
Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Fall 2013)

Lecture 10 — BFS

Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2013)

Lectured by Danny Sleator — September 26, 2013

Material in this lecture:
- Breadth First Search
- Unweighted Shortest Paths

1 Breadth First Search

The first graph search approach we consider is breadth first search (BFS). BFS can be applied to
solve a variety of problems including: finding all the vertices reachable from a vertex v, finding if
an undirected graph is connected, finding the shortest path from a vertex v to all other vertices,
determining if a graph is bipartite, bounding the diameter of an undirected graph, partitioning
graphs, and as a subroutine for finding the maximum flow in a flow network (using Ford-Fulkerson’s
algorithm). BFS, as with the other graph searches, can be applied to both directed and undirected
graphs. In the directed case we only consider the outgoing arcs when searching.

The idea of breadth first search is to start at a source vertex s and explore the graph outward in all
directions level by level, first visiting all vertices that are the (out-)neighbors of s (i.e. have distance 1
from s), then vertices that have distance two from s, then distance three, etc. It should be clear that a
vertex at distance i + 1 must have an (in-)neighbor from a vertex a distance i. Therefore, if we know
all the vertices at distance i, then we can find the vertices at distance i+ 1 by just considering their
(out-)neighbors.

As with all the search approaches, BFS needs to keep track of which vertices have already been
visited so that it does not visit them more than once. We will refer to all the visited vertices at the
start of level i as X i. Since on level i we visit vertices at a distance i away, the vertices in X i are
exactly those with distance less than i from the source. On each level the search also maintains
a frontier. At the start of level i the frontier Fi contains all unvisited neighbors of X i, which is all
vertices in the graph with distance exactly i from s.

In BFS on each level we visit all vertices in the frontier. This differs from DFS which only visits
one. What we do when we visit depends on the particular application of BFS. But for now we assume
we simply mark the vertices as visited. We mark newly visited vertices by simply adding the frontier
to the previously visited vertices, i.e, X i+1 = X i ∪ Fi . To generate the next set of frontier vertices, the
search takes the neighborhood of F and removes any vertices that have already been visited, i.e.,
Fi+1 = NG(F) \ X i+1. Recall that for a vertex v, NG(v) are the neighbors of v in the graph G (the
out-neighbors for a directed graph) and for a set of vertices F , that NG(F) =

⋃

v∈F NG(v).

Below is pseudocode for a BFS algorithm just described. It returns the set of vertices reachable
from a vertex s as well as the shortest distance to the furthest reachable vertex. We define δG(s, u) to

†Lecture notes by Umut A. Acar, Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan.

1 Version 1.3

Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Fall 2013)

be the shortest distance from vertex s to vertex u, and RG(s) the set of vertices reachable from s in
the graph G.

1 function BFS(G = (V, E), s) =
2 let

3 % requires: X =
�

u ∈ V | δG(s, u)< i
	

∧
4 F =

�

u ∈ V | δG(s, u) = i
	

5 % returns: (RG(s), max{δG(s, u) : u ∈ RG(s)})

6 function BFS′(X , F, i) =
7 if |F |= 0 then (X , i)
8 else let
9 X ′ = X ∪ F % Visit the Frontier

10 N = NG(F) % Determine the neighbors of the frontier
11 F ′ = N \ X ′ % Remove vertices that have been visited
12 in BFS′(X ′, F ′, i+ 1)% Next level
13 end

14 in BFS′({}, {s}, 0)
15 end

If we are using a adjacency table representation of the graph, we can find NG(F), all the neighbors of
the frontier F , as

function NG(F) = Table.reduce Set.Union {} (Table.extract(G, F))

The full SML code for the algorithm is given in the appendix at the end of these notes.

Figure 1 illustrates BFS on an undirected graph where s is the central vertex. Initially, X0 is empty
and F0 is the single source vertex s, as it is the only vertex that is a distance 0 from s. X1 is all the
vertices that have distance less than 1 from s (just s), and F1 contains those vertices that are on the
inner concentric ring, a distance exactly 1 from s. The outer concentric ring contains vertices in F2,
which are a distance 2 from s. The neighbors NG(F1) are the central vertex and those in F2. Notice
that some vertices in F1 share the same neighbors, which is why NG(F) is defined as the union of
neighbors of the vertices in F to avoid duplicate vertices. For the graph in the figure, which vertices
are in X2?

Exercise 1. In general, from which frontiers could the vertices in NG(Fi) come when the graph is
undirected? What if the graph is directed?

To prove that the algorithm is correct we need to prove the assumptions that are stated in the
algorithm. In particular:

Lemma 1.1. In algorithm BFS, when calling BFS′(X , F, i), we have X =
�

v ∈ VG | δG(s, v)< i
	

∧ F =
�

v ∈ VG | δG(s, v) = i
	

Proof. This can be proved by induction on the level i. For the base case (the initial call) we have
X0 = {}, F0 = {s} and i = 0. This is true since no vertex has distance less than 0 from s and only s

2 Version 1.3

Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Fall 2013)

X2

F1

F2

NG(F1)

X1

Figure 1: BFS on an undirected graph with the source vertex at the center

has distance 0 from s. For the inductive step we assume the claims are correct for i and want to show
it for i + 1. For X i+1 we are simply taking the union of all vertices at distance less than i (X i) and all
vertices at distance exactly i (Fi). So this union must include exactly the vertices a distance less than
i + 1. For Fi+1 we are taking all neighbors of Fi and removing the X i+1. Since all vertices Fi have
distance i from s, by assumption, then a neighbor v of F must have δG(s, v) of no more than i+ 1.
Furthermore, all vertices of distance i+ 1 must be reachable from a vertex at distance i. Therefore,
the neighbors of Fi contain all vertices of distance i+ 1 and only vertices of distance at most i+ 1.
When removing X i+1 we are left with all vertices of distance i+ 1, as needed.

To argue that the algorithm returns all reachable vertices, we note that if a vertex v is reachable
from s and has distance d = δ(s, v) then there must be another vertex u with distance δ(s, u) = d−1.
Therefore, BFS will not terminate without finding v. Furthermore, for any reachable vertex v,
δ(s, v)< |V | so the algorithm will terminate in at most |V | rounds (levels).

1.1 BFS extensions

So far we have specified an algorithm that returns the set of vertices reachable from s and the longest
length of all shortest paths to these vertices. Often we would like to know more, such as the distance
of each vertex from s, or the shortest path from s to some vertex v, i.e., the actual sequence of vertices
in the path. It is easy to extend BFS for these purposes. For example the following algorithm returns
a table mapping every reachable vertex v to δG(s, v).

1 function BFS(G, s) = let

2 function BFS′(X , F, i) =
3 if |F |= 0 then X
4 else let
5 X ′ = X ∪ {v 7→ i : v ∈ F}
6 F ′ = NG(F) \ domain(X ′)
7 in BFS′(X ′, F ′, i+ 1) end

8 in BFS′({} , {s} , 0) end

3 Version 1.3

Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Fall 2013)

s s s

s s
1

1

2

2

2 3
s

1

1

2

2

2 3

Figure 2: An undirected graph and two possible BFS trees with distances from s

To report the actual shortest paths one can generate a shortest path tree, which can be represented
as a table mapping each reachable vertex to its parent in the tree. Then one can report the shortest
path to a particular vertex by following from that vertex up the tree to the root (see Figure 2).
We note that to generate the pointers to parents requires that we not only find the next frontier
F ′ = NG(F)/X ′ of the frontier on each level, but that we identify for each vertex v ∈ F ′ one vertex
u ∈ F such that (u, v) ∈ E. There could be multiple such edges to the vertex v. Indeed, Figure 2
shows two possible trees that differ in what the parent is for the vertex at distance 3.

There are various ways to identify the parent. One is to post-process the result of the BFS that
returns the distance. In particular, for every vertex we can pick one of its (in-)neighbors with a
distance one less than itself.

Another way is to identify the parent when generating the neighbors of F . The ideas is that both
the visited vertices X and the frontier F are tables that map each of its vertices to a parent vertex.
Finding the next visited table is easy since it just merges two tables X and F . Finding the next frontier
requires tagging each neighbor from where it came and then merging the results. That is, for each
v ∈ F , it generates a table {u 7→ v : u ∈ N(v)} that maps each neighbor of v back to v. When merging
these tables, it has decide how to break ties since vertices in the frontier might have the several
(parent) neighbors. The code takes the first vertex.

1.2 BFS Cost

So far in the class we have mostly calculated costs using recurrences. This works well for divide-
and-conquer algorithms, but, as we will see, most graph algorithms do not use divide-and-conquer.
Instead, for many graph algorithms we can calculate costs by counting, i.e., adding the costs across a
sequence of rounds of an algorithm. Different rounds can take a different amount of work or span.

Since BFS works in a sequence of rounds, one per level, we can add up the work and span across
the levels. The problem, however, is that the work done at each level varies, since it depends on
the size of the frontier at that level—in fact it depends on the number of outgoing edges from the
frontier for that level. What we do know, however, is that every reachable vertex only appears in
the frontier exactly once. Therefore, all their out-edges are processed exactly once only. If we can
calculate the cost per edge We and per vertex Wv regardless of the level, then we can simply multiply
these by the number of edges and vertices giving W =Wvn+Wem (recall that n= |V | and m= |E|).

4 Version 1.3

Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Fall 2013)

For the span we can determine the largest span per level Sl and multiply it by the number of levels
d =maxv∈V δ(s, v), giving S = Sl d,.

If we use the tree representation of sets and tables, we can show that the work per edge and per
vertex is bounded by O(log n) and the span per level is bounded by O(log2 n). Therefore we have:

WBFS(n, m, d) = O(n log n+m log n)

= O(m log n)

SBFS(n, m, d) = O(d log2 n)

We drop the n log n term in the work since for BFS we cannot reach any more vertices than there are
edges.

Now let’s show that the work per vertex and edge is O(log n). We can examine the code and
consider what is done on each level. In particular the only non-trivial work done on each level is the
union X ′ = X ∪ F , the calculation of neighbors N = NG(F) and the set difference F ′ = N \ F . The
cost of these will depend on the size of the frontier, and in fact in the number of out-edges from the
frontier. We will use ||F || to denote the number of out-edges for a frontier plus the size of the frontier,
i.e., ||F ||=

∑

v∈F (1+ d+G (v)). The costs for each level are as follows

Work Span
X ∪ F O(|F | log n) O(log n)
NG(F) O(||F || log n) O(log2 n)
N \ F O(||F || log n) O(log n)

The first and last lines fall directly out of the cost spec for the set interface. The second line is a
bit more involved. Recall that it is implemented as

function NG(F) = Table.reduce Set.Union {} (Table.extract(G, F))

Let GF = Table.extract(G, F). The work to find GF is bounded by O(|F | log n). For the cost of
the union we can use Lemma 2.1 from lecture 6. In particular, union satisfies the conditions of the
Lemma. Therefore, the work is bound by

W (reduce union {} GF) = O

log |GF |

∑

v 7→N(v)∈GF

(1+ |N(v)|)

= O

�

log n · ||F ||
�

and span is bounded by

S(reduce union {} GT) = O(log2 n)

since each union has span O(log n) and the reduction tree is bounded by log n depth.

Now we see that work per vertex and edge is O(log n), since each vertex and its out-edges appear
on only one frontier and on level i we process ||Fi|| vertices and their out-edges.

Notice that span depends on d. In the worst case d ∈ O(n) and BFS is sequential. As we mentioned
before, many real-world graphs are shallow, and BFS for these graphs has good parallelism.

5 Version 1.3

Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Fall 2013)

2 BFS with Single Threaded Sequences

Here we consider a version of BFS that uses sequences instead of sets and tables. The advantage is
that it runs in O(m) total work and O(d log n) span.

We refer to a graph G = (V, E) where V = {0, 1, . . . , n− 1} as an integer labeled (IL) graph. For an
IL graph we can use the sequences to represent a graph. Each vertex identifier is an integer and the
data for the vertex is stored at that index in the sequence. In this way, if the sequence is array-based,
looking up a vertex is only constant work. At each index we store the neighbors of the vertex, where
the neighbors can be represented as an array sequence containing the neighbors’ integer identifiers.
An IL graph can therefore be implemented with type:

(int seq) seq.

Because the graph does not change during BFS, this representation is efficient.

The set of visited vertices X , however, does change during the course of the algorithm. Therefore,
we use a single threaded (ST) sequence of length |V | to mark which vertices have been visited. By
using inject, we can mark vertices in constant work per update. We can use either a boolean to
indicated whether a vertex has been visited on not, or an (int option) if we want to map each
vertex to its parent. In this case the option NONE indicates the vertex has not been visited, and
SOME(v) indicates it has been visited and its parent is v. Each time we visit a vertex, we map it to its
parent in the BFS tree. As the updates to this sequence are potentially small compared to its length,
using an stseq is efficient. On the other hand, because the set of frontier vertices is new at each
level, we can represent the frontier simply as an integer sequence containing all the vertices in the
frontier, allowing for duplicates.

To simplify the algorithm we change the invariant a bit. In particular on entering BFS’ the
sequence XF contains parent pointers for both the visited and the frontier vertices instead of just for
the visited vertices. F is an integer sequence containing the frontier.

1 function BFS(G : (int seq) seq, s : int) =
2 let
3 function BFS′(XF : int option stseq, F : int seq) =
4 if |F |= 0 then stSeq.toSeq XF
5 else let
6 N = flatten 〈 〈 (u,SOME(v)) : u ∈ G[v] 〉 : v ∈ F 〉 % neighbors of the frontier
7 XF′ = stSeq.inject(N , XF) % new parents added
8 F ′ =

u : (u, v) ∈ N | XF′[u] = v
�

% remove duplicates
9 in BFS′(XF′, F ′) end

10 X0 = stSeq.toSTSeq(〈NONE : v ∈ 〈0, . . . , |G| − 1 〉 〉)
11 in
12 BFS′(stSeq.update(s,SOME(s), X0), 〈 s 〉)
13 end

All the work is done in lines 6, 7, and 8. Also note that the stSeq.inject on line 7 is always
applied to the most recent version. We can write out the following table of costs:

6 Version 1.3

Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Fall 2013)

XF : stseq XF : seq
line work span work span
6 O(||Fi||) O(log n) O(||Fi||) O(log n)
7 O(||Fi||) O(1) O(n) O(1)
8 O(||Fi||) O(log n) O(||Fi||) O(log n)

total across
all d rounds

O(m) O(d log n) O(m+ nd) O(d log n)

where d is the number of rounds (i.e. the shortest path length from s to the reachable vertex furthest
from s). The last two columns indicate the costs if XF was implemented as a regular array sequence
instead of an stSeq. The big difference is the cost of inject. As before the total work across all
rounds is calculated by noting that every out-edge is only processed in one frontier, so

∑d
i=0 ||Fi|| = m.

3 SML Code

Basic BFS. The following SML code for BFS mirrors the pseudo-code in the notes. It uses a table that
maps each vertex to a set that contains its (out-)neighbors. The function function N G F implements
NG(F) by first using extract to get a table with only the vertices in F . That is, the resulting table
maps each vertex in F to its neighbors. Next, it combines all the neighbors of F into a single set.
Recall that Table.reduce f combines the values in the table with the function f .

functor TableBFS(Table : TABLE) =
struct

structure Set = Table.Set
type vertex = Table.key
type graph = Set.set Table.table

fun N (G : graph) (F : Set.set) =
Table.reduce Set.union Set.empty (Table.extract (G, F))

fun BFS_reachable (G : graph, s : vertex) =
let

(* Require: X = {v in V_G | delta_G(s,v) < i} and
* F = {v in V_G | delta_G(s,v) = i}
* Return: (R_G(s), max {delta_G(s,v) : v in R_G(s)}) *)

fun BFS’ (X : Set.set, F : Set.set, i : int) =
if (Set.size F = 0) then (X, i)
else let

val X’ = Set.union (X, F)
val F’ = Set.difference (N G F, X’)

in
BFS’(X’, F’, i+1)

end
in

BFS’(Set.empty, Set.singleton s, 0)
end

end

7 Version 1.3

Parallel and Sequential Data Structures and Algorithms — Lecture 10 15-210 (Fall 2013)

Generating a BFS Tree. The following code generates a BFS tree. It represents the visited set X
and the frontier F as table that map each vertex in the visited set or frontier to their parent in the
BFS tree (i.e. who visited them). The function outEdges returns the out edges of v or an empty set
if v is not found. The NG(F) function not only returns the neighbors for every vertex v ∈ F , but also
tags each neighbor with the vertex v they came from. In particular tagNeighbors tags all neighbors
with v, and then a Table.reduce is used to merge all the tables of tagged neighbors. The merge
used in the reduce takes the first argument if there are two equal keys, which happens in BFS when a
vertex has multiple potential parents.

functor TableBFSTree(Table : TABLE) =
struct

structure Set = Table.Set
type vertex = Table.key
type graph = Set.set Table.table
type ’a table = ’a Table.table
type set = Set.set
type parentsTable = vertex table
fun merge(A,B) = Table.merge (fn (a,b) => a) (A,B)

fun outEdges (G : graph) (v : vertex) =
case (Table.find G v) of

NONE => Set.empty
| SOME(ngh) => ngh

(* Return neighbors tagged with where they come from *)
fun N (G : graph) (F : set) =

let
fun tagNeighbors v = Table.tabulate (fn _ => v) (outEdges G v)
val ngh = Table.tabulate tagNeighbors F

in
Table.reduce merge (Table.empty()) ngh

end

fun bfsTree (G :graph) (s : vertex) =
let

fun BFS(X : parentsTable, F : parentsTable) =
if (Table.size F = 0) then X
else let

val X’ = merge(X,F)
val Ngh = N G (Table.domain F)
val F’ = Table.erase(Ngh, Table.domain X’)

in BFS(X’, F’) end
in

BFS(Table.empty(), Table.singleton(s,s))
end

end

8 Version 1.3

	Breadth First Search
	BFS extensions
	BFS Cost

	BFS with Single Threaded Sequences
	SML Code

