
Recitation 14

PASL

14.1 Announcements

• DPLab is due Tuesday afternoon.

• PASLLab will be released on Tuesday also and will be due at the end of the semester.

87

88 RECITATION 14. PASL

14.2 map_flatten

If you would like to see the code run on your computer, begin by downloading the files rec14.hpp
and rec14-bench.cpp. You can put these in the top directory of PASLLab once it is re-
leased. Then, edit PASLLab’s Makefile to add: rec14-bench.cpp to the list of programs,
i.e.

PROGRAMS=\
sandbox.cpp \
check.cpp \
bench.cpp \
rec14-bench.cpp # add me here.

don’t forget the slash on the previous line.

Task 14.1. Using PASL primitives, implement the function

template <class Map_func, class Size_func>
sparray map_flatten(const Map_func& f,

const Size_func& g,
const sparray& xs);

where, at a high-level, the goal is to compute

flatten
〈
f(x) : x ∈ xs

〉
.

Begin by thinking of a sequential implementation and then parallelizing it. You should
assume that the function arguments are typed as follows, where f(xs[i]) is a pointer
to the front of an array of length g(xs[i]).

f : value_type→ value_type∗
g : value_type→ long

Built: April 24, 2017

14.3. INJECT 89

14.3 inject

Throughout the semester, we’ve largely kept the sequence function inject shrouded in mys-
tery. Let’s see how the magic works!

Task 14.2. Using PASL, implement the function

sparray inject(const sparray& xs,
const sparray& indices,
const sparray& updates);

which returns the result of injecting into xs. We require that indices and updates
be the same length, such that for each i, we attempt to write updates[i] at position
indices[i] in xs. Note that you should not destructively modify xs.
If there are multiple updates specified at the same position, then all except the last
should be ignored. (We want to match the behavior of inject as specified in the
15210 Library.)

Built: April 24, 2017

90 RECITATION 14. PASL

14.4 Benchmarking

Try running some speedup experiments! The two bench arguments are map_flatten and
inject, respectively. For example, the following injects m randomly placed updates into an
array length n. In the map_flatten benchmark, n is the initial array size, and m is the size
of each subarray (so the output is length nm).

make rec14-bench.opt rec14-bench.baseline

./prun speedup -baseline "./rec14-bench.baseline" \
-parallel "./rec14-bench.opt -proc 1,5,10,15,20" \
-bench inject -n 100000,1000000 -m 100000000,200000000

./pplot speedup -series n,m

Built: April 24, 2017

	PASL
	Announcements
	map`flatten
	inject
	Benchmarking

