Recitation 13

Priority Queues and Hashing

13.1 Announcements

- PASLLab is due this Friday, May 5.
- The final exam is on **Friday**, **May 13**.
- A review session for the final is upcoming. Stay tuned!
- A practice final and its solutions will be released soon on the course website.

13.2 Leftist Heaps

Task 13.1. Identify the defining properties of a leftist heap.

Task 13.2. What is an upper bound on the rank of the root of a leftist heap?

13.2.1 Building A Leftist Heap

Consider the following pseudo-SML code implementing leftist heaps.

```
Data Structure 13.3. Leftist Heap
  1 datatype PQ = Leaf \mid Node of int \times key \times PQ \times PQ
 2
 3 fun rank Q =
 4
       case Q of
 5
         Leaf \Rightarrow 0
 6
       | Node (r, \_, \_, \_) \Rightarrow r
 7
 8 fun makeLeftistNode (k, A, B) =
 9
       if rank A < rank B
       then Node (1 + rank A, k, B, A)
10
       else Node (1 + rank B, k, A, B)
11
12
13 fun meld (A,B) =
14
       case (A, B) of
15
          (\_, Leaf) \Rightarrow A
        (Leaf, _) \Rightarrow B
16
17
       | (Node (_, k<sub>a</sub>, L<sub>a</sub>, R<sub>a</sub>), Node (_, k<sub>b</sub>, L<sub>b</sub>, R<sub>b</sub>)) \Rightarrow
18
            if k_a < k_b
19
            then makeLeftistNode (k_a, L_a, meld (R_a, B))
20
            else makeLeftistNode (k_b, L_b, meld (A, R_b))
21
22 fun singleton k = Node (1, k, Leaf, Leaf)
23
24 fun insert (Q,k) = meld (Q, singleton k)
25
26 fun from Seq S = Seq. reduce meld Leaf (Seq. map singleton S)
27
28 fun deleteMin Q =
29
       case Q of
30
          Leaf \Rightarrow (NONE, Q)
       | Node (\_, k, L, R) \Rightarrow (SOME k, meld (L, R))
31
```

Task 13.4. Diagram the process of executing the code

fromSeq (3, 5, 2, 1, 4, 6, 7, 8)

Task 13.5. What are the work and span of (fromSeq S) in terms of |S| = n?

13.3 Removing Duplicates

Removing duplicates is a crucial substep of many interesting algorithms. For example, in BFS, consider the step where we construct a new frontier. One viable method would to be to generate the sequence of all out-neighbors, and then remove duplicates:

```
F' = \text{removeDuplicates } \langle v : u \in F, v \in N_G^+(u) \rangle
```

So, how fast is it to remove duplicates? Can we do it in parallel?

13.3.1 Sequential

Before we think about parallelism, we should acquaint ourselves with a good sequential algorithm solving the same problem. This way, we know what to shoot for in terms of work bounds, since we want our parallel algorithm to be asymptotically work-efficient.

Task 13.6. Describe a sequential algorithm which performs expected O(n) work to remove duplicates from a sequence of length n. Also argue that $\Omega(n)$ work is necessary in order to solve this problem, and conclude that your algorithm is asymptotically optimal.

Hint: try hashing elements one at a time.

13.3.2 Parallel

Task 13.7. Implement a function

val removeDuplicates : $(\alpha \times int \rightarrow int) \rightarrow \alpha$ Seq.t $\rightarrow \alpha$ Seq.t

where (removeDuplicates h S) returns a sequence of all unique elements of S, given that h(e, m) hashes the element e to a uniform random integer in the range [0, m) (thus the probability of collision for any two distinct elements is 1/m).

Hint: as a first attempt, try simultaneously hashing as many elements as possible all at the same time. What do you do when elements collide?

13.4 Additional Exercises

Exercise 13.8.

Task 13.9. Design a data structure which supports the following operations:

	Work	Span	Description
fromSeq S	O(S)	$O(\log^2 S)$	Constructs a dynamic median data structure from the collection of keys in S
median M	<i>O</i> (1)	O(1)	<i>Returns the median of all keys stored in M</i>
insert (M, M	k) $O(\log M)$	$O(\log M)$	Inserts k into M

For simplicity, you may assume that all elements inserted into such a structure are distinct.

Exercise 13.10. Prove a lower bound of $\Omega(\log n)$ for deleteMin in comparisonbased meldable priority queues. That is, prove that any meldable priority queue implementation which has a logarithmic meld cannot support deleteMin in faster than logarithmic time.