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Abstract— This paper proposes a method for synthesizing
dance performance synchronized to played music and our method
presents a system that imitates dancers’ skills in performing
their motion while they listen to the music. Our method consists
of a motion analysis, a music analysis, and a motion synthesis
based on results of the analyses. In these analysis steps, motion
and music features are acquired. These features are derived
from motion keyframes, motion intensity, music intensity, musical
beats, and chord changes. Our system also constructs a motion
graph to search similar poses from given dance sequences and
to connect them as possible transitions. In the synthesis step,
the trajectory that provides the best correlation between music
and motion features is selected from the motion graph, and the
resulting motion is generated. Our experimental results indicate
that our proposed method actually creates dance as the system
“hears” the music.

I. INTRODUCTION

Creating a realistic motion sequence is currently a major
goal of the computer graphics research and the robotics
research. One method often employed is dynamics simulation.
First, a programmer manually creates an appropriate motion
sequence, and then, the sequence is optimized to maintain
balance over the whole motion sequence by using a dynamics
simulator. This method is a useful technique; however, it
is time–consuming. Another popular method is based on
motion capture system. This technique consists of “Motion
Graph” [1], [2], [3], or applying statistics to a set of motion
capture data to synthesize new motion sequences [4]. However,
most of these techniques do not consider human emotion
and recognition despite the fact that humans often exhibit
behaviors based on emotion and recognition.

There are a few previous methods to consider human
emotion when creating motion sequences. Kim et al. [5]
proposed a motion enhancement method that could analyze
the rhythm of motion and synthesize new motions based
on the results of motion rhythm analysis, and by using this
method, we could synthesize rhythmic motions. However, for
example, for creating new dance performance, the music signal
needed to be synchronized to the rhythm of motion. Stone et
al. [6] proposed a method that could synthesize new utterance
performance synchronized to an input speech signal. However,
this method needed considerable manual processing, was not
automatically, and required a great deal of time.

The ability to dance to music is a natural born skill for
a human. Most people at times experience a desire to move
their bodies while listening to a “rhythmic” song. Hip-hop
dancers can simultaneously compose a dance to the musical
sounds as they hear these sounds. Although this ability may
appear amazing, actually these performers do not create these
motions, but rather combine appropriate motion segments from
their knowledge database with music as their key to perform
their unique movements. Consdering this ability, we are led to
believe that dance motion has strong connections with music
in the following two points:

• The rhythm of dance motions is synchronized to that of
music.

• The intensity of dance motions is synchronized to that of
music.

The first assumption is derived from the fact that almost all
people can recognize the rhythm of music and they can clap or
wave their hands and dance to music. The second assumption
is derived from the fact that people feel quiet and relaxed
when listening to relaxing music such as a ballad, and they
feel excited when listening to intense music such as hard rock
music.

Toward an avatar and robot performance with emotion, we
propose a method, based on the assumptions above mentioned,
to synthesize new dance performance that are matched to input
music. As shown in Fig. I, our proposed method consists of
three steps: a motion analysis step, a music analysis step, and
a motion synthesis step based on the results of these analyses.
The motion analysis step extracts two motion features, and for
dance performance synthesis: the motion keyframe component
and the motion intensity component, and we use the motion
features at each frame of each set of motion data The music
analysis step consists of a beat tracking part, a chord change
analysis part, and a music intensity analysis part to detect
characteristics of input music. In addition, we construct a
motion database called a “Motion Graph.” A motion graph
algorithm synthesizes various motions from a set of motion
data by considering the similarity of pose. In our case,
input motion data for a motion graph is a combination of
primitive motions [7] and the extracted motion features are
also recorded in the motion graph. In the motion synthesis step,



Fig. 1. Algorithm Overview.

we input music and the new dance performance is synthesized
by calculating the correlation between motion features and
music features and tracing the motion graph based on the
correlations. The synthesized dance motion is synchronized
with input music with respect to its rhythm and intensity.

The remainder of this paper is organized as follows: Our
motion feature analysis and music feature analysis are pre-
sented in Section II and Section III, respectively. Section IV
explains how to construct a motion graph. In Section V, we
present a motion synthesis algorithm using the results of our
analyses. Section VI presents our experimental results, and
Section VII presents our conclusions.

II. MOTION FEATURE ANALYSIS

In this section, we describe our method for extracting mo-
tion features. We use two components as the motion features:
keyframe and intensity. The keyframe component represents
whether hands stop moving or not, and the intensity compo-
nent represents how wild the dance motion is. These motion
features are detected for all frames of all data, and recorded
in a motion graph for synthesizing dance performance. As
we noted above, for synthesizing new dance performance,
the motion keyframe component is correlated with the music
rhythm component and the motion intensity component is
correlated with the music intensity component during the
tracing of the motion graph. In the latter part of this paper,
we define the motion keyframe component as MCstop and the
motion intensity component as MCintensity.

A. Motion Keyframe Component

This component is related to the velocities of the hand
movements. Many biological surveys [7], [8] say that human
motion consists of the repetition of the start and stop frames (of
a target position) and their interpolations. According to these
ideas, we assume that the keyframes are the ‘stop’ frames of
the hand movement. They can be determined by finding the
local minimum of the hands’ velocities.

First we convert the hands’ positions into body center
coordinate, and calculate their velocities. In the body center
coordinate {R, t}, its origin is t that presents the waist
position, Z axis rz is the direction from waist to body, Y axis

Fig. 2. Velocity graphs of both hands and illustration of motion features.

ry is the frontal direction, and X axis rx is perpendicular to
both of them. The local minimums are detected from these
velocity sequences through simple smoothing and they are
registered as keyframes. Suppose we dance to music. We
cannot dance to the rhythm of music exactly; we can do
so only roughly. So, we calculate Gaussian functions around
the registered keyframes by inputting variance σ1. According
to the Gaussian variance σ1, we allow some time lag. We
calculate this feature in both left hand and right hand motion
sequences, and add them together. In other words, the motion
keyframe component gets high value when both of the hands
stop moving at the same time.

MCstop =
∑

i∈{L,R}

Ni∑
j=1

exp{
−(f − f i

j)
2

σ2
1

}, (1)

where NL, NR are the number of the keyframes and fL
j , fR

j

are j-th keyframes of the left and right hands.

B. Motion Intensity Component

In order to represent motion intensity, we consider the
velocity of both hands between two neighboring keyframes.
For example, if the velocity is low, it seems relaxing and the
motion intensity becomes low, and if the velocity is high,
it seems exciting and the motion intensity becomes high.
By considering these features of motion intensity, we use
the maximum velocity between two neighboring keyframes
(Eq. 2). As we described above, the maximum velocity is in
the body center coordinate system.

MCintensity(f) =
∑

i=L,R

Ni−1∑
j=1

vi
max(j) exp{

−(f − fc
j )2

σ2
2

},

(2)
where fc

j = (fj + fj+1)/2.
Fig. 2 shows the velocity graph and illustrations of motion

features. The first component is motion keyframe. This in-
creases when f is close to the local stop frames of the hands.
If both hands stop at the same time, these values are summed
and increased. Similarly, the second component, the motion
intensity component, it increases if hands move fast in the
motion segment.



III. MUSIC FEATURE ANALYSIS

We assume that the two music features, rhythm and musical
mood, play the central role in a dance performance by human
dancers. We employ these two features as music features for
tracing the motion graph.

Rhythm People recognize the musical beats in music,
and clap or wave their hands in time to the rhythm. It is
general knowledge that the beat of the music is one of the
most important features for dance performance. Also, western
music has rhythm structures, such as the waltz rhythm and
four-four time. Accordingly, dance performed to a waltz
rhythm differs from that in four-four time. So we must
consider the beat times and the rhythm structure of music in
order to synthesize a corresponding dance performance.

Musical Mood When we listen to soft, relaxing music,
such as a ballad, we are relaxed. On the other hand, when we
listen to hard rock music, we become excited. So we can have
various reactions depending on the mood of music. Further,
it is very important to perform dance giving consideration to
both the mood and intensity of the music. Generally speaking,
when people hear intense music, they tend to perform excited,
perhaps even agitated dance movements. When they hear
relaxing music, people tend to perform quiet, perhaps slower
dance movements.

With these considerations in mind, we extract the following
three musical features: music beat and degree of chord changes
for beat structure analysis, and music intensity for mood
analysis. In the latter part of this paper, we define the music
rhythm component as ASCbeat, which is extracted from music
beat and degree of chord change, and the music intensity
component as ASCintensity.

We will explain how to obtain these components in the
following sections.

A. Beat Tracking

To extract the music beat, we use the following assumptions:
Assumption 1 A sound is likely to be produced with the

timing of the beat.
Assumption 2 The interval of the onset component is

likely to be equal to that of the beat.
We developed a beat tracking method based on the onset
component. Fig. 3 illustrates onset component calculation. By
using Assumption 1, we calculate an onset component per
frequency [9], the power increase from the previous time frame
t − 1 defined as d(t, f).

d(t, f) =

max(p(t, f), p(t + 1, f) − PrevPow
(min(p(t, f), p(t + 1, f)) ≥ PrevPow),

0 (otherwise)
(3)

where

PrevPow = max(p(t − 1, f), p(t − 1, f ± 1)), (4)

Fig. 3. An illustration of onset component extraction.

and p(t, f) is the spectral power at time t and frequency f . By
calculating total onset component D(t) =

∑
f d(t, f), we can

determine the intensity of the produced sound at time frame
t.

Then, by using Assumption 2, we calculate the auto-
correlation function of D(t) to estimate the average beat inter-
val. And, to estimate timing of the beat start, we calculate the
cross-correlation function between D(t) and pulse sequence
whose interval is the estimated beat interval. However, in
practice, a beat interval sometimes changes slightly due to
the performers’ sensibilities, etc., and errors caused by these
slight rhythm changes make beat tracking impossible. So our
method determined the local maximum around the estimated
rhythm based on Assumption 1.

B. Degree of Chord Change

To estimate beat structure, we use the following assumption:

Assumption 3 Chord changes are likely to appear with the
timing of measure lines.

Chord changes make it possible to recognize a higher beat
structure and to synthesize a dance performance synchronized
with the beat structure.

A chord consists of a bass sound and its overtones whose
frequencies are integral multiples of bass frequency. These
frequencies tend to change significantly with a chord change,
and remain relatively stable when there is no change in chord.
The frequency components dominant between successive beats
can be roughly identified by using a histogram of frequency
components. The frequency spectrum is therefore sliced into
strips at the estimated beat times, and the dominant frequencies
of each strip are estimated by using a histogram of frequency
components in the strip, in other words, by noting the peaks
of a histogram of frequency components [9]. We define these
peaks as Ppeak. The degree of chord change Pdiff is then
obtained by comparing dominant frequencies among 0 to
500Hz range, based on the frequency of bass sounds and their
overtones, between adjacent strips as follows:

Pdiff(τ, f) =

 Ppeak(τ, f) − Ppeak(τ − 1, f)
(Ppeak(τ, f) > Ppeak(τ − 1, f)),

0 (otherwise)
(5)

where τ is the estimated beat time.



Because the method does not require musical notes to be
identified, it can detect chord changes in real-world audio
signals, where chord identification is generally difficult.

At each estimated beat time, Pdiff is considered to evaluate
the beat time:

ASCbeat(t) =


∑500Hz

f=0Hz Pdiff(t, f)
(if t = estimated beat time).

0 (otherwise)
(6)

C. Music Intensity

To extract music intensity, we use the following assumption:

Assumption 4 The spectral power of a melody line is
likely to increase during increased intensity in the
music.

In most music, especially songs, the melody line is played
between the frequency range of 250 to 500Hz, the range people
can hear most easily. Accordingly, we use the frequency com-
ponent dominant Ppeak, as described in III-B, and extract all
the maximum peaks among 250 to 1kHz range, which includes
tones from base tone of melody to the 3rd overtone. After
extracting these peaks, we calculate the degree of intensity by
summing them:

ASCintensity(t) =
1kHz∑

f=250Hz

Ppeak(t, f). (7)

IV. MOTION GRAPH CONSTRUCTION

A motion graph connects similar poses among existing
motion data, and indicates all possible transitions among the
existing motion data, not only existing transitions but also new
synthesized transitions [1] [2] [3]. The analysis step generates
such possible new transition paths, and the synthesis step
chooses appropriate ones according to the features of input
music. In our case, we use a set of motion data that consists
of a few primitive motions [7] of dance performance. First,
we calculate pose similarity between each set of motion data
and connect them based on the degree of pose similarity by
creating transition motions. This graph structure of a motion
data set is called a motion graph. We set the extracted motion
features in the motion graph, and a new dance motion is
synthesized by calculating the correlation of the music features
and the motion features, and tracing the motion graph based
on the correlation results. In this section, we describe how to
construct a motion graph.

A. Pose Similarity and Connectivity

We define the human body of captured data as Fig. 4. The
body shape and pose for each frame f is described as 17 body
shape vectors vn, which represent the direction of the n-th link
in the body center coordinate {R, t}, and 9 scalar parameters
ln, which represent the length of the n-th link.

S(f) = {R, t,v,v1, ...,v16, l0, l1, ..., l8}. (8)

Fig. 4. Human body model.

The pose similarity distance between frame fA in the
motion sequence SA and frame fB in the motion sequence
SB is given by following:

Dist(SA(fA), SB(fB)) =
∑

i

{vA
i (fA) · vB

i (fB)

+αi · v̇A
i (fA) · v̇B

i (fB)}. (9)

The first term can calculate the similarity of pose, and
the second term can calculate the similarity of movement of
the links. αi are the regularization parameters indicating the
importance of i-th body portion. The value of the distance
function Eq. 9 is maximized if the poses and movements at
fA and fB are similar. In order to detect the connection frames,
we apply thresholding to the value of the distance function and
generate a new transition motion between selected frames.

B. Synthesizing Transition Motion

For creating transition motions, we use 3rd order interpo-
lation of body links, which can consider the smoothness of
position, velocity, and acceleration. Assume that we would
like to interpolate the motion between the pose SA(fA) and
the pose SB(fB) with given duration T (frames), the vectors
{vi(f)|0 ≤ f ≤ T, 0 ≤ i ≤ 16} are given by the following:

vi(f) = f3 · ai + f2 · bi + f · ci + di, (10)
ai = {T (v̇B

i − v̇A
i ) − 2 · (vB

i − vA
i − v̇A

i T )}/T 3,

bi = {−T (v̇B
i − v̇A

i ) + 3 · (vB
i − vA

i − v̇A
i T )}/T 2,

ci = v̇A
i , di = vA

i .

As for the root motion, we also use 3rd order inter-
polation for body center coordinates {ṫA,RA, ṘA} and
{ṫB ,RB , ṘB}. In order to keep the relative posture and feet
in a state of contact to the ground, vertical translation tz and
vertical angle θz = arccos(rz ·z) of the body center coordinate,
where z is the vertical axis in the global coordinate, must be
kept at the destination frame. So we first determine the frontal
direction of the body center coordinate by using 3rd order
interpolation, then tilt and translate these parameters to satisfy
the condition.

The duration for the transition is determined by the angular
distance of the concatenated frames and the maximum velocity
in the concatenated motions. In the motion analysis step,
we get the maximum angular velocities of all body portions



for all motion data. The duration is determined within the
range where the angular velocities during transition do not
exceed these maximums. This process is for avoiding unnatural
transitions such that the hands move too fast compared to the
neighboring motion sequences.

V. DANCE PERFORMANCE SYNTHESIS

Now we have the motion graph and motion features from
a set of motion data, and musical features from input music
data. The final steps for dance performance synthesis are to
evaluate the correlation between the music beat component and
the motion keyframe component, to evaluate the correlation
between the music intensity component and the motion inten-
sity component, and to trace the motion graph by considering
these evaluations. Our algorithm depends on the following
relationship between music and human motion:

• The keyframes exist on the music beat frames.
• The greater the music intensity, the greater the motion

intensity.
These assumptions are very natural. We can easily find these
relationships when we view dancers’ musicality in a perfor-
mance.

First, we choose paths of motion graph by calculating the
correlation between the music beat component ASCbeat and
the motion keyframe component MCstop. This is because the
rhythm is the most important factor for dance performances
and if the beat component is not considered, the synthesized
motion will not be synchronized to music. In theory, all frames
of the motion data in the motion graph and the music frames
should be considered to detect the best motion graph path.
But this involves heavy computational cost. So our algorithm
considers every motion graph path from the current time t to
t + T , where T is the search range and is set to 3 seconds in
our experiments. The motion and music correlation of rhythm
component MatchEvalbeat is described as follows:

MatchEvalbeat(t, path) =
T∑

τ=0

{MCstop(t + τ ; path) · ASCbeat(t + τ)}, (11)

where MCstop(t+τ ; path) is the motion keyframe component
along the motion graph path path. We choose several motion
graph paths whose MatchEvalbeat are highest. We define
these chosen motion graph paths as “BP.”

The final step in synthesizing a new dance performance
is to detect the best motion graph path from BP. This step
is searching the highest evaluation path and produces the
resulting motions. However, this is NP complete problem
because the evaluation values on each branch depends on
the past branches selected. So this is done by calculating
the following correlation function between the music intensity
component ASCintensity and the motion intensity component
MCintensity

arg max
p∈BP

T∑
τ=0

{MCintensity(t + τ ; p) · ASCintensity(t + τ)}.

(12)

Fig. 5. Motion synthesis algorithm.

TABLE I
RESULTS OF BEAT TRACKING

title beat interval[sec] ([bpm])
La Bamba 0.598 (100)

Do Me 0.447 (134)
Nutcracker Suite 0.714 (84)

On each transition branch, we calculate the matching eval-
uation between the music feature and the motion feature of
the destination branch, and finally the nearly optimized path
is obtained.

VI. EXPERIMENTAL RESULTS

We used a CMU Motion Capture Database [10] for the
evaluation. The motion data set for our experiments consisted
of 26 motion sequences. 19 of which included two or three
ballet primitive motions, and the rest of which included simple
dance motions that everyone can perform easily. These sets of
motion data were captured by an optical motion capture system
(VICON8). They contained the position data of 32 markers and
were recorded at 120 Hz. The length of every motion data was
about 5 seconds.

We constructed a motion graph using this database. Dead
links and endless loops were carefully removed in constructing
the motion graph. Also, motion features were calculated for
each motion data and required less than two minutes using a
PENTIUM4 1.7GHz PC.

As for the music analysis, all sounds were saved in WAV
format. Their length was about 60 seconds, and the sampling
was 16bit stereo at 44.1KHz. It took less than two minutes
to extract all the music feature vectors using a PENTIUM-M
1.8GHz PC. We initially prepared 13 examples and checked
the beat tracking results. 10 of the 13 examples appeared to
successfully track. We decided to use the successful examples
for motion synthesis. Table I shows the average beat duration
of a part of the examples.

We experimented our synthesis method with the database.
Fig. 6 is synthesized dance motion synchronized to the popular



Fig. 6. Synthesis results for “La Bamba.”

Fig. 7. Feature matching results of “Do Me.” The red line and the blue lines
show the music beat feature and the motion keyframe feature respectively.
We can confirm that most of the music beat frames match to the motion
keyframes.

music “La Bamba.” This result can confirm that the resulting
motion’s rhythm matches the music beat very well. Then
we tested our synthesis method using the dance music “Do
Me.” Fig. 7, in which the music beat feature and the motion
keyframe feature are drawn, shows the result of this experi-
ment. Most of the peaks for both features match throughout
the motion sequence.

To evaluate our algorithm, we tested another dance perfor-
mance synthesis method that considers only the rhythm com-
ponent, using “The Nutcracker Suite.” Fig. 8 shows comparing
the result of this method with that of our proposed method
and the effectiveness of considering the intensity component.
Both this result can confirm that the result of our method
is synchronized to both music rhythm and music intensity,
and that the intensity component is also important for dance
performances.

VII. CONCLUSION

In this paper, we described a new motion synthesis method
synchronized to input music. Our method is based on two
ideas: 1. dance keyframes coincide with music beat frames and
2. music intensity and motion intensity have direct correlation.
Our method automatically retrieves the music beat component
and the music intensity component from input music and
the motion keyframe component and the motion intensity
component from motion data, and concatenates corresponding
motion data whose features most closely match to those of the
music.

For future work, this method will be extended to real–
time systems.We suppose that they retrieve exact or similar
example cases, with expected rhythm and intensities, from
their knowledge. So far our system does not have such a
real–time functionality, but we would like to provide for this

Fig. 8. Synthesis results for “The Nutcracker Suite.” Top: The rhythm and
intensity components are considered, and bottom: only the rhythm component
is considered.

capability in the future through further knowledge of music
and analysis of dance motions. Additionaly, we plan to equip
our human-size dancing humanoid robot with this ability. We
expect that the robot will be able to create and perform its
own original dances to music it hears.

ACKNOWLEDGEMENT

This work is supported in part by the Japan Science and Tech-
nology Corporation (JST) under the CREST project, and in part
by the Grant-in-Aid for Scientific Research on Priority Areas (c)
16016218 of the Ministry of Education, Culture, Sports, Science and
Technology, and in part by Ministry of Education, Culture, Sports,
Science and Technology under the “Development of fundamental
software technologies for digital archives” project.

REFERENCES

[1] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM Transac-
tions on Graphics, vol. 21, no. 3, pp. 473–482, 2002.

[2] K. Pullen and C. Bregler, “Motion capture assisted animation: Texturing
and synthesis,” ACM Transactions on Graphics, vol. 21, no. 3, pp. 501–
508, 2002.

[3] O. Arikan and D. A. Forsyth, “Interactive motion generation from
examples,” ACM Transactions on Graphics, vol. 21, no. 3, pp. 483–
490, 2002.

[4] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović, “Style-based
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