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Abstract— This paper proposes a method to model the
modification of upper body motion of dance performance based
on the speed of played music. When we observed structured
dance motion performed at a normal music playback speed and
motion performed at a faster music playback speed, we found
that the detail of each motion is slightly different while the
whole of the dance motion is similar in both cases. This phe-
nomenon is derived from the fact that dancers omit the details
and perform the essential part of the dance in order to follow
the faster speed of the music. To clarify this phenomenon, we
analyzed the motion differences in the frequency domain, and
obtained two insights on the omission of motion details: (1) High
frequency components are gradually attenuated depending on
the musical speed, and (2) important stop motions are preserved
even when high frequency components are attenuated. Based on
these insights, we modeled our motion modification considering
musical speed and joint limitations that a humanoid robot has.
We show the effectiveness of our method via some applications
for humanoid robot motion generation.

I. INTRODUCTION

Synthesizing and reproducing human-like motion with CG
characters and humanoid robots is currently an important
topic in CG and robotic research. In particular, recent re-
search has been conducted on applying human’s improvisa-
tional aspects to motion generation for CG characters [1],
[2] and humanoid robots [3], [4]. This research showed that
people first receive external signals such as visual or audio
information, then recognize essential information or feel
some emotions from the obtained information, and finally
perform movements.

Toward reproducing this ability, we are developing a sound
feedback system, in which a humanoid robot mimics a hu-
man’s dancing-to-music ability for entertainment. Synchro-
nizing recorded human motion data with currently played
music is an important part of the sound feedback system.
In this paper, we propose a novel method to temporally
scale upper body motion involved in dance performance for
synchronization with music.

Acquiring motion capture data is very time consuming,
and many researchers have attempted to efficiently synthesize
human motion from a single motion sequence through such
procedures as editing motion capture data by signal process-
ing techniques [5], retargeting motion to new characters [6],
and modifying human motion to make it funny [7]. However,
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Fig. 1. Comparison of hand trajectory differences depending on music
playback speed. The green and yellow curves represent the hand trajectories
at a normal musical speed, and 1.3 times faster musical speed, respectively.

there are no methods to generate temporally scaled human
motion except McCann’s method [8] that aimed at temporal
scaling of jumping motion by considering physical laws.
Their method does not work well for non-jumping motion.

To achieve this goal, we first observe how dance motion
is modified based on played musical speed, and then model
the modification based on the acquired insights. When we
observe structured dance motion performed by humans at
normal music playback speeds versus motion performed
using music that is 1.3 times faster, we find that the details of
each motion sequence differ slightly, though the whole of the
dance motion sequence is similar in both cases. An example
of this type of motion modification, natural in humans, is
shown in Fig. 1. This phenomenon is derived from the fact
that dancers omit details of a dance, but retain its essential
aspects if this is necessary to follow faster music. If we
therefore observe motion differences in dances performed
at different speeds in the frequency domain, we can obtain
useful insights about the omission of motion detail. Based
on these insights, we propose a new modeling method
and develop some applications useful for the generation of
humanoid robot motion.

This paper is organized as follows: Section II describes
our observation method using the hierarchical B-spline tech-
nique. Section III describes the proposed algorithm for upper
body motion generation based on our insights. Section IV
shows experimental results, and Section V concludes this
paper by mentioning possible future work.

II. OBSERVATION OF HUMAN DANCE MOTION

This section describes how to analyze human dance mo-
tion. We first calculate each joint angle using quaternion



algebra, and then convert it into a 3D logarithmic space.
We denote the 3D angle representation as a 3D vector v
whose unit vector represents a rotation axis and whose norm
represents half the joint rotation.

A. Motion Decomposition Using Hierarchical B-spline

Hierarchical B-spline consists of a series of B-spline
curves with different knot spacings; higher layers of a
hierarchical B-spline are based on finer knot spacing that
can preserve the higher frequency components of the original
sequence. This technique can interpolate and approximate
scattered sparse data sets [9], or its hierarchical structure
can easily and effectively retarget motion to new charac-
ters [10]. Each subject motion sequence has a different
underlying musical rhythm, and a B-spline allows us to
control frequency resolution by only setting its control points
at desired temporal intervals. In our analysis, we consider
musical rhythm for knot spacing, and we normalize temporal
frames of motion sequences into the knot space with musical
rhythm.

We use cubic B-spline in order to preserve continuity of
motion acceleration. A cubic B-spline curve f0(t) can be
represented as

f0(t) =
3∑

i=0

Bi(t − ⌊t⌋)Q⌊t⌋+i−1, (1)

where Qt represents a control point at knot t, and Bi(t) for
0 ≤ t < 1 represents a basis function of a cubic B-spline
defined as

B0(t) =
1
6
(1 − t)3, (2)

B1(t) =
3t3 − 6t2 + 4

6
, (3)

B2(t) =
−3t3 + 3t2 + 3t + 1

6
, (4)

B3(t) =
1
6
t3. (5)

A least-squares solution of Eq. (6) using pseudo inverse
provides control point sets {Q̂0, · · · , Q̂n} that can roughly
approximate an input joint angle trajectory:

v(t1)
v(t2)

...
v(tm)

 = Npos


Q̂0

Q̂1

...
Q̂n

 , (6)

where v(t) represents a joint angle calculated from an input
motion sequence at knot t and Npos represents a matrix
whose elements are the basis function represented as

Npos
ij =

{
Bj+1−⌊ti⌋(ti − ⌊ti⌋) if j ≤ ti < j + 1
0 otherwise . (7)

An overview of hierarchical B-spline construction is illus-
trated in Fig. 2. The coarsest layer of hierarchical B-spline,
f0, cannot contain the high frequency components of an input
joint angle trajectory. So the difference between the input

Fig. 2. Illustration of hierarchical B-spline construction.

joint trajectory and the coarsest layer, ∆1(t) = v(t)− f0(t),
is calculated and the n approximated with a B-spline curve
f1(t) by solving Eq. (6). The knot spacing of f1 is half the f0
knot spacing. A hierarchical B-spline is constructed by doing
the same process iteratively until reaching the specified finest
layer.

B. Observation Using Hierarchical B-spline

Using an optical motion capture system, we captured the
Aizu-bandaisan dance, a classical Japanese folk dance, at
three varying musical speeds for observation: the original
speed, 1.2 times faster speed, and 1.5 times faster speed.
Motion sequences at each speed were captured five times in
order to investigate motion variance, so a total of 15 datasets
were considered in this experiment. We set the knot spacing
to the musical rhythm, and then applied a hierarchical B-
spline decomposition technique. We used up to five layers
in our motion decomposition and observed the mean and
variance of each reconstructed motion. Our choice of five
layers was arbitrary, but it was empirically found to be
enough to reconstruct high-frequency components of human
motion.

The mean v̄ and the variance d of the j-th joint angle are
calculated as

v̄j(t) =
1
N

N∑
i=1

vi
j(t) (8)

dj(t) =
1

N − 1

N∑
i=1

(
1 − h

(
vi

j(t)
)
· h

(
v̄j(t)

))
, (9)

where vi
j represents the j-th joint angle of the i-th motion se-

quence, N represents the number of input motion sequences
(in our case, N = 5 for a given music playback speed), and h
converts an input 3D vector to 4D vectors in a homogeneous
coordinate as h(a) ≡ (aT , 1)T /|aT , 1|. The variance metric
accounts for both magnitude and direction differences [11].

Fig. 3 shows mean the joint angle trajectories of the left
shoulder; (a) mean motion using a single-layer B-spline, (b)
mean motion using a two-layer hierarchical B-spline, and (c)
mean motion using a three-layer hierarchical B-spline. The
green, yellow, and light blue lines represent the mean joint
angle trajectories at the original musical speed, 1.2 times



(a) (b) (c)

Fig. 3. Comparison of mean joint angle trajectories at the original musical speed (green), 1.2 times faster speed (yellow), and 1.5 times faster speed (light
blue). (a) mean motion using a single-layer B-spline, (b) mean motion using a two-layer hierarchical B-spline, and (c) mean motion using a three-layer
hierarchical B-spline. These trajectories are in the logarithmic space of a quaternion.

Fig. 4. Comparison of variance sequences. Top row: variance sequences at the original musical speed (green), 1.2 times faster speed (yellow), and 1.5
times faster speed (light blue), and the blue line represents the variance calculated from all the motion sequences. Middle row: postures corresponding to
the common local minima. Bottom row: important stop motions detected by dance masters.

faster speed, and 1.5 times faster speed, respectively. With
regard to motion reconstructed from a single-layer B-spline
(Fig. 3 (a)), the motion at the 1.2 times faster musical speed
is quite similar to the motion at the normal musical speed.
The motion at the 1.5 times faster musical speed is also
similar to the motion at the normal speed, but their details
such as curvature differ slightly from each other. With regard
to motion reconstructed from a two-layer hierarchical B-
spline (Fig. 3 (b)), the shape of the joint angle trajectory
at the normal musical speed differs slightly from that of the
1.2 times faster musical speed, especially in the trajectory’s
sharpest curves. On the other hand, the shape of the joint
angle trajectory at the 1.5 times faster musical speed appears
to be a smoothed version of the normal music playback
speed trajectory. With regard to motion reconstructed from a
three-layer hierarchical B-spline (Fig. 3 (c)), the differences
among the joint angle trajectories become more noticeable.
The shape of the joint angle trajectory at the 1.5 times faster
musical speed is a much smoothed version of the trajectory at
the normal musical speed, whereas the shape at the 1.2 times
faster musical speed is just a slightly smoothed version of
the trajectory at the normal musical speed. As for motion
reconstructed from a four-layer hierarchical B-spline and
a five-layer hierarchical B-spline, these phenomena appear
more clearly. Fig. 3 shows only the left shoulder joint angle,

but we found the same phenomena in other joint angle
trajectories of the upper body, and in other dance masters’
joint angle trajectories.

Fig. 4 shows the comparison of variance sequences: the
green, yellow, and light blue lines represent the variance
sequences of the left shoulder joint angle at the normal
musical speed, 1.2 times faster musical speed, and 1.5 times
faster musical speed, respectively, and the blue line repre-
sents the variance sequence calculated from all the motion
sequences. The joint angles for the variance calculation were
reconstructed with a five-layer hierarchical B-spline, and nor-
malized by adjusting the knot of the estimated control points.
From these variance sequences, it is confirmed that there
are some valleys where all variance sequences commonly
have local minima. This means that the postures at these
valleys (the middle row of Fig. 4) are preserved even if the
musical speed gets faster and the high frequency components
are attenuated. We found that most valleys represent the
important stop motion (called keypose) specified by the
dance masters (the bottom row of Fig. 4).

From these observations, we obtained the following two
insights:

Insight 1 High-frequency components of human motion
will be attenuated when the music playback speed
becomes faster.



Fig. 5. Illustration of our sampling method to consider keypose information
for hierarchical motion decomposition.

Insight 2 Keyposes will be preserved even if high fre-
quency components are attenuated.

Based on these insights, we propose a method to model the
temporal scaling of human dance motion.

III. UPPER BODY MOTION GENERATION BY
TEMPORAL SCALING

In this section, we propose a method to temporally scale
a dance motion based on the acquired insights and joint
limitations that a humanoid robot has. In the following, θ
represents a 1D joint angle of a humanoid robot, and control
points of B-spline can be represented in one dimension. The
proposed method consists of two phases:

1) Hierarchical motion decomposition using keypose in-
formation

2) Motion generation based on joint limitations

A. Hierarchical Motion Decomposition Using Keypose In-
formation

According to Insight 2, keypose information, including
posture and velocity components, is preserved even if the
musical speed is fast. Therefore, low frequency components
of dance motion sequence must contain the keypose informa-
tion. Remembering this insight, we can improve the method
of motion decomposition described in Eq. (6). To achieve
this, our motion decomposition method should consider the
posture and velocity information of the keyposes.

To consider posture information, we densely sample input
motion sequence around keyposes, we sparsely sample it in
other parts, and then we use these samples to form a linear
system of equations. Figure 5 provides an illustration of our
data-sampling method for motion decomposition. All vertical
lines in this illustration represent originally sampled data, and
our method uses only the solid lines shown among them.

With regard to velocity information, the movements of a
dancer’s arms and hands stop around keyposes: the velocity
of the hands and arms are approximately zero at keyposes.
We exploit this useful property of keyposes as velocity
information in our motion decomposition method. From all
the keyposes, we form a linear system of equations to satisfy

Fig. 6. Motion reconstruction considering joint limitations. Our optimiza-
tion process gradually attenuates the weighting factors from the finest layer.

the velocity constraints:
0
0
...
0

 = Nvel


Q̂0

Q̂1

...
Q̂n

 , (10)

where Nvel represents a (the number of keyposes)×(n+1)
matrix whose elements are given as

Nvel
ij =

{
d
dtBj+1−⌊ti⌋(ti − ⌊ti⌋) if j ≤ ti < j + 1
0 otherwise .

(11)
Considering both the posture and velocity constraints, the

motion decomposition method is modified as

θ(t1)
...

θ(tm)

0


=


Npos

Nvel




Q̂0

Q̂1

...
Q̂n

 , (12)

where Npos represents a coefficient matrix of B-spline basis
functions modified by our densely/sparsely sampling method.
For each layer of hierarchical B-spline, we can estimate the
control points by solving Equation (12) and decompose the
input motion sequence.

B. Motion Generation Based on Joint Limitations

The final step is to generate temporally-scaled motion for
a humanoid robot. Simple temporal scaling can be done by
adjusting the temporal frame of B-spline control points with
the specified scaling ratio. However, the resulting motion
may violate angular limitations such as joint angular velocity.
To solve this, we consider Insight 1 and joint limitations that
a humanoid robot has, and we modify upper body motion.

In this step, we first segment the motion sequence to
correspond to music rhythm frames, and then we optimize
weighting factors for each hierarchical B-spline layer in each
motion segment so that a resulting joint angle θopt must
satisfy certain joint limitations:

θmin ≤ θopt(t) ≤ θmax (13)

θ̇min ≤ θ̇opt(t) ≤ θ̇max (14)



where θmin and θmax represent minimum and maximum joint
angles, respectively, and θ̇min and θ̇max represent minimum
and maximum joint angular velocities, respectively. Finally
the resulting joint angle is represented as

θopt(t) =
N∑

i=1

wifi(2i−1st), (15)

where s represents a temporal scaling factor (i.e. the result-
ing motion is s-times faster than the original motion), N
represents the number of hierarchical B-spline layers, and
fi represents the i-th layer of the constructed hierarchical
B-spline. wi ∈ [0, 1] represents the weighting factor for the
i-th layer to be detected via this optimization process.

According to Insight 1, the high frequency component is
attenuated when the motion is beyond joint angle limitations.
Therefore, this optimization process is done by attenuating
the weighting factors from the finest layer. When the weight-
ing factor reaches zero and the resulting motion does not
satisfy joint limitations, the weighting factor for next coarser
layer is then gradually attenuated. Finally, when the resulting
motion consists of n layers, the weighting factors from the
1st to the (n − 1)-th layers are 1, the factor for the n-th
layer is (0, 1], and the factors from the (n + 1)-th to the
N -th layers are 0. This is illustrated in Fig. 6.

In this process, a discontinuity might develop between
neighboring motion segments if there ends up being a differ-
ence in the weighting factors. So we apply motion blending
around the discontinuities. Let A and B be neighboring
motion segments. The interpolated joint angle θ′ can be
calculated as

θ′(t) =α

(
t − (tb − 0.5L)

L

)
θAopt(t)

+
(

1 − α

(
t − (tb − 0.5L)

L

))
θBopt(t), (16)

where tb represents a discontinuity frame existing between
A and B, L represents the duration of interpolation, and α(t)
is a quintic polynomial equation given as

α(t) = −6t5 + 15t4 − 10t3 + 1. (17)

This quintic polynomial equation is a C2 continuous function
such that α(0) = 1, α(1) = 0, d

dtα(0) = d
dtα(1) = 0, and

d2

dt2 α(0) = d2

dt2 α(1) = 0.
Through this interpolation process, there is a possibility

of going beyond mechanical limitations. So we iteratively
do the optimization and interpolation procedures until the
resulting motion does not violate the joint limitations.

IV. EXPERIMENTS

In this section, we show the results of the experiments that
evaluated our method. We tested our algorithm by modify-
ing the Aizu-bandaisan dance data through our algorithm.
All motion data was captured at 120 fps by an optical
motion capture system produced by Vicon. We applied the
proposed method to the upper body motion, and applied

Nakaoka et al.’s method to generate leg motion [12]. Our
experimental platform was HRP-2.

A. Result of Original-Speed Motion Generation

We first tested our algorithm by generating the dance mo-
tion for the HRP-2 at the normal speed. In this experiment,
we compared our method with Pollard et al.’s method that
can adapt motion capture data for a humanoid robot using
PD filter [13].

Fig. 7 shows the experimental result with the actual HRP-
2. It is confirmed that the robot can stably imitate the
human dance motion. Fig. 8 shows the resulting joint angle
trajectories of the left shoulder yaw. The red, green, and
blue lines represent the trajectories of the original captured
motion, the result of Pollard et al.’s method, and the result
of our method. As for the joint angular velocity (Fig. 8 (b)),
our method has two advantages. One is that our method
can preserve more details than the trajectories resulting
from Pollard et al.’s method. The trajectories resulting from
Pollard et al.’s method often lack high frequency compo-
nents, due to the PD control. This phenomenon is shown in
Fig. 8 (b.1). The other is that the speed around constraint-
violating motion frames generated by Pollard et al.’s method
is a constant value. This phenomenon is shown in Fig. 8 (b.2).
This can create two problems. One is that the humanoid robot
cannot clearly reproduce a keypose if the posture and angular
speed around the keypose violate kinematic constraints. The
other is that the humanoid robot may fall because of the
rapid changes in acceleration.

B. Simulation Result of 1.2 Times Faster Motion Generation

Next, we tested our algorithm by generating the dance
motion whose speed was 1.2 times faster than the original
speed in simulation. The upper body motion was generated
by our proposed method, and as for leg motion, we first
applied simple temporal scaling to the motion capture data
and then applied Nakaoka et al.’s method. Fig. 9 shows the
simulation results, and the red sphere represents a Zero Mo-
ment Point. Our simulated motion satisfied the criterion for
balance maintenance, and the humanoid robot successfully
performed the dance.

V. CONCLUSION

In this paper, we proposed a method to model temporal
scaling of upper body motion for a sound feedback system
of a dancing humanoid robot. We analyzed motion data
captured at varying musical speeds by using a hierarchical
motion decomposition technique. Through this observation,
we obtained the following two insights:

1) High frequency components of human motion will be
attenuated when music playback speed becomes faster.

2) Keyposes will be preserved even when high frequency
components are attenuated.

We applied these insights to model motion modification
that can generate motion satisfying joint limitations of a
humanoid robot. Our experimental results show the effec-
tiveness of our method.



Fig. 7. Result of generating the Aizu-bandaisan dance motion at the musical original speed.

(a) (b) (b.1) (b.2)

Fig. 8. Comparison of left shoulder yaw angle trajectories of the original motion (red), generated by Pollard et al.’s method (green), and generated by
our method (blue). (a): joint angle trajectories, and (b): joint angular velocity. (b.1) and (b.2) represent the zoomed-in graph of part (1) and (2) in (b),
respectively.

As a future work, we plan to extend this method for
temporally-scaled leg motion generation. When feet touch
the ground, their high frequency components are suddenly
much larger [14]. But these high frequency components
are not derived from a performer’s style. The violation of
high frequency components in synthesized foot motion pro-
duces an unnatural and unstable motion called foot-skating.
Nakaoka et al. [12] proposed a method to recognize the states
of leg motion and to extract the style components of lower
body motion. We believe that our method is applicable to leg
motion if Nakaoka et al.’s method is applied so that possible
states of “swing sole” for a leg are properly recognized.
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