitate the simple models
of human emotional aspects and the human ability to recog-
nize music features for dance performance while listening to
music.

We believe that it is possible to introduce other features
for matching, such as relationships between a music chord
or key (major/minor) and mood of motion, or a category of
music and its appropriate expression in dance. For example,
people tend to feel gloomy when listening to music in a mi-
nor key, and happier when listening to music in a major key.
To improve our approach, music psychology could be incor-
porated. Additionally, motion expressions, which have not
been well studied in CG animation, are also important fac-
tors. As future work, we will develop a motion expressions
analysis method, and introduce them into our method with
corresponding music psychology.

Additionally, we are now developing another application
to synthesize dance motions in real time: a character com-
poses new dance motion while listening to music. The pur-
pose of this application is to imitate the ability afl-lib
dance which all people, and particularly children, have. This
application will also enable a humanoid robot to dance to
music as an entertainment robot.

10. Conclusion

This paper presented a method for synthesizing new motion
synchronized to music. Our idea is to consider the musical
rhythm and intensity components to be matched to motion
rhythm and intensity components. This is an imitation of a
dancer’s skill in performing motions as they listen to mu-
sic. Our method can automatically retrieve music features

(© The Eurographics Association and Blackwell Publishing 2006
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Figure 9: The synthesis result for music “Tonite”

from input music signals and motion features from motion
sequence, and synthesize new dance motions whose features
are closely matched to those of the music. We have presented
results from which we can confirm that our method can syn-
thesize expressive dance performance.
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