Recitation 11

Graph Contraction and MSTs

11.1 Announcements

- SegmentLab has been released, and is due Friday, April 14. It's worth 135 points.
- Midterm 2 is on Friday, April 7.

11.2 Contraction

In the textbook, we presented an algorithm for counting the number of connected components in a graph:

```
Algorithm 11.1. (Algorithm 17.22 in the textbook.)
countComponents \((V, E)=\)
    if \(|E|=0\) then \(|V|\) else
    let
        \(\left(V^{\prime}, P\right)=\) starPartition \((V, E)\)
        \(E^{\prime}=\{(P[u], P[v]):(u, v) \in E \mid P[u] \neq P[v]\}\)
    in
        count Components \(\left(V^{\prime}, E^{\prime}\right)\)
    end
```

with starPartition implemented as follows:

```
Algorithm 11.2. (Algorithm 17.15 in the textbook.)
    starPartition \((V, E)=\)
    let
    \(T H=\{(u, v) \in E \mid \neg\) heads \((u) \wedge\) heads \((v)\}\)
    \(P=\bigcup_{(u, v) \in T H}\{u \mapsto v\}\)
    \(V^{\prime}=V \backslash \operatorname{domain}(P)\)
    \(P^{\prime}=\left\{u \mapsto u: u \in V^{\prime}\right\}\)
    in
    \(\left(V^{\prime}, P^{\prime} \cup P\right)\)
    end
```

Now, suppose we implemented star partitioning for enumerated graphs as follows:

```
val enumStarPartition : (int * int) Seq.t * int }->\mathrm{ int Seq.t
```

Specifically, given a graph represented as a sequence of edges E where every vertex is labeled $0 \leq v<n$, (enumStarPartition (E, n)) returns a mapping P where $P[v]$ is the supervertex containing v. (If v was a star center or was unable to contract, then $P[v]=v$.)

Task 11.3. Implement a function enumCount Components which counts the number of components of an enumerated graph. It should take in a graph represented as (E, n) and use enumStarPartition internally.

A direct but incorrect translation of the original code might look like this:

```
fun incorrectCountComponents \((E, n)=\)
    if \(|E|=0\) then \(n\) else
    let
        val \(P=\) enumStarPartition \((E, n)\)
        val \(E^{\prime}=\langle(P[u], P[v]):(u, v) \in E \mid P[u] \neq P[v]\rangle\)
    in
        incorrectCountComponents \(\left(E^{\prime}, n\right)\)
    end
```

The problem with this code is that it doesn't actually count the number of connected components, despite performing the contraction correctly. This is because we never modify the value n.

A first step in fixing the issue is to add a line after line 5 which counts the number of distinct vertices in E^{\prime}. Specifically, we use P to identify which vertices no longer exist, filter them out, then simply take the length of the resulting sequence:

$$
\text { val } n^{\prime}=|\langle v: 0 \leq v<n \mid P[v]=v\rangle|
$$

We could then pass n^{\prime} in to the recursive call rather than n. However, we now notice an even bigger problem: not all vertices in E^{\prime} are labeled $0 \leq v<n^{\prime}$.

What we really need to do is construct a new labeling within the range $\left[0, n^{\prime}\right)$. We can do so by marking each each contracted vertex with a 0 and each remaining vertex with a 1 and running a + -scan. This determines a sequence P^{\prime} which maps each remaining vertex to a unique label in the range $\left[0, n^{\prime}\right)$. This step also conveniently calculates n^{\prime}. At the end of the round, when we promote edges by relabeling their endpoints, we have to further relabel them according to P^{\prime}. The code is as follows.

```
Algorithm 11.4. Counting connected components in an enumerated graph.
    fun enumCountComponents ( }E,n\mathrm{ ) =
        if }|E|=0\mathrm{ then }n\mathrm{ else
        let
            val P = enumStarPartition ( }E,n\mathrm{ )
            fun isAlive v= if P[v]=v then 1 else 0
            val ( }\mp@subsup{P}{}{\prime},\mp@subsup{n}{}{\prime})=\mathrm{ Seq.scan + 0 <isAlive(v):0 <v<n\
            val }\mp@subsup{E}{}{\prime}=\langle(\underline{\mp@subsup{P}{}{\prime}[P[u]],},\mp@subsup{P}{}{\prime}[P[v]]):(u,v)\inE|P[u]\not=P[v]
        in
            enumCountComponents ( }\mp@subsup{E}{}{\prime},\mp@subsup{n}{}{\prime}
        end
```


11.2.1 Cost Bounds

Task 11.5. Recall that a forest is a collection of trees. What are the work and span of enumCountComponents when applied to a forest? Assume that (enumStarPartition (E, n)) requires $O(n+|E|)$ work and $O(\log n)$ span.

Line 6 of enumCount Components clearly requires $O(n)$ work and $O(\log n)$ span. Line 7 is just a map followed by a filter, and therefore requires $O(m)$ work and $O(\log n)$ span. But how do n and m change, round-to-round?

Regarding n, we recall that star-partitioning removes at least $n / 4$ vertices in expectation, and therefore we expect the number of vertices to decrease geometrically.

For general graphs, we can't say that m decreases geometrically. However, a tree has $n-1$ edges, and therefore m is initially upper bounded by $n-1$. Furthermore, on each round, exactly one edge is deleted for every vertex which is deleted. Therefore, for forests and trees, m decreases geometrically during contraction. Therefore the total work and span of this algorithm for an input forest of n vertices are $O(n)$ and $O\left(\log ^{2} n\right)$, respectively.

11.3 Borůvka's Algorithm

The textbook describes two versions of Borůvka's algorithm: one which performs tree contraction at each round, and another which performs a single round of star contraction at each round. We will be using the latter, since it has better overall span $\left(O\left(\log ^{2} n\right)\right.$ rather than $O\left(\log ^{3} n\right)$).

Task 11.6. Run Boriovka's algorithm on the following graph. Draw the graph at each round, and identify which edges are MST edges. Use the coin flips specified.

Round 0:

Round 1:

Round 2:

Built: April 4, 2017

11.4 Additional Exercises

Exercise 11.7. In graph theory, an independent set is a set of vertices for which no two vertices are neighbors of one another. The maximal independent set (MIS) problem is defined as follows:

For a graph (V, E), find an independent set $I \subseteq V$ such that for all $v \in$ $(V \backslash I), I \cup\{v\}$ is not an independent set. ${ }^{a}$

Design an efficient parallel algorithm based on graph contraction which solves the MIS problem.

[^0]
[^0]: ${ }^{a}$ The condition that we cannot extend such an independent set I with another vertex is what makes it "maximal." There is a closely related problem called maximum independent set where you find the largest possible I. However, this problem turns out to be NP-hard!

