Recitation 13

Priority Queues and Hashing

13.1 Announcements

e PASLLab is due this Friday, May 5.
e The final exam is on Friday, May 13.
e A review session for the final is upcoming. Stay tuned!

e A practice final and its solutions will be released soon on the course website.
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13.2 Leftist Heaps

Task 13.1. Identify the defining properties of a leftist heap.

Task 13.2. What is an upper bound on the rank of the root of a leftist heap?
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13.2.1 Building A Leftist Heap

Consider the following pseudo-SML code implementing leftist heaps.

Data Structure 13.3. Leftist Heap
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datatype PO = Leaf | Node of int X key X PQ X PQ

fun rank Q =
case () of
Leaf = 0
| Node (r,_,_,_) = r
fun makelLeftistNode (k,A,B) =
if rank A < rank B
then Node (1 + rank A, k, B, A)
else Node (1 + rank B, k, A, B)

fun meld (A,B) =
case (A,B) of
(_, Leaf) = A

| (Leaf, _) = B

| (Node (_,ka,La,Rs), Node (_,ky, Ly, Rp)) =
if k, <k
then makeLeftistNode (ko, Lo, meld (R,,B))
else makeLeftistNode (ky, Ly, meld (A, Rp))

fun singleton k = Node (1,k,Leaf, Leaf)
fun insert (Q,k) = meld (Q, singleton k)
fun fromSeq S = Seqg.reduce meld Leaf (Seg.map singleton S)
fun deleteMin @ =
case () of

Leaf = (NONE, Q)
| Node (_,k,L,R) = (SOME k, meld (L,R))

Task 13.4. Diagram the process of executing the code

fromSeq (3,5,2,1,4,6,7,8)

Task 13.5. What are the work and span of (fromSeq S) in terms of |S| = n?
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13.3 Removing Duplicates

Removing duplicates is a crucial substep of many interesting algorithms. For example, in BFS,
consider the step where we construct a new frontier. One viable method would to be to generate
the sequence of all out-neighbors, and then remove duplicates:

F' = removeDuplicates (v:u € F,v € Nj(u))

So, how fast is it to remove duplicates? Can we do it in parallel?

13.3.1 Sequential

Before we think about parallelism, we should acquaint ourselves with a good sequential algo-
rithm solving the same problem. This way, we know what to shoot for in terms of work bounds,
since we want our parallel algorithm to be asymptotically work-efficient.

Task 13.6. Describe a sequential algorithm which performs expected O(n) work to re-
move duplicates from a sequence of length n. Also argue that Q)(n) work is necessary in
order to solve this problem, and conclude that your algorithm is asymptotically optimal.

Hint: try hashing elements one at a time.

13.3.2 Parallel

Task 13.7. Implement a function
val removeDuplicates : (o X int — int) — «a Seg.t — «a Seg.t

where (removeDuplicates h S) retuns a sequence of all unique elements of S,
given that h(e, m) hashes the element e to a uniform random integer in the range [0, m)
(thus the probability of collision for any two distinct elements is 1/m).

Hint: as a first attempt, try simultaneously hashing as many elements as possible all at
the same time. What do you do when elements collide?
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13.4 Additional Exercises

Exercise 13.8.

Task 13.9. Design a data structure which supports the following operations:

‘ Work ‘ Span ‘ Description
fromSeq S O(]S)) O(log® |S|) | Constructs a dynamic
median data structure
from the collection of
keys in S
median M O(1) O(1) Returns the median of
all keys stored in M
insert (M,k) | O(log|M]) | O(log|M]) | Inserts k into M

For simplicity, you may assume that all elements inserted into such a structure
are distinct.

Exercise 13.10. Prove a lower bound of )(logn) for deleteMin in comparison-
based meldable priority queues. That is, prove that any meldable priority queue imple-

mentation which has a logarithmic meld cannot support deleteMin in faster than
logarithmic time.
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