Recitation 1

Parenthesis Matching

1.1 Announcements

e Welcome to 15-210!

e The course website is http://www.cs.cmu.edu/~15210/. It contains the syl-
labus, schedule, library documentation, staff contact information, and other useful re-
sources.

e We will be using Piazza (https://piazza.com/) as a hub for course announce-
ments and general questions pertaining to the course. Please check it frequently to make
sure you don’t miss anything.

e The first homework assignment, ParenLab, has been released! It’s due Friday at S:00pm.

e Homeworks will be distributed through Autolab (https://autolab.andrew.cmu.
edu/). You will submit coding tasks on Autolab, and written tasks on Gradescope
(https://gradescope.com/).

e ParenLab is conceptually difficult, so be sure to get started early.

http://www.cs.cmu.edu/~15210/
https://piazza.com/
https://autolab.andrew.cmu.edu/
https://autolab.andrew.cmu.edu/
https://gradescope.com/

2 RECITATION 1. PARENTHESIS MATCHING

1.2 Parentheses and Matched Sequences

Suppose you are given a sequence of parentheses. You want to determine if it is matched,
meaning “properly nested”. Let’s begin by defining this more carefully.

Definition 1.1. A matched sequence of parentheses p is defined inductively as

pa={lppl(p)

In other words, a matched sequence is one of (a) the empty sequence, (b) the concate-
nation of two matched sequences, or (c) a pair of parentheses surrounding a matched
sequence.

To be consistent with ParenLab, we’ll implement parentheses as a custom datatype given in a
structure Paren.

structure Paren =
struct
datatype t = L | R

end

Our goal is to implement a function
val parenMatch : Paren.t Seg.t — bool

where (parenMatch S) determines whether or not S is a matched sequence.

Note that you will need to familiarize yourself with the 210 library. Documentation can be
found on the course website at http://www.cs.cmu.edu/~15210/docs/. In particu-
lar, you should look closely at the SEQUENCE interface and the ArraySequence implemen-
tation.

Built: January 23, 2017

http://www.cs.cmu.edu/~15210/docs/

1.3. FROM LEFT TO RIGHT

1.3 From Left to Right

Task 1.2. Implement parenMat ch using the sequence function iterate.

This algorithm is fairly simple: we just iterate a counter across

the sequence. Starting from 0, we increment it at each sighting some ol 1Y) ()
of a left-parenthesis, and decrement it at each right-parenthesis. If ~_.~
the counter never goes negative and its final value is 0, then the soe 11 [Xh) O
sequence is matched. L
~

In terms of implementation, we’ll actually use the type int some 2| D))
option for the counter. Instead of letting it go negative, we’ll set L
it to NONE, and then carry the NONE through to the end. (Alterna-

wn
o
=
m
/I
[v
—~
N

tively, we could raise an exception and then handle it outside the
iterate, but using an option is a bit cleaner.)

Algorithm 1.3. Iterative parenthesis matching.

1 fun parenMatch S =

2 let

3 fun adjustCounter (x, p) =

4 case z of

5 NONE = NONE

6 | SOME ¢ =

7 case p of

8 Paren.L = SOME (c+1)

9 | Paren.R = if ¢=0 then NONE else SOME (c—1)
10 in

11 Seq.iterate adjustCounter (SOME 0) S = SOME 0
12 end

Remark 1.4. The sequence function iterate is nearly identical to the list function
foldl. The only differences are that it operates on sequences, and its function argu-
ment expects a pair in swapped order:

val iterate : (f » a —) = [— «a seq —
val foldl : (a« » f —) = f — « list — f3

We type iterate in this way to emphasize that it operates from left to right.

Built: January 23, 2017

4 RECITATION 1. PARENTHESIS MATCHING

1.4 Divide and Conquer

Task 1.5. Implement parenMat ch with a divide-and-conquer approach. Your imple-
mentation should satisfy the following work and span recurrences where n is the length
of the input.

Wn)=2W (5) +0(1)

n

S(n) =S (2> +0(1)

Also briefly justify that your implementation meets the cost bounds shown. You should
assume Seq = ArraySequence for cost bounds.

Our goal is to split the sequence roughly in half, recursively solve the smaller instances, then
combine their results. But what should the recursive calls return? Our first thought might be
to just return whether or not the smaller sequences are matched. However, this won’t work. A
sequence such as ((())) would be splitinto (((and))), neither of which are matched. We
can’t possibly determine that the concatenation of two unmatched sequences forms a matched
one without more information. We need to strengthen the problem.

Remark 1.6. “Strengthening the problem” is akin to strengthening the inductive hy-
pothesis in an inductive proof. We prove a stronger statement, then conclude the original
statement as a corollary.

Consider this: take a matched sequence, and find an instance of the immediate pair ().
Remove this pair. Is the sequence still matched? Yes it is! How about if the original sequence
was unmatched — is it still unmatched? Once again, yes!

Observation 1.7. If a sequence S contains the immediate pair (), then S is matched if and
only if it is still matched after removing the pair.

Now consider repeatedly removing all immediate pairs. Eventually, you will be left with a
sequence of the form)¢ (7 — that is, a sequence of some number of right-parentheses followed
by some number of left-parentheses. If the original was matched, then you’ll have the empty
sequence, which can be written as) ¥ (.

To make use of this in our divide-and-conquer algorithm, we’ll have our recursive calls re-
turn a pair (i, j) indicating that the given sequence has the form) ¢ (7 after conceptually remov-
ing all immediate pairs. The rules for combining two of these are simple. Given two sequences
of the form) (Y and) * (*:

e If j <k, then their concatenation has the form) “+¢=7 (¢,

Built: January 23, 2017

1.5. ADDITIONAL EXERCISES 5

e If j > k, then their concatenation has the form) ¢ (‘*7=F,

In terms of implementation, we need to be able to split a sequence in half. We could do this
with t ake and drop, but it’s much cleaner touse splitMid. Wealsoneed Primitives.par
for parallelism — the code Primitives.par (fn () = e;, fn () = ey) indicates
the parallel pair (e; || e3).

Algorithm 1.8. Divide-and-conquer parenthesis matching.

1 fun parenMatch S =

2 let

3 fun parenMatch’ S =

4 case Seqg.splitMid S of

5 Seq.EMPTY = (0,0)

6 | Seq.ONE Paren.L = (0,1)

7 | Seq.ONE Paren.R = (1,0)

8 | Seq.PAIR (A,B) =

9 let val ((4,j), (k,0)) =

10 Primitives.par (fn () = parenMatch’ A,
11 fn () = parenMatch’ B)
12 inif j <k then (i+k—j, () else (i, {+j—k)
13 end

14 in

15 parenMatch’ S = (0,0)

16 end

Let’s now analyze cost bounds. On input of size n, we split the problem into two subproblems
of size n/2 and solve them in parallel, then perform a little bit of arithmetic. Assuming the
ArraySequence implementation, splitting requires O(1) work and span. We can clearly do
the arithmetic in O(1) work and span. Each of the subproblems has W (n/2) work and S(n/2)
span. Recall that we add the work of parallel subcomputations, while taking the max of their
spans, resulting in 217 (n/2) work and S(n/2) total span for computing the subproblems.

1.5 Additional Exercises

Exercise 1.9. As implied by the name, the ArraySequence implementation of se-
quences lays out its elements in an array. Describe how to implement sp1itMid (and
in general, subseq) in O(1) work and span.

Built: January 23, 2017

6 RECITATION 1. PARENTHESIS MATCHING

Built: January 23, 2017

	Parenthesis Matching
	Announcements
	Parentheses and Matched Sequences
	From Left to Right
	Divide and Conquer
	Additional Exercises

