
SML Style Guide

Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2015)

August 24th, 2015

1 General Guidelines

• At most 80 characters per line. This is far more important than many people realize. It is
especially important in this class because Autolab likes to wrap lines over 80 characters, making
them very difficult to read.

• Never use tabs. SML is not a 1-dimensional language. Many constructs (such as case statements
and let-in-end blocks) require verticle alignment for readability. Since tabs might be rendered
as 2, 4, or even 8 spaces, they are completely useless for precise verticle alignment. Many text
editors have an option to automatically replace tabs with spaces – you should set your own
editor to do the same.

• Name your values well. A little time spent picking good names can make a huge difference.

• Strive for the “one-pass” rule. Your code should be easily readable in a single pass from top
to bottom. As a rule of thumb, this means that you should try to keep related pieces of code
near one another. For example, helper functions should be written immediately above where
they are used.

• Stick to the standard. Don’t invent wacky, neo-modern conventions. The TAs like code which
is plain and obvious, so be nice to them!

• Be consistent. Whatever you decide to do, stick to it. This is particularly important for
indentation.

2 Comments

• Comment when necessary; no more, no less. Overcommenting is often worse than having no
comments at all. Construct your comments carefully, and tailor them to your audience.

• Comments should be easily distinguishable from code. Multiline comments should have a
vertically aligned leading asterisk on each line.

(* This is a nice multi -line comment which really
* doesn 't say anything but which is long just for
* the sake of example. Notice how it 's super
* obvious that these lines are not code! *)

val foo = ...
val bar = ...

SML Style Guide 15-210 (Fall 2015)

• To potentially make your grader’s life a little easier, you might consider adding cost specifications
in comments above functions:

(* Work: O(|s|)
* Span: O(log|s|) *)

fun foo s = ...

3 Spacing

Use newlines to separate blocks of code that “go” together. You can also document each code block
with a little description of what’s going on. For example:

(* Determine overlap of every adjacent pair in s *)
fun pair i = (Seq.nth s i, Seq.nth s (i+1))
val adjPairs = Seq.tabulate pair (Seq.length s - 1)
fun overlap (x, y) = ...
val overlaps = Seq.map overlap adjPairs

(* Join the pair with the largest overlap *)
val idx = Seq.argmax Int.compare overlaps
val bestPair = Seq.nth adjPairs idx
val joined = join bestPair

(* Do more stuff ... *)
val foo = ...
val bar = ...

4 Functions

4.1 Helper Functions

• Try to design your helpers so that they may be used many times. A helper function which is
used exactly once might not be necessary at all, unless it makes a significant impact on the
readability of your code.

• Write your helper functions as near as possible to the location they are used. Don’t be afraid of
writing functions within functions, either.

4.2 Anonymous Functions

• Please avoid writing multiline anonymous functions. They often result in nasty indentation.
For example:

2

SML Style Guide 15-210 (Fall 2015)

val t = Seq.reduce (fn (x, y) =>
let ...
in ...
end)

base
(Seq.map (fn x =>

let ...
in ...
end)

s)

We can write this instead as:

fun combine (x, y) =
let ...
in ...
end

fun init x =
let ...
in ...
end

val t = Seq.reduce combine base (Seq.map init s)

• Anonymous functions are often unnecessary if you pay attention to types carefully. For example,

Seq.reduce append

is much cleaner than

Seq.reduce (fn (x, y) => append (x, y))

4.3 Currying

Use it to your advantage! Here are some examples:

val sum = Seq.reduce op+ 0
fun repeat x = Seq.tabulate (fn _ => x)
val get = Seq.nth s

3

SML Style Guide 15-210 (Fall 2015)

5 Parentheses

In SML, the canonical function application does not contain any parentheses.

val t = f(x) (* This is bad. *)
val t = f x (* This is good. *)

The latter uses fewer characters, is less cluttered, and is parsed exactly the same. This might be a hard
habit to break, but trust us: fewer parentheses is a good thing.

6 Let-In-End Expressions

• Most let-in-end expressions should resemble one of the following. It is crucial that let, in,
and end are vertically aligned.

let
...

in
...

end

let ...
in ...
end

• In some cases, a one-liner is convenient. This is acceptable as long as there is only one
declaration inside the let.

fun delete (t, k) =
let val (l, _, r) = split (t, k) in join (l, r) end

4

SML Style Guide 15-210 (Fall 2015)

• You should avoid nesting as much as possible. For example, this code:

let
val a = ...
val b = ...

in
let

val c = ...
val d = ...

in
e

end
end

can be rewritten as:

let
val a = ...
val b = ...
val c = ...
val d = ...

in
e

end

The exception to this rule is for functions inside of functions. The following is perfectly
acceptable.

fun foo x =
let

fun bar y =
let ...
in ...
end

in
...

end

5

SML Style Guide 15-210 (Fall 2015)

7 Case Statements

• Most case statements should resemble one of the following. Once again, verticle alignment is
crucial. The symbols | and => should always be surrounded by spaces on either side.

case ... of
... => ...

| ... => ...

case ...
of ... => ...
| ... => ...

• Single-liners are sometimes convenient:

val t = case ... of ... => ... | ... => ...

• Organize the branches of a case statement by their size, starting with the smallest branches. If
you don’t do this, then the small branches are easy to miss.

8 Conditionals

Yes, you can and should use conditional statements.

• Common designs for conditional statements are:

if ... then ... else ...

if ...
then ...
else ...

if ... then ...
else ...

6

SML Style Guide 15-210 (Fall 2015)

• Avoid excessive nesting, if you can. A scenario such as

fun foo (s1, s2) =
if Seq.length s1 = 0 then ... else
if Seq.length s2 = 0 then ... else
let val (n1, n2) = (Seq.length s1 , Seq.length s2)
in ...
end

can be rewritten a little nicer as:

fun foo (s1, s2) =
case (Seq.length s1, Seq.length s2) of

(0, _) => ...
| (_, 0) => ...
| (n1 , n2) => ...

• As with case statements, put the smaller branch of the conditional first and the larger branch
second. You can swap the branches simply by negating the boolean condition.

• Never write something resembling

if b then true else false

This code is logically identical to just writing b. Similarly, the code

if b1 then true else b2

is identical to b1 orelse b2.

7

	General Guidelines
	Comments
	Spacing
	Functions
	Helper Functions
	Anonymous Functions
	Currying

	Parentheses
	Let-In-End Expressions
	Case Statements
	Conditionals

