Processing math: 96%

Table and Set Notation

« Resources
Notation Equivalent SML with SET and ORDSET
|X| size S
{} empty ()
{k} singleton k
kS find X k
X{k} insert (X,k)
X{k} delete (X,k)
{kX | e} filterKey (fn k => e) X
XY union (X,Y)
XY intersection (X,Y)
XY difference (X,Y)
Notation Equivalent SML with TABLE and ORDTABLE
|T| size T
{} empty ()
{kv} singleton (k,v)
{ke:(kv)T} mapKey (fn (k,v) => e) T
{ke:kX} tabulate (fn k => e) X
{(kv)T | e} filterKey (fn (k,v) => e) T
{e1:(kv)T | e2} mapKey (fn (k,v) => e1) (filterKey (fn (k,v) => e2) T)
T1T2 union (fn (_, v) => v) (T1,T2)
T1T2 intersection (fn (_, v) => v) (T1,T2)
T1T2 difference (T1,T2)
(kv)Te reduce add 0 (mapKey (fn (k,v) => e) T)

The meaning of add and 0 in the reduce will depend on the type (e.g. Int.+ and 0 for integers or Real.+ and 0.0 for reals). We can also replace with other operations such as min and \max with the implied semantics.