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1 Online Resource Allocation

Consider the following problem. You are in charge of managing a network, viewed as a graph G
with m edges. G could be directed or undirected, or even have parallel edges; it doesn’t matter.
You then receive a series of requests for connections between various pairs: (s1, t1), (s2, t2), . . ..
When the ith request comes in, you have to route it, that is, you have to give it a path from si

to ti. Your goal is to even out the load. In particular, what you want to do is keep the maximum
congestion over the edges in G as small as possible. The big problem is that your requests are
arriving online (i.e., one after the other) and you don’t know what requests are going to come in
the future. Also you can’t modify paths after you give them.

What we will discuss today is a neat algorithm for this problem due to Awerbuch, Azar, and
Plotkin. This algorithm runs in polynomial time, and guarantees on any sequence of requests a
maximum congestion at most an O(log m) factor larger than the best possible routing in hindsight
(had we been given the requests up front and also had exponential time to solve for the best routing,
since even with all requests given up front this problem is NP-hard).1

The algorithm actually will solve more general allocation problems too. For example, suppose we
have a set of m resources, and request i comes with a collection Si of sets of resources, and we
must allocate to i one of the sets in Si. E.g., if Si = {{1, 2, 3}, {2, 4, 5}, {2, 6}} then we can give it
resources 1, 2, and 3, or resources 2, 4, and 5, or resources 2 and 6. The goal is to minimize the
maximum load over the resources (where the load of a resource is the number of requests using it).
Can you see how this setting generalizes the case of routing paths? Note that in routing paths, the
Si is given implicitly rather than explicitly.

In the discussion below we will use “load” and “congestion” interchangeably.

1.1 A lower bound

Before giving an algorithm, let’s first see why an O(log m) factor worse than optimal is the best we
can hope for if requests are generated by an adversary. Here is an example.

First, create k “bridges” (we’ll solve for k at the end): this is just a matching of k edges directed
north-to-south. We’ll have one source node s that connects to the north end of all k bridges, and
one sink node t that connects to the south end of all k bridges. Now we have a source node sL the
connects to the north end of the leftmost k/2 bridges and a sink node tL that connects to the south
end of the leftmost k/2 bridges. Similarly a source sR and sink tR that connect to north and south
ends respectively of the rightmost k/2 bridges. Now a source sLL and sink tLL that connect to the
leftmost k/4 of the leftmost k/2 bridges, and similarly sLR, tLR that connect to the rightmost k/4
of the leftmost k/2 bridges, sRL, tRL that connect to the leftmost k/4 of the rightmost k/2 bridges
and sRR, tRR that connect to the rightmost k/4 of the rightmost k/2 bridges. We keep doing this
lg k levels. In total we have m = O(k log k) edges, all directed south.

1Problems where inputs arrive one at a time and you must make decisions without knowing the future are often
called online problems, as opposed to standard (offline) problems where all your input is given to you up front.
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Now, suppose we begin with k requests from s to t. At this point, no matter what the algorithm
does, the average load on bridges is 1, and WLOG say the average load on the left half is ≥ the
average load on the right half. The adversary now gives k/2 requests from sL to tL. So now the
average load on the left half of the bridges is 2. Again, the adversary looks to see which half of
that half is more highly loaded and gives k/4 requests there, bringing the average load there up to
3. This keeps going until finally at the end there is some bridge with load lg(k) = Θ(log m). But
in hindsight you could have had all of the first k requests on the right k/2, then all of the next k/2
requests on whichever k/4 the adversary didn’t use later, etc., giving a maximum load of 2.

1.2 Two algorithms that don’t work

Before giving an algorithm that works, it will be helpful to consider two “strawman” algorithms
that don’t work: they can produce congestion much greater than O(log m) times optimal. We’ll
then combine them to create an algorithm that does. Let’s continue thinking about routing paths
in graphs, though everything will apply to the more general scenario.

Strawman #1: route to greedily minimize maximum congestion.

Claim: if the graph is a circle, this can do as badly as Ω(m) times worse than the optimal routing.
Can anyone see why? What if you get (1, 2) twice, then (2, 3) twice, then (3, 4) twice, etc. The
algorithm will use up the whole circle on the first two requests, then use it up again on the next
two requests, and so on. What should it have done? It should have routed on shortest paths. This
leads us to...

Strawman #2: ignore congestion so far, and just route on shortest paths.

Claim: you can make this do really badly too. Can anyone see a bad example? What if you see
the same pair (s, t) over and over again, and there is one path of length 1 and many disjoint paths
of length 2 between them?

1.3 The Awerbuch-Azar-Plotkin algorithm

The actual algorithm will combine aspects of each. First, to simplify, let’s assume final OPT cost
(the maximum congestion, or maximum load) is known. If not, there are tricks to get around it,
but let’s just assume the value of the optimal cost is known to keep things simple. Here is the
algorithm.

Algorithm 1 Awerbuch-Azar-Plotkin

Init: Give each edge (each resource) a price of $1.

When a request arrives:

1. Route it on the cheapest path (or in the more general setting, give the request its cheapest
set).

2. Multiply the price of each edge (resource) used by the request that just arrived by a factor
r = (3/2)1/OPT .

Interestingly, this is an algorithm you could use for pricing resources, where a resource e of load
ℓ(e) has price (3/2)ℓ(e)/OPT , allowing the requests to choose for themselves what sets to purchase.
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Analysis: Let V be the total sum of all the prices, over all m resources. So, initially V = m. If we
can show that at the end V = O(m) then we are done. Can you see why? Because for any resource
e, its load ℓ(e) must satisfy (3/2)ℓ(e)/OPT ≤ V which means ℓ(e)/OPT ≤ log3/2 V = O(log m).

One useful thing to notice: by choosing the cheapest path (cheapest set) we have chosen the path
(set) that minimizes the increase in V out of all the options we have. Can you see why?

Let’s use t to index time (i.e., requests). Define ℓt(e) to be the load on resource e after request t,
so ℓ0(e) = 0 for all e. Define Pt to be the path chosen by the algorithm for request t and let P ∗

t be
the path chosen by the optimal solution that we are comparing ourselves to. Finally, let’s use T to
denote the total number of requests.

The total increase in V from the start of the process to the end is VT −m. Let’s now write this as
the sum of increases over the time steps t = 1, 2, . . . , T and use the facts we know.

VT − m =
∑

t

∑

e∈Pt

(3/2)ℓt−1(e)/OPT
(

(3/2)1/OPT − 1
)

≤
∑

t

∑

e∈P ∗

t

(3/2)ℓt−1(e)/OPT
(

(3/2)1/OPT − 1
)

[because Pt was the path minimizing the increase in V]

=
∑

e

∑

t:e∈P ∗

t

(3/2)ℓt−1(e)/OPT
(

(3/2)1/OPT − 1
)

[switching order of summations]

≤
∑

e

(3/2)ℓT (e)/OPT
∑

t:e∈P ∗

t

(

(3/2)1/OPT − 1
)

.

[since loads can only increase over time]

Now, notice that the function (3/2)x − 1 is convex, and equals 0 when x = 0 and equals 1/2 when
x = 1. Therefore, for 0 ≤ x ≤ 1 we have (3/2)x − 1 ≤ x/2 by definition of convexity. So, we have
for each resource e:

∑

t:e∈P ∗

t

(

(3/2)1/OPT − 1
)

≤
∑

t:e∈P ∗

t

1

2 · OPT
.

Next, notice that the number of times t such that e ∈ P ∗

t is exactly the load of e in the optimal
solution, which in particular is at most OPT , since that represents the maximum load in the
optimal solution over all e. So,

∑

t:e∈P ∗

t

1

2 · OPT
≤

1

2
.

Putting all this together we have:

VT − m ≤
1

2

∑

e

(3/2)ℓT (e)/OPT

=
1

2
VT .

[by definition of VT ]

So, moving terms around we get 1
2VT ≤ m, so VT ≤ 2m and we are done!
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