Recitation 6

Treaps

6.1 Announcements

e Midterm 1 is on Friday. You are allowed a single, double-sided, 8.5 x 11in sheet of paper
for notes.

e FingerLab is due next Friday, Mar 3.

35

36 RECITATION 6. TREAPS

6.2 Example

Recall that a treap is a BST with a priority function p : U — Z, where U is the universe of keys.
You should think of p as a random number generator: for each key, it returns a random integer.
A treap has two structural properties:

1. BST invariant: For every Node(L, k, R), we have ¢ < k for every ¢ in L, and symmet-
rically & < r for every r in R.

2. Heap invariant: For every Node(L, k, R), we have that p(k) > p(x) for every x in either
LorR.

Task 6.1. Build a treap from the following keys and priorities using two different strate-
gies, and observe that the resulting treap is the same in both cases.

1. Run quicksort, creating a new node every time a pivot is chosen.

2. Beginning with an empty tree, sequentially insert keys in priority-order. Each
newly inserted key should be placed at a leaf.

k ‘ a

p(k) | 5

b ¢c d e f g h
7 3 2 8 4 6 1

Built: February 16, 2017

6.3. DELETION 37

6.3 Deletion

Consider the following strategy for deleting a key k from a treap:

1. Locate the node containing k,

2. Set the priority of k£ to be —oo (note that if k£ has children, then this breaks the heap
invariant of the treap),

3. Restore the heap invariant by rotating £ downwards until it has only leaves for children,
4. Delete k by replacing its node with a leaf.
A “rotation” in this case refers to the process of making one of £’s children the root, depending

on their relative priorities. For example, if k£ has two children with priorities p; and p, where
p1 > po, we rotate like so:

The case of p; < po is symmetric. In turns out that this process is equivalent to calling join
on the children of k. You should convince yourself of this.

We’re interested in the following: in expectation, how many rotations must we perform
before we can delete k?

Built: February 16, 2017

38 RECITATION 6. TREAPS

Let’s set up the specifics: we have a treap 7' formed from the sorted sequence of keys .5,
|S| = n. We’re interested in deleting the key S[d]. Let 7" be the same treap, except that the
priority of S[d] is now —oo.

We need a couple indicator random variables:
xi 1, if S[i] is an ancestor of S[j]in T
I 0, otherwise

i 1, if S[i] is an ancestor of S[j] in 7"
(X)j = .
0, otherwise

Task 6.2. Write Ry, the number of rotations necessary to delete S[d|, in terms of the
given random variables.

The number of rotations is equal to the number of nodes which aren’t an ancestor of S|[d]
in 7', but are in 7”. Therefore we have

n—1 n—1
Ry=) (X)y=) X
=0 =0

Task 6.3. Give E [X] and E [(X")")] in terms of i and d.

We have both X’ = 1 and (X’)} = 1 if S[¢] has the largest priority among the |d — i| + 1
keys between S[i] and S[d]. However, notice that in the latter case, we already know that the
priority of S[i] is larger than that of S[d], unless ¢ = d. So we only need that S[i] is the largest
among the |d — 7| significant keys in this range. Therefore:

B ifi=d
= ﬁ, otherwise
) 1 ifi=d
E[(X))]=1{"
(X {| diz‘, otherwise

Built: February 16, 2017

6.3. DELETION

39

Task 6.4. Compute E [R;]. For simplicity, you may assume 1 < d < n — 2.

n—1 n—1
E[R]=) E]| -) E[X;
i=0 1=0
d—1 n—1 4 d—1 n—1
= (E[(X");] +1+ Z E[(X’);]) — <ZE[X;} +1+ Z
=0 i=d+1 =0 i=d+1
d—1 1 n—1 n—1 1
:<4 Tt —d) (d—z+1 Zz—d—i—l)
=0 i=d+1

= (Hd + andq) - ((Hd+1 — 1)+ (Hpa — 1))
=2+ (Hg— Hapr) + (Hp—a-1 — Haa)
1 1

d+1 n-—d

<2

Built: February 16, 2017

40 RECITATION 6. TREAPS

6.4 Additional Exercises

Exercise 6.5. Describe an algorithm for inserting an element into a treap by “undoing”
the deletion process described in Section 6.3.

Exercise 6.6. For treaps, suppose you are given implementations of find, insert,
and delete. Implement split and joinMid in terms of these functions. You’ll
need to “hack” the keys and priorities; i.e., assume you can do funky things like insert
a key with a specific priority.

Exercise 6.7. Given a set of key-priority pairs (k;,p;) : 0 < i < n where all of the k;’s
are distinct and all of the p;’s are distinct, prove that there is a unique corresponding
treap T

6.4.1 Selected Solutions

Exercise 6.6.

e Implement split(7), k) as follows. First, determine if & is present in 7" via £ind. Then,
insert k& with priority oo into 7. The resulting treap will have the form Node(L, k, R).
We then return (L, m, R), where m was the result of the £ind.

e Implement joinMid(L, k, R) as follows. Set p(k) = oo, and thenlet T = delete(Node(L, k, R), k).
Finally, restore p(k) to its correct value, and finish with insert (7, k).

Built: February 16, 2017

	Treaps
	Announcements
	Example
	Deletion
	Additional Exercises
	Selected Solutions

