Recitation 13

Priority Queues and Hashing

13.1 Announcements

e PASLLab is due this Friday, May 5.
e The final exam is on Friday, May 13.
e A review session for the final is upcoming. Stay tuned!

e A practice final and its solutions will be released soon on the course website.

79

80 RECITATION 13. PRIORITY QUEUES AND HASHING

13.2 Leftist Heaps

Task 13.1. Identify the defining properties of a leftist heap.

Task 13.2. What is an upper bound on the rank of the root of a leftist heap?

Built: May 2, 2017

13.2. LEFTIST HEAPS

81

13.2.1 Building A Leftist Heap

Consider the following pseudo-SML code implementing leftist heaps.

Data Structure 13.3. Leftist Heap

0 IO\ LB W=

(ST NS T N0 T NS R O T N i O T O i O T N i N T e e e T S
SO OO0 IO NPk WD = OO0 IO NP W —= OO

31

datatype PO = Leaf | Node of int X key X PQ X PQ

fun rank Q =
case () of
Leaf = 0
| Node (r,_,_,_) = r
fun makelLeftistNode (k,A,B) =
if rank A < rank B
then Node (1 + rank A, k, B, A)
else Node (1 + rank B, k, A, B)

fun meld (A,B) =
case (A,B) of
(_, Leaf) = A

| (Leaf, _) = B

| (Node (_,ka,La,Rs), Node (_,ky, Ly, Rp)) =
if k, <k
then makeLeftistNode (ko, Lo, meld (R,,B))
else makeLeftistNode (ky, Ly, meld (A, Rp))

fun singleton k = Node (1,k,Leaf, Leaf)
fun insert (Q,k) = meld (Q, singleton k)
fun fromSeq S = Seqg.reduce meld Leaf (Seg.map singleton S)
fun deleteMin @ =
case () of

Leaf = (NONE, Q)
| Node (_,k,L,R) = (SOME k, meld (L,R))

Task 13.4. Diagram the process of executing the code

fromSeq (3,5,2,1,4,6,7,8)

Task 13.5. What are the work and span of (fromSeq S) in terms of |S| = n?

Built: May 2, 2017

82 RECITATION 13. PRIORITY QUEUES AND HASHING

13.3 Removing Duplicates

Removing duplicates is a crucial substep of many interesting algorithms. For example, in BFS,
consider the step where we construct a new frontier. One viable method would to be to generate
the sequence of all out-neighbors, and then remove duplicates:

F' = removeDuplicates (v:u € F,v € Nj(u))

So, how fast is it to remove duplicates? Can we do it in parallel?

13.3.1 Sequential

Before we think about parallelism, we should acquaint ourselves with a good sequential algo-
rithm solving the same problem. This way, we know what to shoot for in terms of work bounds,
since we want our parallel algorithm to be asymptotically work-efficient.

Task 13.6. Describe a sequential algorithm which performs expected O(n) work to re-
move duplicates from a sequence of length n. Also argue that Q)(n) work is necessary in
order to solve this problem, and conclude that your algorithm is asymptotically optimal.

Hint: try hashing elements one at a time.

13.3.2 Parallel

Task 13.7. Implement a function
val removeDuplicates : (o X int — int) — «a Seg.t — «a Seg.t

where (removeDuplicates h S) retuns a sequence of all unique elements of S,
given that h(e, m) hashes the element e to a uniform random integer in the range [0, m)
(thus the probability of collision for any two distinct elements is 1/m).

Hint: as a first attempt, try simultaneously hashing as many elements as possible all at
the same time. What do you do when elements collide?

Built: May 2, 2017

13.4. ADDITIONAL EXERCISES 83

13.4 Additional Exercises

Exercise 13.8.

Task 13.9. Design a data structure which supports the following operations:

‘ Work ‘ Span ‘ Description
fromSeq S O(]S)) O(log® |S|) | Constructs a dynamic
median data structure
from the collection of
keys in S
median M O(1) O(1) Returns the median of
all keys stored in M
insert (M,k) | O(log|M]) | O(log|M]) | Inserts k into M

For simplicity, you may assume that all elements inserted into such a structure
are distinct.

Exercise 13.10. Prove a lower bound of)(logn) for deleteMin in comparison-
based meldable priority queues. That is, prove that any meldable priority queue imple-

mentation which has a logarithmic meld cannot support deleteMin in faster than
logarithmic time.

Built: May 2, 2017

	Priority Queues and Hashing
	Announcements
	Leftist Heaps
	Building A Leftist Heap

	Removing Duplicates
	Sequential
	Parallel

	Additional Exercises

