
Recitation 2 — Recurrences

Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2013)

September 4, 2013

1 Announcements

� HW1 is due on Monday, September 9. Hopefully you have all started by now; if not, now
would be a good time.

� If you are not able/do not want to use Piazza to contact the course staff, you may send
email to

15210-staff@lists.andrew.cmu.edu.

� Questions from lecture or homework?

2 Big-O, Big-Omega, and Big-Theta

In lecture yesterday, we reviewed Big-O notation for describing classes of functions. Today, we’ll
review some other useful classes of functions.

Remember the definition of Big-O from lecture:

Definition 2.1. f ∈ O(g) if there exist c > 0 and n0 > 0 such that f(n) ≤ c · g(n) for all n > n0.

Note that if f ∈ O(g), g is asymptotically an “upper bound” of f . However, it may be a very
weak upper bound. For example, you can easily show using the definition that n ∈ O(nn). This
knowledge is not particularly useful, however. In general, we are interested in tight bounds
(though technically correct, you would not get much credit on an exam for saying that mergesort
does O(n5) work.) Fortunately, there are other classes of functions that can formalize this idea.

Definition 2.2. f ∈ Ω(g) if there exist c > 0 and n0 > 0 such that f(n) ≥ c · g(n) for all n > n0.

Note that Ω (“Big-Omega”) gives essentially the opposite of O: if f ∈ Ω(g), then f grows
asymptotically at least as fast as g. This still does not give us the tight bounds we want, however.
For this, we combine the two definitions.

Definition 2.3. f ∈ Θ(g) if there exist c1 > 0, c2 > 0 and n0 > 0 such that c1 · g(n) ≤ f(n) ≤
c2 · g(n) for all n > n0.

Intuitively, Θ (“Big-Theta”) says that f grows at least as fast and at least as slow as g, that is,
they grow at approximately the same rate. This is a tight bound. Note that f ∈ Θ(g) if and
only if f ∈ O(g) and f ∈ Ω(g).



Parallel and Sequential Data Structures and Algorithms — Recitation 2 15-210 (Fall 2013)

We will often be sloppy and use Big-O notation to give tight bounds. For example, when we
say that the work of mergesort is O(n log n), we mean that it is Θ(n log n). Make sure you
understand this distinction and ask us if what we mean isn’t clear.

Here are a few examples of simple functions and their asymptotic analyses.

f g Relations

n 8n2 f ∈ O(g)
n3 12n3 + 4n2 f ∈ O(g), f ∈ Ω(g), f ∈ Θ(g)

2logn n f ∈ O(g), f ∈ Ω(g), f ∈ Θ(g)
n! n22n f ∈ Ω(g)

3 Substitution Method

Yesterday in lecture we went over the tree method, a good way to get started when solving a
recurrence. We will review the tree method later. However, first we will look at another method:
the substitution method. This is a good way of proving to yourself (and us) that the complexity
class you’ve found is correct.

The substitution method uses a technique that may sound unusual, but will become easy with
practice: guess an answer and prove it correct. In particular, let’s start by solving a recurrence
that should be familiar to all of you as a warmup:

W (n) = 2W (n/2) + O(n)

To solve this recurrence using the substitution method, we guess a function g(n) and prove (by
strong induction on n) the following theorem, which is equivalent to W (n) ∈ O(g(n)).

Theorem 3.1. Let a constant c be given. If W (n) ≤ 2W (n/2) + c · n for n > 1 and W (1) ≤ c,
then there exist constants k1 and k2 such that

W (n) ≤ k1 · g(n) + k2

Because Big-O notation hides many details (that’s why it’s useful) and because this technique
relies on guessing an answer, it is often tempting to be sloppy in writing these proofs. Occasionally,
this can lead us to fool ourselves into believing an incorrect proof.

3.1 What can go wrong

Let’s attempt to solve the above recurrence using an insufficiently formal application of the
substitution method. Suppose W (1) ∈ O(1). We claim that W (n) ∈ O(n). Is this true? Let’s
try to prove it by induction.

Base case: Given.

Inductive hypothesis: For all i < n, W (i) ∈ O(i).

2



Parallel and Sequential Data Structures and Algorithms — Recitation 2 15-210 (Fall 2013)

Inductive case:

W (n) = 2W (n/2) + O(n)

= 2 [O(n/2)] + O(n)

≤ 2O(n) + O(n)

= O(n)

So, we proved that W (n) ∈ O(n). Or did we?

3.2 A Closer Look

What went wrong? Recall the definition of Big-O.

Using Definition 2.1 we can prove the following lemma:

Lemma 3.2. If f ∈ O(n), there exist constants k1, k2 so that f(n) ≤ k1n + k2, n ≥ 0

Proof. By the definition of Big-O, there exist constants c and n0 such that f(n) ≤ c · n for
n > n0. Then k1 = c, k2 = max(f(i) : 0 ≤ i < n0) works.

So, when we say W ′(n) ∈ O(n), we mean that there exist some n0, c such that for all n > n0,
W ′(n) ≤ c ·n, and want to show that there exist constants k1 and k2 such that W ′(n) ≤ k1n+ k2
for all n ≥ 0. This isn’t the case in our proof of the inductive case:

W (n) ≤ 2W (n/2) + c · n
≤ 2 [k1n/2 + k2] + c · n
= (k1 + c)n + 2k2

� k1n + k2

Do you see what went wrong?

Since c > 0, there is no fixed choice of c that makes this proof go through.

3.3 Doing It Correctly

Now let’s try correctly proving W (n) ∈ O(n log n).

Proof. Let k1 = 2c and k2 = c (we need to show that k1 and k2 exist, and so guessing ones
that work is perfectly valid.) For the base case (n = 1), we check that W (1) ≤ c = k2. For the
inductive step (n > 1), we assume that

W (n/2) ≤ k1 · n2 log(n2 ) + k2,

(this is where we need strong induction, so we can assume the theorem is true for any i < n)
and we’ll show that W (n) ≤ k1 · n log n + k2. To show this, we substitute an upper bound for

3



Parallel and Sequential Data Structures and Algorithms — Recitation 2 15-210 (Fall 2013)

W (n/2) from our assumption into the recurrence, yielding

W (n) ≤ 2W (n/2) + c · n
≤ 2(k1 · n2 log(n2 ) + k2) + c · n
= k1n(log n− 1) + 2k2 + c · n
= k1n log n + k2 + (c · n + k2 − k1 · n)

≤ k1n log n + k2,

where the final step follows because c · n + k2 − k1 · n ≤ 0 as long as n > 1.

3.4 Big-Theta

In fact, the bound we have just found is tight. Can we prove this using the substitution method?
We first prove another theorem that shows W (n) ∈ Ω(n log n).

Theorem 3.3. Let a constant c be given. If W (n) ≥ 2W (n/2) + c · n for n > 1 and W (1) ≥ c,
then there exist constants k1 and k2 such that

W (n) ≥ k1 · g(n) + k2

Proof. Let k1 = k2 = c. We show the inductive step, assuming that

W (n/2) ≥ k1 · n2 log(n2 ) + k2,

We show that W (n) ≥ k1 · n log n + k2, as before.

W (n) ≥ 2W (n/2) + c · n
≥ 2(k1 · n2 log(n2 ) + k2) + c · n
= k1n(log n− 1) + 2k2 + c · n
= k1n log n + k2 + (c · n + k2 − k1 · n)

≥ k1n log n + k2,

where the final step follows because c · n + k2 − k1 · n ≥ 0 as long as n > 1.

Now that we have shown that W (n) ∈ O(n log n) and W (n) ∈ Ω(n log n), we know that
W (n) ∈ Θ(n log n), and thus the complexity bound we have given is tight.

3.5 Tree Method

Yesterday in lecture we went over the tree method, which is a good way of getting started solving
a recurrence, or maybe getting a guess for the recurrence to use for the substitution method. In
order to effectively use the tree method, we often need to solve a geometric series. Recall from
math classes the formula for a geometric series of the form a0 + a0r + a0r

2 + ... + a0r
n:

a0
rn+1 − 1

r − 1

4



Parallel and Sequential Data Structures and Algorithms — Recitation 2 15-210 (Fall 2013)

You’re likely familiar with special cases of this formula in which 0 < r < 1, in which case the
sum converges even for n =∞:

a0
1− r

For example, 1 + 1
2 + 1

4 + ... = 1
1− 1

2

= 2.

Now, let’s look at some examples using the tree method.

� For W (n) = 4W (n/2) + O(n), the recursion tree is:

k1 n + k2

k1 (n/2) + k2

k1 n + k2

k1 2n + 4 k2

k1 4n + 16 k2

k1 (n/2) + k2 k1 (n/2) + k2 k1 (n/2) + k2

If we were to write out the total cost of the operation, we would have:

k1n + k2 + 4(k1(
n

2
) + k2) + ... + 4logn(k1(1) + k2)

That is, we have at level i:

Problem Size n/2i

Node Cost ≤ k1(n/2i) + k2
Number of Nodes 4i

It is often more helpful to write the total cost using summation notation:

Σlogn
i=0 4i(k1(

n

2i
) + k2)

Σlogn
i=0 4ik1(

n

2i
) + Σlogn

i=0 4ik2

Σlogn
i=0 2ik1(n) + Σlogn

i=0 4ik2

Using the formula for geometric series and log rules,

W (n) = k1 · n
1− 2logn+1

1− 2
+ k2

1− 4logn+1

1− 4

W (n) = k1 · nO(n) + O(n2) ∈ O(n2)

� For W (n) = W (3n/4) + O(n), we have at level i:

5



Parallel and Sequential Data Structures and Algorithms — Recitation 2 15-210 (Fall 2013)

Problem Size (3/4)in

Node Cost ≤ k1(3/4)in + k2
Number of Nodes 1

W (n) = k1Σ
logn
i=0 (3/4)in + k2 · log n

W (n) = k1
1−O(1/n)

1− 3/4
+ k2 · log n ∈ O(n)

� For W (n) = 2W (n/2) + O(n), we have at level i:

Problem Size n/2i

Node Cost ≤ k1(n/2i) + k2
Number of Nodes 2i

W (n) = k1Σ
logn
i=0 2i(n/2i) + k2Σ

logn
i=0 2i

W (n) = k1n · log n + k2
1−O(n)

1− 2
∈ O(n log n)

Note that, in the first summation, since r = 1, we don’t use the geometric series formula,
but instead multiply the total cost at each level by the number of levels.

6


	Announcements
	Big-O, Big-Omega, and Big-Theta
	Substitution Method
	What can go wrong
	A Closer Look
	Doing It Correctly
	Big-Theta
	Tree Method


