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Motivations for Virtual Memory
• Use Physical DRAM as a Cache for the Disk

• Address space of a process can exce ed physical memo ry size
• Sum of address spac es of multiple proces ses can excee d physical

memory

• Simplify Memory Management
• Multiple processes res ident in main memory .

– Each process with its own address space
• Only “active” co de and data is actu ally in memory

– Allocate more memory to process as needed.

Provide Protection
• One process can’t inte rfere with another.

– because they operate in different address spaces.
• User process cannot a ccess privileged information

– different sections of address spaces have different permissions.
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Motivation #1: DRAM a “Cache” for Disk
Full address space is q uite large:

• 32-bit addresses:                        ~4,000,000,000 (4 billion) bytes
• 64-bit addresses: ~ 16,000,000,000,000,000,000 (16 quintillion) bytes

Disk storage is ~156X cheaper than DRAM storage
• 8 GB of DRAM: ~ $10,000
• 8 GB of disk:     ~  $6 4

To access large amounts of data i n a cost-effective
manner, the bulk of the data must be stored on disk

256 MB: ~$320 
8 GB: ~$64

4 MB: ~$400

DiskDRAMSRAM
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Levels in Memory Hierarchy

CPUCPU

regsregs

C
a
c
h
e

MemoryMemory diskdisk

size:
speed:
$/Mbyte:
line size:

32 B
3 ns

8 B

Register Cache Memory Disk Memory

32 KB-4MB
6 ns
$100/MB
32 B

128 MB
60 ns
$1.25/MB
4  KB

30 GB
8 ms
$0.008/MB

larger, slower, cheaper

8 B 32 B 4 KB

cache virtual memory
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DRAM vs. SRAM as a “Cache”
DRAM vs. disk is more extreme than SRAM vs. DRAM

• Access latencies :
– DRAM ~10X slower than SRAM

– Disk ~100,000X slower than DRAM
• Importance of exploi ting spatial locality :

– First byte is ~100,000X slower than successive bytes on disk

» vs. ~4X improvement for page-mode vs. regular accesses to DRAM
• Bottom line:

– Design decisions made for DRAM caches driven by enormous cost of
misses

DRAMSRAM Disk
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Impact of These Properties on Design
If DRAM was to be organized similar to an SRAM ca che, how

would we set the following design parameters?
• Line size?

– Large, since disk better at transferring large blocks

• Associativity ?
– High, to mimimize miss rate

• Write through or write back?
– Write back, since can’t afford to perform small writes to disk

What would the impact of these choices be on:
• miss rate

– Extremely low.  << 1%
• hit time

– Must match cache/DRAM performance
• miss latency

– Very high.  ~20ms

• tag storage overhead
– Low, relative to block size
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Locating an Object in a “Cache”
SRAM Cache

• Tag stored with cache line
• Maps from cache block to memory blocks

– From cached to uncached form
• No tag for block not in c ache
• Hardware retrieves information

– can quickly match against multiple tags

X

Object Name

Tag Data

D 243

X  17

J 105

•
•
•

•
•
•

0:

1:

N-1:

= X?

“Cache”
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Locating an Object in a “Cache” (cont.)

Data

243

 17

105

•
•
•

0:

1:

N-1:

X

Object Name

Location

•
•
•

D:

J:

X: 1

0

On Disk

“Cache”Page Table

DRAM Cache
• Each allocate pag e of virtual memory ha s entry in page table
• Mapping from virtual pages to physical pages

– From uncached form to cached form
• Page table entry ev en if page not in mem ory

– Specifies disk address

• OS retrieves information
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CPU

0:
1:

N-1:

Memory

A System with Physical Memory Only
Examples:

• most Cray machines , early PCs, nearly all embedded system s, etc.

Addresses generated by the CPU point directly to bytes in physical memory

Physical
Addresses
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A System with Virtual Memory
Examples:

• workstations, servers, m odern PCs, etc.

Address Translation:  Hardware converts virtual addresses to
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses
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Page Faults (Similar to “Cache Misses”)
What if an object is on disk ra ther than in memory?

• Page table entry indi cates virtual address not in memory
• OS exception handler in voked to move data from disk into memory

– current process suspends, others can resume
– OS has full control over placement, etc.

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault
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Servicing a Page Fault
Processor Signals

Controller
• Read block of length P

starting at disk addre ss
X and store starting at
memory address Y

Read Occurs
• Direct Memory Access

(DMA)
• Under control of I/O

controller

I / O Controller
Signals Completion
• Interrupt processor
• OS resumes suspende d

process

diskDiskdiskDisk

Memory-I/O busMemory-I/O bus

ProcessorProcessor

CacheCache

MemoryMemory
I/O

controller

I/O
controller

Reg

(2) DMA Transfer

(1) Initiate Block Read

(3) Read
Done
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Motivation #2: Memory Management
Multiple processes can reside in physical memory.
How do we resolve address c onflicts?

• what if two processes ac cess something at the same address?

kernel virtu al memory

Memory mapp ed region 
forshared  libraries

runtime hea p (via malloc )

program text (.text)
initialized data (.dat a)

uninitiali zed data (. bss )

stack

forbidden
0

%esp

memory invis ible to
 user code

the “ brk ” ptr

Linux/x86
process
memory 
image
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Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

VP 1
VP 2

PP 2

Address Tra nslation0

0

N-1

0

N-1
M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/ only
library code )

Solution: Separate Virtual Addr. Spaces
• Virtual and physical address spaces d ivided into equal-siz ed blocks

–  blocks are called “pages” (both virtual and physical)

• Each process has its own virtual address s pace
– operating system controls how virtual pages as assigned to physical

memory

...

...

Virtual
Address
Space for
Process 2:
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Contrast: Macintosh Memory Model
MAC OS 1–9

• Does not use traditiona l virtual memory

All program objects accessed through “handles”
• Indirect reference through pointer table
• Objects stored in share d global address spa ce

P1 Pointer Table

P2 Pointer Table

Process P1

Process P2

Shared Address Space

A

B

C

D

E

“Handles”
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Macintosh Memory Management
Allocation / Deallocation

• Similar to free-list man agement of malloc /free

Compaction
• Can move any obje ct and just update the (unique) pointer in pointe r

table

“Handles”

P1 Pointer Table

P2 Pointer Table

Process P1

Process P2

Shared Address Space

A

B

C

D

E
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Mac vs. VM-Based Memory Mgmt
Allocating, deallocating , and moving memory:

• can be accompli shed by both techniqu es

Block sizes:
• Mac: variable-sized

– may be very small or very large

• VM: fixed-size
– size is equal to one page (4KB on x86 Linux systems)

Allocating contiguous chunks of memory:
• Mac: contiguous alloca tion is required
• VM: can map contiguous range of virtual address es to disjoint

ranges of physical addresses

Protection
• Mac: “wild write” by one proc ess can corrupt anothe r’s data
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MAC OS X
“Modern” Operating System

• Virtual memory with protectio n
• Preemptive multitask ing

– Other versions of MAC OS require processes to voluntarily relinquish
control

Based on MACH OS
• Developed at CMU in late 1 980’s
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Motivation #3: Protection
Page table entry contains acce ss rights information

• hardware enforces this prote ction (trap into OS if violatio n occurs)

Page Tables

Process i:

Physical AddrRead? Write?

    PP 9Yes No

    PP 4Yes Yes

XXXXXXX No No

VP 0:

VP 1:

VP 2:
•
•
•

•
•
•

•
•
•

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?

    PP 6Yes Yes

    PP 9Yes No

XXXXXXX No No
•
•
•

•
•
•

•
•
•

VP 0:

VP 1:

VP 2:
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VM Address Translation
V = {0, 1, . . . , N–1}   virtual address spa ce
P = {0, 1, . . . , M–1}  physical address s pace

MAP:  V →  P  U  {∅}  address mapping func tion

N > M

MAP(a)  =  a'  if data a t virtual address a is present at phys ical 
                           address a' in P

= ∅ if data at virtual ad dress a is not presen t in P

Processor

Hardware
Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
memorya

a'

∅

page fault

physical address
OS performs
this transfer
(only if miss)

virtual address part of the 
on-chip
memory mgmt unit (MMU)
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virtual page number page offset virtual address

physical page number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Notice that the page offset bits don't change as a result of translation

VM Address Translation
Parameters

• P = 2p = page size (b ytes).
• N = 2n = Virtual address lim it
• M = 2m = Physical addre ss limit
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Page Tables

Memory resident
page table

(physical page 
 or disk ad dress) Physical Memory

Disk Storage
(swap file or
regular file system file)

Valid

1

1

1
1
1

1

1
0

0

0

Virtual Page
Number
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Address Translation via Page Table

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts as
table index
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Page Table Operation
Translation

• Separate (set of) page table(s) per process
• VPN forms index into page table (points to a pa ge table entry)

Computing Physical Address
• Page Table Entry (PTE) prov ides information about p age

– if (valid bit = 1) then the page is in memory.
» Use physical page number (PPN) to construct address

– if (valid bit = 0) then the page is on disk

» Page fault
» Must load page from disk into main memory before continuing

Checking Protection
• Access rights field i ndicate allowable ac cess

– e.g., read-only, read-write, execute-only

– typically support multiple protection modes (e.g., kernel vs. user)
• Protection violation fau lt if user doesn’t have necessary permis sion
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CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

Integrating VM and Cache

Most Caches “Physically Addressed”
• Accessed by phys ical addresses
• Allows multiple process es to have blocks in cache at same time
• Allows multiple process es to share pages
• Cache doesn’t need to be concerned with protec tion issues

– Access rights checked as part of address translation

Perform Address Translation Before Cache Lookup
• But this could involve a memory acces s itself (of the PTE)
• Of course, page table entries can also be come cached
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CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

Speeding up Translation with a TLB
“Translation Lookaside  Buffer” (TLB)

• Small hardware cache in MMU
• Maps virtual page numb ers to  physical pag e numbers
• Contains complete pa ge table entries for sm all number of pages
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Address Translation with a TLB

virtual add ressvirtual pag e number page off set

physical a ddress

n–1 0p–1p

valid physical p age numbe rtag

valid tag data

data
=

cache hit

tag byte offs etindex

=

TLB hit

TLB

Cache

. ..
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Simple Memory System Example
Addressing

• 14-bit virtual address es
• 12-bit physical a ddress
• Page size = 64 bits

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

(Virtual Page Number) (Virtual Page Offset)

(Physical Page Number) (Physical Page Offset)
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Simple Memory System Page Table
• Only show first 16 entries

10D0F0–07

1110E0–06

12D0D11605

0–0C0–04

0–0B10203

1090A13302

117090–01

1130812800

ValidPPNVPNValidPPNVPN
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Simple Memory System TLB
TLB

• 16 entries
• 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet
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Simple Memory System Cache
Cache

• 16 lines
• 4-byte line size
• Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

––––014F03DFC2111167

D31B7783113E––––0316

15349604116D1DF0723610D5

––––012C098F6D431324

––––00BB––––0363

3BDA159312DA0804020011B2

––––02D9––––0151

8951003A1248112311991190

B3B2B1B0ValidTagIdxB3B2B1B0ValidTagIdx
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Address Translation Example #1
Virtual Address 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT
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Address Translation Example #2
Virtual Address 0x027C

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT
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Address Translation Example #3
Virtual Address 0x0040

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT
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Multi-Level Page Tables
Given:

• 4KB (212) page size
• 32-bit address spa ce
• 4-byte PTE

Problem:
• Would need a 4 MB page table!

– 220 *4 bytes

Common solution
• multi-level page ta bles
• e.g., 2-level tabl e (P6)

– Level 1 table: 1024 entries, each of
which points to a Level 2 page table.

– Level 2 table:  1024 entries, each of
which points to a page

Level 1
Table

...

Level 2
Tables
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Main Themes
Programmer’s View

• Large “flat” addres s space
– Can allocate large blocks of contiguous addresses

• Processor “owns” ma chine
– Has private address space
– Unaffected by behavior of other processes

System View
• User virtual address s pace created by ma pping to set of pages

– Need not be contiguous
– Allocated dynamically
– Enforce protection during address translation

• OS manages many proc esses simultane ously
– Continually switching among processes
– Especially when one must wait for resource

» E.g., disk I/O to handle page fault


