
CS 213, Fall 2001
Lab Assignment L6: Dynamic Storage Allocator

Assigned: Friday Nov. 2, Due: Tuesday Nov. 20, 11:59PM

Cory Williams (cgw@andrew.cmu.edu) is the lead person for this assignment.

Introduction

In this lab you will be writing a dynamic storage allocator for C programs, i.e., your own version of the
malloc, free and realloc routines. You are encouraged to explore the design space creatively and
implement an allocator that is correct, efficient and fast.

Logistics

You may work in a group of up to two people. Any clarifications and revisions to the assignment will be
posted on the course Web page.

Hand Out Instructions

The files for this assignment can be retrieved from

/afs/cs/academic/class/15213-f01/L6/L6.tar

Once you’ve copied this file into a (protected) directory, run the command tar xvf L6.tar to create
the L6 directory. Fill in your team information in the structure at the beginning of the file mm.c. When you
have completed the lab, you will hand in only one file (mm.c), which contains your solution.

How to Work on the Lab

Your dynamic storage allocator will consist of the following four functions, which are declared in mm.h
and defined in mm.c.

1



int mm_init(void);
void *mm_malloc(size_t size);
void mm_free(void *ptr);
void *mm_realloc(void *ptr, size_t size);

The mm.c file we have given you implements the simplest but still functionally correct malloc package that
we could think of. Using this as a starting place, modify these functions (and possibly define other private
static functions), so that they obey the following semantics:

� mm init: Before calling mm malloc mm realloc or mm free, the application program (i.e.,
the trace-driven test harness that you will use to evaluate your implementation) calls mm init to
perform any necessary initializations, such as allocating the initial heap area. The return value should
be -1 if there was a problem in performing the initialization, 0 otherwise.

� mm malloc: The mm malloc routine returns a pointer to an allocated block payload of at least
size bytes. The entire allocated block should lie within the heap region and should not overlap with
any other allocated chunk.

We will comparing your implementation to the version of malloc supplied in the standard C library
(libc). Since the libc malloc always returns payload pointers that are aligned to 8 bytes, your
malloc implementation should do likewise and always return 8-byte aligned pointers.

� mm free: The mm free routine frees the block pointed to by ptr. It returns nothing. This rou-
tine is only guaranteed to work when the passed pointer (ptr) was returned by an earlier call to
mm malloc or mm realloc and has not yet been freed.

� mm realloc: The mm realloc routine returns a pointer to an allocated region of at least size
bytes with the following constraints.

– if ptr is NULL, the call is equivalent to mm malloc(size);

– if size is equal to zero, the call is equivalent to mm free(ptr);

– if ptr is not NULL, it must have been returned by an earlier call to mm malloc or mm realloc.
The call to mm realloc changes the size of the memory block pointed to by ptr (the old
block) to size bytes and returns the address of the new block. Notice that the address of the
new block might be the same as the old block, or it might be different, depending on your imple-
mentation, the amount of internal fragmentation in the old block, and the size of the realloc
request.
The contents of the new block are the same as those of the old ptr block, up to the minimum of
the old and new sizes. Everything else is uninitialized. For example, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the new block are identical to the first 8
bytes of the old block and the last 4 bytes are uninitialized. Similarly, if the old block is 8 bytes
and the new block is 4 bytes, then the contents of the new block are identical to the first 4 bytes
of the old block.

These semantics match the the semantics of the corresponding Linux malloc, realloc, and free rou-
tines. Type man malloc to the shell for complete documentation.

2



Heap Consistency Checker.

Dynamic memory allocators are notoriously tricky beasts to program correctly and efficiently. They are
difficult to program correctly because they involve a lot of (void *) pointer references. You will find it
very helpful to write a heap checker that scans the heap and checks it for consistency.

Some examples of what a heap checker might check are:

� Is every block in the free list marked as free?

� Are there any contiguous free blocks that somehow escaped coalescing?

� Is every free block actually in the free list?

� Do the pointers in the free list point to valid free blocks?

� Do any allocated blocks overlap?

� Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the function int mm check(void) in mm.c. It will check any invari-
ants or consistency conditions you consider prudent. It returns a nonzero value if and only if your heap is
consistent. You are not limited to the listed suggestions nor are you required to check all of them. You are
encouraged to print out error messages when mm check fails.

This consistency checker is for your own debugging during development. When you submit mm.c, make
sure to remove any calls to mm check as they will slow down your throughput. Style points will be given
for your mm check. Make sure to put in comments and document what you are checking.

Support routines

The memlib.c package simulates the memory system for your dynamic memory allocator. You can invoke
the following functions in memlib.c:

� void *mem sbrk(int incr): Expands the heap by incr bytes, where incr is a positive
non-zero integer and returns a generic pointer to the first byte of the newly allocated heap area. The
semantics are identical to the Unix sbrk function, except that mem sbrk accepts only a positive
non-zero integer argument.

� void *mem heap lo(void): Returns a generic pointer to the first byte in the heap.

� void *mem heap hi(void): Returns a generic pointer to the last byte in the heap.

� size t mem heapsize(void): Returns the current size of the heap in bytes.

� size t mem pagesize(void): Returns the system’s page size in bytes (4K on Linux systems).

3



The trace-driven test harness

The mtest.c program in the L6.tar distribution tests your mm.c package for correctness, space utiliza-
tion, and throughput. The test harness is controlled by a set of trace files that are included in the L6.tar
distribution. Each trace file contains a sequence of allocate, reallocate, and free directions that instruct the
test harness to call your mm malloc, mm realloc, and mm free routines in some sequence. The test
harness and the trace files are the same ones we will use when we grade your handin mm.c file.

The test harness accepts the following command line arguments:

� -f <tracefile>: Use one particular tracefile for testing instead of the default set.

� -h: Print a summary of the command line arguments.

� -l: Run libc malloc in addition to the student’s malloc package.

� -v: Verbose output. Print a performance breakdown for each tracefile.

� -V: Prints additional diagnostic information as each trace file is processed. Useful during debugging
for determining which trace file is causing your malloc package to fail.

Programming Rules

� You are not allowed to change any of the interfaces in mm.c.

� You should not invoke any memory-management related library calls or system calls. This excludes
the use of malloc, calloc, free, realloc, sbrk, brk or any variants of these calls in your
code.

� You are not allowed to define any global or static compound data structures such as arrays, structs,
trees, or lists in your mm.c program. However, you are allowed to declare global scalar variables such
as integers, floats, and pointers in mm.c.

� For consistency with the libc malloc package, your allocator must always return pointers that are
aligned to 8-byte boundaries. The test harness will enforce this for you.

Evaluation

You will receive zero points if you break any of the rules or your code is buggy. Otherwise, your grade will
be calculated as follows:

� Correctness (20 points). You will receive full points if your solution passes the correctness tests
performed by the test harness (mtest). You will receive partial credit for correct implementations of
malloc and free (i.e., you pass the first 9 trace files).

4



� Performance (35 points). Two performance metrics will be used to evaluate your solution:

– Space utilization: The peak ratio between the aggregate amount of memory used by the test
harness (i.e., allocated via mm malloc or mm realloc but not yet freed via mm free) and
the size of the heap used by your allocator. The optimal ratio equals to 1. You should find good
policies to minimize fragmentation in order to make this ratio as close as possible to the optimal.

– Throughput: The average number of operations completed per second.

The test harness (mtest) summarizes the performance of your allocator by computing a performance
index,

�
, which is a weighted sum of the space utilization and throughput���������
	���
������������������� �"!$#&%�'

where
�

is your space utilization, � is your throughput, and �(�"!$#&% is the estimated throughput of libc
malloc on your system on the default traces (600 Kops/sec). The index favors space utilization over
throughput, with a default of

�)��*,+.-
.

Observing that both memory space and CPU cycles are expensive system resources, we adopt this
formula to encourage balanced optimization of both. Ideally, the performance index will reach�/�0�1�2	��3
4���5�/�

or
�6*7*98

. Since each metric will contribute at most
�

and
�:
;�

to the perfor-
mance index, respectively, you should not go to extremes to optimize either the memory utilization
or the throughput only. To receive a good score, you must achieve a balance between utilization and
throughput.

To get full credit for this part of the lab, you will need to achieve a performance index of 95%. Your
score will be calculated by adding .05 to your performance index and multiplying by 35 points. You
cannot get more than 35 points for this part of the lab, though.

� Style (10 points). Your code should be readable and well commented. Define macros or subroutines
where necessary to make the code more understandable. 5 points will be given for a well written and
documented mm check and 5 points will be given for the style of the rest of your code.

Handin Instructions

You will handin your mm.c file via a web interface. See the lab webpage for details on how to do this.

You may submit your solution for testing as many times as you wish up until the due date. The web page
will list both your best scoring submission and your most recent submission.

When you are satisfied with your solution, then you can officially hand it in. Only the last version you
submit will be graded.

When testing your files locally, make sure to use one of the fish machines. This will insure that the grade
you get from mtest is representative of the grade you will receive when you submit your solution.

There will be no general extensions of the deadline! While I am happy to discuss individual extensions,
students cannot be expected to work on this lab over the Thanksgiving holiday.

5



Hints

� Use the mtest -f option. During initial development, using tiny trace files will simplify debugging
and testing. We have included two such trace files (short1,2-bal.rep) that you can use for
initial debugging.

� Use the mtest -v and -V options. The -v option will give you a detailed summary for each trace
file. The -V will also indicate when each trace file is read, which will help you isolate errors.

� Compile with gcc -g and use a debugger. A debugger will help you isolate and identify out of
bounds memory references.

� Understand every line of the malloc implementation in the textbook. The textbook has a detailed
example of a simple allocator based on an implicit free list. Use this is a point of departure. Don’t
start working on your allocator until you understand everything about the simple implicit list allocator.

� Encapsulate your pointer arithmetic in C preprocessor macros. Pointer arithmetic in memory man-
agers is confusing and error-prone because of all the casting that is necessary. You can reduce the
complexity significantly by writing macros for your pointer operations. See the text for examples.

� Do your implementation in stages. The first 9 traces contain requests to malloc and free. The
last 2 traces contain requests for realloc, malloc, and free. We recommend that you start by
getting your malloc and free routines working correctly and efficiently on the first 9 traces. Only
then should you turn your attention to the realloc implementation. For starters, build realloc
on top of your existing malloc and free implementations. But to get really good performance,
you will need to build a stand-alone realloc.

� Use a profiler. You may find the gprof tool helpful for optimizing performance.

� Start early! It is possible to write an efficient malloc package with a few pages of code. However,
we can guarantee that it will be some of the most sophisticated code you have written so far in your
career. So start early, and good luck!

6


