
Network programming
 Nov 27, 2001

Topics
• Client-server model
• Sockets interface
• Echo client and se rver

class26. ppt

15-213
“The course that gives CMU its Zip!”

CS 213 F’01– 2 –class26. ppt

Client-server model

client
process

server
process

1. client sends request

2. server
handles
request

3. server sends response4. client
handles

response

resource

Every network application is based on the client-server
model:
• Application is a server process and one or more client processes
• Server manages som e resource, and provides service by

manipulating resource for clients .
• Client makes a requ est for a service

– request may involv e a conversation a ccording to some serv er
protocol

• Server provides servic e by manipulating th e resource on behalf o f
client and then returnin g a response

CS 213 F’01– 3 –class26. ppt

Clients
Examples of client programs

• Web browsers, ftp , telnet , ssh

How does the client find the server?
• The address of the s erver process has two pa rts: IPaddress :port

– The IP address is a unique 32-bit p ositive integer that ide ntifies
the host (adapter).
» dotted decimal form: 0x8002C2F2 = 12 8.2.194.242

– The port is positive intege r associated with a se rvice (and thus a
server process) on tha t machine.
» port 7: echo server
» port 23: telnet server
» port 25: mail server
» port 80: web server

CS 213 F’01– 4 –class26. ppt

Using ports to identify services

client

Web server
(port 80)

client machine

server machine 128.2 194.242

kernel

Echo server
(port 7)

service request for
128.2.194.242:80

(i.e., the Web server)

client

Web server
(port 80)

kernel

Echo server
(port 7)

service request for
128.2.194.242:7

(i.e., the echo server)

CS 213 F’01– 5 –class26. ppt

Servers
Servers are long-running processes (daemons).

• Created at boot-time (typi cally) by the init process (process 1)
• Run continuously until the machine is turned off.

Each server waits for requests to a rrive on a well-
known port associated with a partic ular service.
• port 7: echo server
• port 25: mail server
• port 80: http server

A machine that runs a server process is also often
referred to as a “server”.

CS 213 F’01– 6 –class26. ppt

Server examples
Web server (port 80)

• resource: files/comp ute cycles (CGI programs)
• service: retrieves fi les and runs CGI programs on behalf of the client

FTP server (20, 21)
• resource: files
• service: stores and retrieve files

Telnet server (23)
• resource: terminal
• service: proxies a terminal on the serve r machine

Mail server (25)
• resource: email “s pool” file
• service: stores ma il messages in s pool file

See /etc/services for a comprehensive list
of the services available on a Linux machine.

CS 213 F’01– 7 –class26. ppt

The two basic ways that
clients and servers communicate

Connections (TCP):
• reliable two-way byte-strea m.
• looks like a file .
• akin to placing a phone call.
• slower but more robust.

Datagrams (UDP):
• data transferred in unreli able

chunks.
• can be lost or arrive out of

order.
• akin to using surfac e mail.
• faster but less robust.

We will only discuss
connections.

client server

... , Bk, Bk-1, ... , B1, B0

B0, B1, ..., Bk-1, Bk, ...

connection

client server

dgram dgram

dgramdgram

CS 213 F’01– 8 –class26. ppt

Internet connections (review)
Clients and servers communicate by sending streams

of bytes over connections :
• point-to-point, full-duplex , and reliable.

A socket is an endpoint of a connection
• Socket address is an IPaddress :port pair

A port is a 16-bit integer that identifies a process:
• ephemeral port: assigned autom atically on client whe n client makes

a connection reques t
• well-known port: associated with so me service provided by a server

(e.g., port 80 is as sociated with Web serve rs)

A connection is uniquely identifi ed by the socket
addresses of its endpoints (socket pair)
• (cliaddr :cliport , servaddr : servport)

CS 213 F’01– 9 –class26. ppt

Anatomy of an Internet connection
(review)

connection socket pair
(128.2.194.242 :51213, 208.216.181.15:80)

server
(port 80)

client

client socket address
128.2.194.242:51213

server socket address
208.216.181.15:80

client host address
128.2.194.242

server host address
208.216.181.15

CS 213 F’01– 10 –class26. ppt

Berkeley Sockets Interface
Created in the early 80’s as part of the original Berkeley

distribution of Unix that contained an early version of
the Internet protocols.

Provides a user-level interface to the network.

Underlying basis for all Internet a pplications.

Based on client/server programming mode l.

CS 213 F’01– 11 –class26. ppt

What is a socket?
A socket is a descriptor that lets an appl ication

read/write from/to the network.
• Key idea: Unix uses the same abstractio n for both file I/O and

network I/O.

Clients and servers communicate wi th each by reading
from and writing to socket descriptors.
• Using regular Unix read and write I/O functions.

The main difference between file I/O and socket I/O is
how the application “opens” the soc ket descriptors.

CS 213 F’01– 12 –class26. ppt

Key data structures
Defined in /usr/include/ netinet /in.h

Internet-style sockets are characterized by a 32-bit IP
address and a port.

/* Internet address */
struct in_addr {
 unsigned int s_ addr; /* 32-bit IP address */
};

/* Internet style socket address * /
struct sockaddr _in {
 unsigned short int sin_family; /* Address family (A F_INET) */
 unsigned short int sin_port; /* Port number */
 struct in_addr sin_addr ; /* IP address */
 unsigned char sin_zero[...]; / * Pad to sizeof “struct sockaddr ” */
};

CS 213 F’01– 13 –class26. ppt

Key data structures
Defined in /usr/include/ netdb.h

hostent is a DNS host entry that associates a domain
name (e.g., cmu.edu) with an IP addr (128.2.35.186)
• Can be accessed from user programs

– gethostbyname () [domain name ke y]
– gethostbyaddr () [IP address key]

• Can also be acce ssed from the shell u sing nslookup or dig.

/* Domain Name Service (DNS) host entry */
struct hostent {
 char *h_name; /* offic ial name of host */
 char **h_aliases; /* alias list */
 int h_addrtype ; /* host address type */
 int h_length; /* length of addre ss */
 char **h_addr _list; /* list of addresses */
}

CS 213 F’01– 14 –class26. ppt

Overview of the Sockets Interface
Client Server

socket socket

bind

listen

accept

readline

readline

writen

close

readline

connect

writen

close

connection
request

EOF

Await connection
request from
next client

open_ listenfd

open_ clientfd

CS 213 F’01– 15 –class26. ppt

Echo client

int main(int argc , char **argv)
{
 int clientfd , port;
 char *host, buf[MAXLINE];

 if (argc != 3) {
 fprintf (stderr, "usage: %s <host> <port>\n", argv [0]);
 exit(0);
 }
 host = argv [1];
 port = atoi (argv[2]);

 clientfd = open_ clientfd (host, port);
 while (Fgets (buf, MAXLINE, stdin) != NULL) {
 Writen (clientfd, buf, strlen (buf));
 Readline (clientfd , buf, MAXLINE);
 Fputs (buf , stdout);
 }
 Close(clientfd);
}

CS 213 F’01– 16 –class26. ppt

Echo client: open_clientfd ()
int open_ clientfd (char *hostname, int port)
{
 int clientfd ;
 struct hostent *hp;
 struct sockaddr _in serveraddr ;

 clientfd = Socket(AF_INET, SOCK_STREAM, 0);

 /* fill in the server's IP add ress and port */
 hp = Gethostbyname (hostname);
 bzero ((char *) & serveraddr , sizeof (serveraddr));
 serveraddr .sin_family = AF_INET;
 bcopy ((char *)hp->h_ addr,
 (char *)& serveraddr .sin_ addr.s_addr , hp->h_length);
 serveraddr .sin_port = htons(port);

 /* establish a connection with the server */
 Connect(clientfd , (SA *) & serveraddr , sizeof (serveraddr));

 return clientfd ;
}

CS 213 F’01– 17 –class26. ppt

Echo client: open_clientfd ()
(socket)

The client creates a socket that will serve as the
endpoint of an Internet (AF_INET) connection
(SOCK_STREAM).
• socket() returns an integer socket descriptor.

int clientfd ; /* socket descriptor */

clientfd = Socket(AF_INET, SOCK_STREAM, 0);

CS 213 F’01– 18 –class26. ppt

Echo client: open_clientfd ()
(gethostbyname)

The client builds the server’ s Internet address.

 int clientfd ; /* socket descript or */
 struct hostent *hp; /* DNS host entry */
 struct sockaddr _in serveraddr ; /* server’s IP address */

 typedef struct sockaddr SA; /* generic sockaddr */

...

 /* fill in the server's IP add ress and port */
 hp = Gethostbyname (hostname);
 bzero ((char *) & serveraddr , sizeof (serveraddr));
 serveraddr .sin_family = AF_INET;
 bcopy ((char *)hp->h_ addr,
 (char *)& serveraddr .sin_ addr.s_addr , hp->h_length);
 serveraddr .sin_port = htons(port);

CS 213 F’01– 19 –class26. ppt

Echo client: open_clientfd ()
(connect)

Then the client creates a connec tion with the server
• The client process suspends (blocks) until the connection is created

with the server.
• At this point the client is ready to begin ex changing message s with

the server via Unix I /O calls on the descrip tor sockfd .

 int clientfd ; /* socket descri ptor */
 struct sockaddr _in serveraddr ; /* server address */

...

 /* establish a connection with the server */
 Connect(clientfd , (SA *) & serveraddr , sizeof (serveraddr));

CS 213 F’01– 20 –class26. ppt

Echo server
int main(int argc , char **argv) {
 int listenfd , connfd , port, clientlen ;
 struct sockaddr _in clientaddr ;
 struct hostent *hp;
 char * haddrp ;

 port = atoi (argv[1]); /* the server listens on a port passed
 on th e command line */
 listenfd = open_ listenfd (port);

 while (1) {
 clientlen = sizeof (clientaddr);
 connfd = Accept(listenfd, (SA *)& clientaddr , & clientlen);
 hp = Gethostbyaddr ((const char *)& clientaddr .sin_ addr.s_ addr,
 sizeof (clientaddr .sin_ addr.s_ addr), AF_INET);
 haddrp = inet_ntoa (clientaddr .sin_addr);
 printf ("server connected to %s (%s)\ n", hp->h_name, haddrp);
 echo(connfd);
 Close(connfd);
 }
}

CS 213 F’01– 21 –class26. ppt

Echo server: open_ listenfd()

int open_ listenfd (int port)
{
 int listenfd ;
 int optval ;
 struct sockaddr _in serveraddr ;

 /* create a socket descriptor */
 listenfd = Socket(AF_INET, SOCK_STREAM, 0);

 /* eliminates "Address already in use" error from bind. */
 optval = 1;
 Setsockopt (listenfd, SOL_SOCKET, SO_REUSEADDR,
 (const void *)& optval , sizeof (int));

... (more)

CS 213 F’01– 22 –class26. ppt

Echo server: open_ listenfd()
 (cont)

...

 /* listenfd will be an endpoint for all requests to port
 on any IP address for this host */
 bzero ((char *) & serveraddr , sizeof (serveraddr));
 serveraddr .sin_family = AF_INET;
 serveraddr .sin_ addr.s_ addr = htonl (INADDR_ANY);
 serveraddr .sin_port = htons((unsigned short)port);
 Bind(listenfd , (SA *)& serveraddr , sizeof (serveraddr));

 /* make it a listening socket ready to accept
 connection requests */
 Listen(listenfd , LISTENQ);

 return listenfd ;
}

CS 213 F’01– 23 –class26. ppt

socket() creates a socket descriptor.
• AF_INET: indicates that th e socket is asso ciated with Internet protocols .
• SOCK_STREAM: selects a relia ble byte stream con nection.

Echo server: open_ listenfd()
(socket)

int listenfd ; /* listening socket descriptor */

listenfd = Socket(AF_INET, SOCK_STREAM, 0);

CS 213 F’01– 24 –class26. ppt

Echo server: open_ listenfd()
(setsockopt)

The socket can be given so me attributes.

Handy trick that allows us to rerun the server
immediately after we kill i t.
• Otherwise we would have to wait a bout 15 secs .
• Eliminates “Address already in use” e rror from bind().

• Strongly suggest you d o this for all your serve rs to simplify
debugging.

 /* eliminates "Address already in use" error from bind. */
 optval = 1;
 Setsockopt (listenfd, SOL_SOCKET, SO_REUSEADDR,
 (const void *)& optval , sizeof (int));

CS 213 F’01– 25 –class26. ppt

Echo server: open_ listenfd()
(initialize socket address)

Next, we initialize the sock et with the server’s Internet
address (IP address and port)

IP addr and port stored in network (big- endian) byte order
• htonl () converts longs from host byte order to network by te order.
• htons () convers shorts from host byte order to network byte order.

 struct sockaddr _in serveraddr ; /* server's socket addr */

 /* listenfd will be an endpoint for all re quests to port
 on any IP address for this ho st */
 bzero ((char *) & serveraddr , sizeof (serveraddr));
 serveraddr .sin_family = AF_INET;
 serveraddr .sin_ addr.s_ addr = htonl (INADDR_ANY);
 serveraddr .sin_port = htons ((unsigned short)port);

CS 213 F’01– 26 –class26. ppt

Echo server: open_ listenfd()
(bind)

bind() associates the socket with the s ocket address
we just created.

int listenfd ; /* listening socket */
struct sockaddr _in serveraddr ; /* server’s socket addr */

/* listenfd will be an endpoint for all requ ests to port
 on any IP address for this host */
Bind(listenfd, (SA *)& serveraddr , sizeof (serveraddr));

CS 213 F’01– 27 –class26. ppt

Echo server: open_ listenfd
(listen)

listen() indicates that this socket wil l accept
connection (connect) requests from clients.

We’re finally ready to enter the mai n server loop that
accepts and processes clie nt connection requests.

int listenfd ; /* listening so cket */

/* make listenf it a server-side listening socket rea dy to accept
 connection requests from client s */
Listen(listenfd , LISTENQ);

CS 213 F’01– 28 –class26. ppt

Echo server: main loop
The server loops endlessly , waiting for connection

requests, then reading input from the cli ent, and
echoing the input back to the clie nt.

main() {

 /* create and configure the lis tening socket */

 while(1) {
 /* Accept(): wait for a conn ection request */
 /* echo(): read and echo inp ut line from client */
 /* Close(): close the connec tion */
 }
}

CS 213 F’01– 29 –class26. ppt

accept() blocks waiting for a connection request.

accept() returns a connected socket descriptor
(connfd) with the same properties as the l istening
descriptor (listenfd)
• Returns when connection b etween client and serv er is complete.
• All I/O with the client will be done via the connec ted socket.

accept() also fills in client’s address.

Echo server: accept()

 int listenfd ; /* listening descriptor */
 int connfd; /* connected descriptor */

 struct sockaddr _in clientaddr ;
 int clientlen ;

 clientlen = sizeof(clientaddr);
 connfd = Accept(listenfd , (SA *)& clientaddr , &clientlen);

CS 213 F’01– 30 –class26. ppt

accept() illustrated

listenfd (3)

client

1. Server blocks in accept,
waiting for connection req uest
on listening descrip tor
listenfd.clientfd

server

listenfd (3)

client

clientfd

server 2. Client makes connectio n request by
calling and blo cking in connect.

listenfd (3)

client

clientfd

server

3. Server returns connfd from accept.
Client returns from connect.
Connection is now established
between clientfd and connfd.

connection
request

connfd (4)

CS 213 F’01– 31 –class26. ppt

Echo server: identifying the client
The server can determine the domai n name and IP

address of the client.

 struct hostent *hp; /* pointer to DNS host entry */
 char * haddrp ; /* pointer to dotted decimal string */

 hp = Gethostbyaddr ((const char *)& clientaddr .sin_ addr.s_addr ,
 sizeof (clientaddr .sin_ addr.s_ addr), AF_INET);
 haddrp = inet _ntoa(clientaddr .sin_ addr);
 printf ("server connected to %s (%s)\n", hp->h_name, haddrp);

CS 213 F’01– 32 –class26. ppt

Echo server: echo()

void echo(int connfd)
{
 size_t n;
 char buf[MAXLINE];

 while((n = Readline (connfd, buf , MAXLINE)) != 0) {
 printf ("server received %d bytes\n", n);
 Writen (connfd, buf , n);
 }
}

The server uses Unix I/O to read and echo text lines
until EOF (end-of-file) is encountered.
• EOF notification cause d by client calling close(clientfd).

• NOTE: EOF is a condition, not a data byte.

CS 213 F’01– 33 –class26. ppt

Testing servers using telnet

The telnet program is invaluable for testing serv ers
that transmit ASCII strings over Internet conections
• our simple echo se rver
• Web servers
• mail servers

Usage:
• unix > telnet <host> <portnumber>

• creates a connec tion with a server running on <host> and listening
on port <portnumber>.

CS 213 F’01– 34 –class26. ppt

Testing the echo server with telnet
bass> echoserver 5000
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 5 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 8 bytes: 456789

kittyhawk > telnet bass 5000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
123
123
Connection closed by foreign host.
kittyhawk > telnet bass 5000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
456789
456789
Connection closed by foreign host.
kittyhawk >

CS 213 F’01– 35 –class26. ppt

Running the echo client and server

bass> echoserver 5000
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 4 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 7 bytes: 456789
...

kittyhawk > echoclient bass 5000
Please enter msg : 123
Echo from server: 123

kittyhawk > echoclient bass 5000
Please enter msg : 456789
Echo from server: 456789
kittyhawk >

CS 213 F’01– 36 –class26. ppt

For detailed info
W. Richard Stevens, “Unix Network Programmi ng:

Networking APIs: Sockets and XTI”, Volume 1,
Second Edition, Prentice Hall, 1998.
• This is the network program ming bible.

Complete versions of the echo clie nt and server are
developed in the text.
• You should compile and run them for yourselv es to see how they

work.
• Feel free to borrow any of th is code.

