
Recitation 7

Treaps and Combining BSTs

7.1 Announcements

• FingerLab is due Friday afternoon. It’s worth 125 points.

• RangeLab will be released on Friday.

39

40 RECITATION 7. TREAPS AND COMBINING BSTS

7.2 Deletion from a Treap

Recall that a treap is a BST with a priority function p : U → Z, where U is the universe of keys.
You should think of p as a random number generator: for each key, it returns a random integer.
A treap has two structural properties:

1. BST invariant: For every Node(L, k,R), we have ` < k for every ` in L, and symmet-
rically k < r for every r in R.

2. Heap invariant: For every Node(L, k,R), we have that p(k) > p(x) for every x in either
L or R.

Consider the following strategy for deleting a key k from a treap:

1. Locate the node containing k,

2. Set the priority of k to be −∞ (note that if k has children, then this breaks the heap
invariant of the treap),

3. Restore the heap invariant by rotating k downwards until it has only leaves for children,

4. Delete k by replacing its node with a leaf.

A “rotation” in this case refers to the process of making one of k’s children the root, depending
on their relative priorities. For example, if k has two children with priorities p1 and p2 where
p1 > p2, we rotate like so:

The case of p1 < p2 is symmetric. In turns out that this process is equivalent to calling join
on the children of k. You should convince yourself of this.

We’re interested in the following: in expectation, how many rotations must we perform
before we can delete k?

Built: October 9, 2017

7.2. DELETION FROM A TREAP 41

Let’s set up the specifics: we have a treap T formed from the sorted sequence of keys S,
|S| = n. We’re interested in deleting the key S[d]. Let T ′ be the same treap, except that the
priority of S[d] is now −∞.

We need a couple indicator random variables:

X i
j =

{
1, if S[i] is an ancestor of S[j] in T

0, otherwise

(X ′)ij =

{
1, if S[i] is an ancestor of S[j] in T ′

0, otherwise

Task 7.1. Write Rd, the number of rotations necessary to delete S[d], in terms of the
given random variables.

The number of rotations is equal to the number of nodes which aren’t an ancestor of S[d]
in T , but are in T ′. Therefore we have

Rd =
n−1∑
i=0

(X ′)id −
n−1∑
i=0

X i
d

Task 7.2. Give E [X i
d] and E [(X ′)id] in terms of i and d.

We have both X i
d = 1 and (X ′)id = 1 if S[i] has the largest priority among the |d − i| + 1

keys between S[i] and S[d]. However, notice that in the latter case, we already know that the
priority of S[i] is larger than that of S[d], unless i = d. So we only need that S[i] is the largest
among the |d− i| significant keys in this range. Therefore:

E
[
X i

d

]
=

{
1, if i = d

1
|d−i|+1

, otherwise

E
[
(X ′)id

]
=

{
1, if i = d

1
|d−i| , otherwise

Built: October 9, 2017

42 RECITATION 7. TREAPS AND COMBINING BSTS

Task 7.3. Compute E [Rd]. For simplicity, you may assume 1 ≤ d ≤ n− 2.

E [Rd] =
n−1∑
i=0

E
[
(X ′)id

]
−

n−1∑
i=0

E
[
X i

d

]
=

(
d−1∑
i=0

E
[
(X ′)id

]
+ 1 +

n−1∑
i=d+1

E
[
(X ′)id

])
−

(
d−1∑
i=0

E
[
X i

d

]
+ 1 +

n−1∑
i=d+1

E
[
X i

d

])

=

(
d−1∑
i=0

1

d− i
+

n−1∑
i=d+1

1

i− d

)
−

(
d−1∑
i=0

1

d− i+ 1
+

n−1∑
i=d+1

1

i− d+ 1

)
=
(
Hd +Hn−d−1

)
−
(
(Hd+1 − 1) + (Hn−d − 1)

)
= 2 +

(
Hd −Hd+1

)
+
(
Hn−d−1 −Hn−d

)
= 2− 1

d+ 1
− 1

n− d

≤ 2

Built: October 9, 2017

7.3. GENERALIZED COMBINATION 43

7.3 Generalized Combination

In lecture, we discussed union, and argued that it has O
(
m log

(
n
m
+ 1
))

work and O(log(n) log(m))
span. The latter bound can be improved to O(log n + logm) using futures1, but that is outside
the scope of this course.

Let’s begin by inspecting the code for union.

Algorithm 7.4. BST union.

1 fun union (T1, T2) =
2 case (T1, T2) of
3 (_,Leaf) ⇒ T1

4 | (Leaf,_) ⇒ T2

5 | (Node (L1,x,R1),_) ⇒
6 let val (L2,_,R2) = split (T2, x)
7 val (L,R) = (union (L1, L2) || union (R1, R2))
8 in joinMid (L, x,R)
9 end

What about the functions intersection and difference? These can be implemented
in a similar fashion as union, and as such have the same cost bounds. In this recitation, we’ll
establish this more concretely.

Task 7.5. Implement a helper function combine which has O
(
m log

(
n
m
+ 1
))

work
and O(log(n) log(m)) span for BSTs of size n and m, n ≥ m. Use combine to
implement intersection and difference. Conclude that all three of the set
functions have the same cost bounds.

What do we have to change to generalize union? Notice that, for example, intersection
returns Leaf in both base cases, while difference only returns Leaf in the second case.
Next, consider that intersection only keeps the key x if it is also present in T2, and
difference specifically removes x if it is present in T2. We can account for all of these
differences by introducing new arguments which specify what to do in the base cases, and
whether or not we should keep x in the recursive case (based on whether or not it is present in
T2).

1http://dl.acm.org/citation.cfm?id=258517

Built: October 9, 2017

http://dl.acm.org/citation.cfm?id=258517

44 RECITATION 7. TREAPS AND COMBINING BSTS

Algorithm 7.6. Generalized BST combine.

1 fun combine f1 f2 k =
2 let
3 fun combine’ (T1, T2) =
4 case (T1, T2) of
5 (_,Leaf) ⇒ f1(T1)
6 | (Leaf,_) ⇒ f2(T2)
7 | (Node (L1,x,R1),_) ⇒
8 let val (L2,y,R2) = split (T2, x)
9 val (L,R) = (combine’ (L1, L2) || combine’ (R1, R2))

10 in if k(y) then joinMid (L, x,R) else join (L,R)
11 end
12 in
13 combine’
14 end
15
16 val union =
17 combine (fn T1 ⇒ T1) (fn T2 ⇒ T2) (fn y ⇒ true)
18
19 val intersection =
20 combine (fn T1 ⇒ Leaf) (fn T2 ⇒ Leaf) (fn y ⇒ isSome y)
21
22 val difference =
23 combine (fn T1 ⇒ T1) (fn T2 ⇒ Leaf) (fn y ⇒ not isSome y)

Task 7.7. Consider a function symdiff where (symdiff (A,B)) returns a BST
containing all keys which are either in A or B, but not both. Implement symdiff in
terms of combine.

val symdiff = combine (fn T1 ⇒ T1) (fn T2 ⇒ T2) (fn y ⇒ not isSome y)

Built: October 9, 2017

7.4. ADDITIONAL EXERCISES 45

7.4 Additional Exercises

Exercise 7.8. Describe an algorithm for inserting an element into a treap by “undoing”
the deletion process described in Section 7.2.

Exercise 7.9. For treaps, suppose you are given implementations of find, insert,
and delete. Implement split and joinMid in terms of these functions. You’ll
need to “hack” the keys and priorities; i.e., assume you can do funky things like insert
a key with a specific priority.

Exercise 7.10. Given a set of key-priority pairs (ki, pi) : 0 ≤ i < n where all of the ki’s
are distinct and all of the pi’s are distinct, prove that there is a unique corresponding
treap T .

7.4.1 Selected Solutions

Exercise 7.8.

• Implement split(T, k) as follows. First, determine if k is present in T via find. Then,
insert k with priority ∞ into T . The resulting treap will have the form Node(L, k,R).
We then return (L,m,R), where m was the result of the find.

• Implement joinMid(L, k,R) as follows. Set p(k) =∞, and then let T = delete(Node(L, k,R), k).
Finally, restore p(k) to its correct value, and finish with insert(T, k).

Built: October 9, 2017

46 RECITATION 7. TREAPS AND COMBINING BSTS

.

Built: October 9, 2017

	Treaps and Combining BSTs
	Announcements
	Deletion from a Treap
	Generalized Combination
	Additional Exercises
	Selected Solutions

