
Virtual Memory
October 30, 2001

Topics
• Motivations for VM
• Address translation
• Accelerating translatio n with TLBs

class19.ppt

15-213
“The course that gives CMU its Zip!”

CS 213 F’01– 2 –class19.ppt

Motivations for Virtual Memory
• Use Physical DRAM as a Cache for the Disk

• Address space of a process can exce ed physical memo ry size
• Sum of address spac es of multiple proces ses can excee d physical

memory

• Simplify Memory Management
• Multiple processes res ident in main memory .

– Each process with its own address space
• Only “active” co de and data is actu ally in memory

– Allocate more memory to process as needed.

Provide Protection
• One process can’t inte rfere with another.

– because they operate in different address spaces.
• User process cannot a ccess privileged information

– different sections of address spaces have different permissions.

CS 213 F’01– 3 –class19.ppt

Motivation #1: DRAM a “Cache” for Disk
Full address space is q uite large:

• 32-bit addresses: ~4,000,000,000 (4 billion) bytes
• 64-bit addresses: ~ 16,000,000,000,000,000,000 (16 quintillion) bytes

Disk storage is ~156X cheaper than DRAM storage
• 8 GB of DRAM: ~ $10,000
• 8 GB of disk: ~ $6 4

To access large amounts of data i n a cost-effective
manner, the bulk of the data must be stored on disk

256 MB: ~$320
8 GB: ~$64

4 MB: ~$400

DiskDRAMSRAM

CS 213 F’01– 4 –class19.ppt

Levels in Memory Hierarchy

CPUCPU

regsregs

C
a
c
h
e

MemoryMemory diskdisk

size:
speed:
$/Mbyte:
line size:

32 B
3 ns

8 B

Register Cache Memory Disk Memory

32 KB-4MB
6 ns
$100/MB
32 B

128 MB
60 ns
$1.25/MB
4 KB

30 GB
8 ms
$0.008/MB

larger, slower, cheaper

8 B 32 B 4 KB

cache virtual memory

CS 213 F’01– 5 –class19.ppt

DRAM vs. SRAM as a “Cache”
DRAM vs. disk is more extreme than SRAM vs. DRAM

• Access latencies :
– DRAM ~10X slower than SRAM

– Disk ~100,000X slower than DRAM
• Importance of exploi ting spatial locality :

– First byte is ~100,000X slower than successive bytes on disk

» vs. ~4X improvement for page-mode vs. regular accesses to DRAM
• Bottom line:

– Design decisions made for DRAM caches driven by enormous cost of
misses

DRAMSRAM Disk

CS 213 F’01– 6 –class19.ppt

Impact of These Properties on Design
If DRAM was to be organized similar to an SRAM ca che, how

would we set the following design parameters?
• Line size?

– Large, since disk better at transferring large blocks

• Associativity ?
– High, to mimimize miss rate

• Write through or write back?
– Write back, since can’t afford to perform small writes to disk

What would the impact of these choices be on:
• miss rate

– Extremely low. << 1%
• hit time

– Must match cache/DRAM performance
• miss latency

– Very high. ~20ms

• tag storage overhead
– Low, relative to block size

CS 213 F’01– 7 –class19.ppt

Locating an Object in a “Cache”
SRAM Cache

• Tag stored with cache line
• Maps from cache block to memory blocks

– From cached to uncached form
• No tag for block not in c ache
• Hardware retrieves information

– can quickly match against multiple tags

X

Object Name

Tag Data

D 243

X 17

J 105

•
•
•

•
•
•

0:

1:

N-1:

= X?

“Cache”

CS 213 F’01– 8 –class19.ppt

Locating an Object in a “Cache” (cont.)

Data

243

 17

105

•
•
•

0:

1:

N-1:

X

Object Name

Location

•
•
•

D:

J:

X: 1

0

On Disk

“Cache”Page Table

DRAM Cache
• Each allocate pag e of virtual memory ha s entry in page table
• Mapping from virtual pages to physical pages

– From uncached form to cached form
• Page table entry ev en if page not in mem ory

– Specifies disk address

• OS retrieves information

CS 213 F’01– 9 –class19.ppt

CPU

0:
1:

N-1:

Memory

A System with Physical Memory Only
Examples:

• most Cray machines , early PCs, nearly all embedded system s, etc.

Addresses generated by the CPU point directly to bytes in physical memory

Physical
Addresses

CS 213 F’01– 10 –class19.ppt

A System with Virtual Memory
Examples:

• workstations, servers, m odern PCs, etc.

Address Translation: Hardware converts virtual addresses to
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CS 213 F’01– 11 –class19.ppt

Page Faults (Similar to “Cache Misses”)
What if an object is on disk ra ther than in memory?

• Page table entry indi cates virtual address not in memory
• OS exception handler in voked to move data from disk into memory

– current process suspends, others can resume
– OS has full control over placement, etc.

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

CS 213 F’01– 12 –class19.ppt

Servicing a Page Fault
Processor Signals

Controller
• Read block of length P

starting at disk addre ss
X and store starting at
memory address Y

Read Occurs
• Direct Memory Access

(DMA)
• Under control of I/O

controller

I / O Controller
Signals Completion
• Interrupt processor
• OS resumes suspende d

process

diskDiskdiskDisk

Memory-I/O busMemory-I/O bus

ProcessorProcessor

CacheCache

MemoryMemory
I/O

controller

I/O
controller

Reg

(2) DMA Transfer

(1) Initiate Block Read

(3) Read
Done

CS 213 F’01– 13 –class19.ppt

Motivation #2: Memory Management
Multiple processes can reside in physical memory.
How do we resolve address c onflicts?

• what if two processes ac cess something at the same address?

kernel virtu al memory

Memory mapp ed region
forshared libraries

runtime hea p (via malloc)

program text (.text)
initialized data (.dat a)

uninitiali zed data (. bss)

stack

forbidden
0

%esp

memory invis ible to
 user code

the “ brk ” ptr

Linux/x86
process
memory
image

CS 213 F’01– 14 –class19.ppt

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

VP 1
VP 2

PP 2

Address Tra nslation0

0

N-1

0

N-1
M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/ only
library code)

Solution: Separate Virtual Addr. Spaces
• Virtual and physical address spaces d ivided into equal-siz ed blocks

– blocks are called “pages” (both virtual and physical)

• Each process has its own virtual address s pace
– operating system controls how virtual pages as assigned to physical

memory

...

...

Virtual
Address
Space for
Process 2:

CS 213 F’01– 15 –class19.ppt

Contrast: Macintosh Memory Model
MAC OS 1–9

• Does not use traditiona l virtual memory

All program objects accessed through “handles”
• Indirect reference through pointer table
• Objects stored in share d global address spa ce

P1 Pointer Table

P2 Pointer Table

Process P1

Process P2

Shared Address Space

A

B

C

D

E

“Handles”

CS 213 F’01– 16 –class19.ppt

Macintosh Memory Management
Allocation / Deallocation

• Similar to free-list man agement of malloc /free

Compaction
• Can move any obje ct and just update the (unique) pointer in pointe r

table

“Handles”

P1 Pointer Table

P2 Pointer Table

Process P1

Process P2

Shared Address Space

A

B

C

D

E

CS 213 F’01– 17 –class19.ppt

Mac vs. VM-Based Memory Mgmt
Allocating, deallocating , and moving memory:

• can be accompli shed by both techniqu es

Block sizes:
• Mac: variable-sized

– may be very small or very large

• VM: fixed-size
– size is equal to one page (4KB on x86 Linux systems)

Allocating contiguous chunks of memory:
• Mac: contiguous alloca tion is required
• VM: can map contiguous range of virtual address es to disjoint

ranges of physical addresses

Protection
• Mac: “wild write” by one proc ess can corrupt anothe r’s data

CS 213 F’01– 18 –class19.ppt

MAC OS X
“Modern” Operating System

• Virtual memory with protectio n
• Preemptive multitask ing

– Other versions of MAC OS require processes to voluntarily relinquish
control

Based on MACH OS
• Developed at CMU in late 1 980’s

CS 213 F’01– 19 –class19.ppt

Motivation #3: Protection
Page table entry contains acce ss rights information

• hardware enforces this prote ction (trap into OS if violatio n occurs)

Page Tables

Process i:

Physical AddrRead? Write?

 PP 9Yes No

 PP 4Yes Yes

XXXXXXX No No

VP 0:

VP 1:

VP 2:
•
•
•

•
•
•

•
•
•

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?

 PP 6Yes Yes

 PP 9Yes No

XXXXXXX No No
•
•
•

•
•
•

•
•
•

VP 0:

VP 1:

VP 2:

CS 213 F’01– 20 –class19.ppt

VM Address Translation
V = {0, 1, . . . , N–1} virtual address spa ce
P = {0, 1, . . . , M–1} physical address s pace

MAP: V → P U {∅} address mapping func tion

N > M

MAP(a) = a' if data a t virtual address a is present at phys ical
 address a' in P

= ∅ if data at virtual ad dress a is not presen t in P

Processor

Hardware
Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
memorya

a'

∅

page fault

physical address
OS performs
this transfer
(only if miss)

virtual address part of the
on-chip
memory mgmt unit (MMU)

CS 213 F’01– 21 –class19.ppt

virtual page number page offset virtual address

physical page number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Notice that the page offset bits don't change as a result of translation

VM Address Translation
Parameters

• P = 2p = page size (b ytes).
• N = 2n = Virtual address lim it
• M = 2m = Physical addre ss limit

CS 213 F’01– 22 –class19.ppt

Page Tables

Memory resident
page table

(physical page
 or disk ad dress) Physical Memory

Disk Storage
(swap file or
regular file system file)

Valid

1

1

1
1
1

1

1
0

0

0

Virtual Page
Number

CS 213 F’01– 23 –class19.ppt

Address Translation via Page Table

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts as
table index

CS 213 F’01– 24 –class19.ppt

Page Table Operation
Translation

• Separate (set of) page table(s) per process
• VPN forms index into page table (points to a pa ge table entry)

Computing Physical Address
• Page Table Entry (PTE) prov ides information about p age

– if (valid bit = 1) then the page is in memory.
» Use physical page number (PPN) to construct address

– if (valid bit = 0) then the page is on disk

» Page fault
» Must load page from disk into main memory before continuing

Checking Protection
• Access rights field i ndicate allowable ac cess

– e.g., read-only, read-write, execute-only

– typically support multiple protection modes (e.g., kernel vs. user)
• Protection violation fau lt if user doesn’t have necessary permis sion

CS 213 F’01– 25 –class19.ppt

CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

Integrating VM and Cache

Most Caches “Physically Addressed”
• Accessed by phys ical addresses
• Allows multiple process es to have blocks in cache at same time
• Allows multiple process es to share pages
• Cache doesn’t need to be concerned with protec tion issues

– Access rights checked as part of address translation

Perform Address Translation Before Cache Lookup
• But this could involve a memory acces s itself (of the PTE)
• Of course, page table entries can also be come cached

CS 213 F’01– 26 –class19.ppt

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

Speeding up Translation with a TLB
“Translation Lookaside Buffer” (TLB)

• Small hardware cache in MMU
• Maps virtual page numb ers to physical pag e numbers
• Contains complete pa ge table entries for sm all number of pages

CS 213 F’01– 27 –class19.ppt

Address Translation with a TLB

virtual add ressvirtual pag e number page off set

physical a ddress

n–1 0p–1p

valid physical p age numbe rtag

valid tag data

data
=

cache hit

tag byte offs etindex

=

TLB hit

TLB

Cache

. ..

CS 213 F’01– 28 –class19.ppt

Simple Memory System Example
Addressing

• 14-bit virtual address es
• 12-bit physical a ddress
• Page size = 64 bits

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

(Virtual Page Number) (Virtual Page Offset)

(Physical Page Number) (Physical Page Offset)

CS 213 F’01– 29 –class19.ppt

Simple Memory System Page Table
• Only show first 16 entries

10D0F0–07

1110E0–06

12D0D11605

0–0C0–04

0–0B10203

1090A13302

117090–01

1130812800

ValidPPNVPNValidPPNVPN

CS 213 F’01– 30 –class19.ppt

Simple Memory System TLB
TLB

• 16 entries
• 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

CS 213 F’01– 31 –class19.ppt

Simple Memory System Cache
Cache

• 16 lines
• 4-byte line size
• Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

––––014F03DFC2111167

D31B7783113E––––0316

15349604116D1DF0723610D5

––––012C098F6D431324

––––00BB––––0363

3BDA159312DA0804020011B2

––––02D9––––0151

8951003A1248112311991190

B3B2B1B0ValidTagIdxB3B2B1B0ValidTagIdx

CS 213 F’01– 32 –class19.ppt

Address Translation Example #1
Virtual Address 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

CS 213 F’01– 33 –class19.ppt

Address Translation Example #2
Virtual Address 0x027C

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

CS 213 F’01– 34 –class19.ppt

Address Translation Example #3
Virtual Address 0x0040

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

CS 213 F’01– 35 –class19.ppt

Multi-Level Page Tables
Given:

• 4KB (212) page size
• 32-bit address spa ce
• 4-byte PTE

Problem:
• Would need a 4 MB page table!

– 220 *4 bytes

Common solution
• multi-level page ta bles
• e.g., 2-level tabl e (P6)

– Level 1 table: 1024 entries, each of
which points to a Level 2 page table.

– Level 2 table: 1024 entries, each of
which points to a page

Level 1
Table

...

Level 2
Tables

CS 213 F’01– 36 –class19.ppt

Main Themes
Programmer’s View

• Large “flat” addres s space
– Can allocate large blocks of contiguous addresses

• Processor “owns” ma chine
– Has private address space
– Unaffected by behavior of other processes

System View
• User virtual address s pace created by ma pping to set of pages

– Need not be contiguous
– Allocated dynamically
– Enforce protection during address translation

• OS manages many proc esses simultane ously
– Continually switching among processes
– Especially when one must wait for resource

» E.g., disk I/O to handle page fault

