
Web services
 Nov 29, 2001

Topics
• HTTP
• Serving static conten t
• Serving dynamic co ntent

class27. ppt

15-213
“The course that gives CMU its Zip!”

CS 213 F’01– 2 –class27. ppt

Web history
1945:

• Vannevar Bush, “As we may think”, Atlantic Monthly, J uly, 1945.
– Describes the idea of a distributed hypertex t system.
– a “ memex ” that mimics the “ web of trails” in our min ds.

1989:
• Tim Berners-Lee (CERN) writes internal propos al to develop a

distributed hypertext s ystem.
– connects “a web of notes with links”.
– intended to help CERN phys icists in large projec ts share and

manage information

1990:
• Tim BL writes a graphical browser for Next machines.

CS 213 F’01– 3 –class27. ppt

Web history (cont)
1992

• NCSA server released
• 26 WWW servers worldwide

1993
• Marc Andreessen releases first vers ion of NCSA Mosaic browser
• Mosaic version releas ed for (Windows, Mac, Unix).
• Web (port 80) traffic at 1 % of NSFNET backbone traffic.
• Over 200 WWW servers worldwide.

1994
• Andreessen and colleagues l eave NCSA to form "Mosaic

Communications Corp" (now Netscape).

CS 213 F’01– 4 –class27. ppt

Internet Domain Survey
(www. isc.org)

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Aug-8
1

Oct
-8

4

Nov
-8

6

Oct
-8

8

Oct
-8

9

Ju
l-9

1

Apr
-9

2

Ja
n-

93
Oct

-9
3

Oct
-9

4

Ja
n-

96

Ju
l-9

7

Ja
n-

99

In
te

rn
et

 h
o

st
s

Mosaic
and
Netscape

CS 213 F’01– 5 –class27. ppt

Web servers

web
server

HTTP request

HTTP response
(content)

Clients and servers
communicate using
the HyperText Transfer
Protocol (HTTP)
• client and server e stablish

TCP connection
• Client requests conten t
• Server responds with

requested content
• client and server c lose

connection (usually)

Current version is
HTTP/1.1
• RFC 2616, June, 1999.

web
client

(browser)

CS 213 F’01– 6 –class27. ppt

Web content
Web servers return content to clients

• content: a sequence of b ytes with an associa ted MIME (Multipurpose
Internet Mail Extensions) type

Example MIME types
• text/html HTML page
• text/plain Unformatted text
• application/posts cript Postcript document
• image/ gif Binary image encod ed in GIF format
• image/ jpg Binary image encod ed in JPG format

CS 213 F’01– 7 –class27. ppt

Static and dynamic content
The content returned in HTTP responses ca n be either

static or dynamic.
• Static content: content stored in files and retrie ved in response to a n

HTTP request
– Examples: HTML files, im ages, audio clips .

• Dynamic content: con tent produced on-the-fly in response to an
HTTP request
– Example: content produ ced by a program exe cuted by the server

on behalf of the clie nt.

Bottom line: all content is associated with a file
managed by the server.

CS 213 F’01– 8 –class27. ppt

URLs

Each file managed by a se rver has a unique name
called a URL (Universal Resource Loca tor)

URLs for static content:
• http://www. cs .cmu .edu:80/index.html

• http://www. cs .cmu .edu/index.html

• http://www. cs .cmu .edu

– identifies a file c alled index.html, managed by a Web server
at www.cs .cmu .edu that is listening on po rt 80.

URLs for dynamic content:
• http://www. cs .cmu .edu:8000/ cgi-bin/adder?15000 &213

– identifies an exe cutable file called adder , managed by a Web
server at www.cs .cmu .edu that is listening on p ort 8000, that
should be called with two argument strings: 15000 and 213 .

CS 213 F’01– 9 –class27. ppt

How clients and servers use URLs
Example URL: http://www. aol .com:80/index.html

Clients use prefix (http://www. aol.com:80) to infer:
• What kind of server to contact (Web server)
• Where the server is (www. aol.com)
• What port it is listenin g on (80)

Servers use suffix (/index.html) to:
• Determine if request is for static or dynamic c ontent.

– No hard and fast rules fo r this.
– Convention: executab les reside in cgi -bin directory

• Find file on filesystem .
– Initial “/” in su ffix denotes home dire ctory for requested conten t.
– Minimal suffix is “/” , which all servers e xpand to some defau lt

home page (e.g., index.html).

CS 213 F’01– 10 –class27. ppt

Anatomy of an HTTP transaction
unix> telnet www.aol.com 80 Client: open connection to server
Trying 205.188.146.23... Telnet prints 3 lines to the terminal
Connected to aol .com.
Escape character is '^]'.
GET / HTTP/1.1 Client: request line
host: www. aol.com Client: required HTTP/1.1 HOST header
 Client: empty line terminates headers.
HTTP/1.0 200 OK Server: response line
MIME-Version: 1.0 Server: followed by five respo nse headers
Date: Mon, 08 Jan 2001 04:59:42 GMT
Server: NaviServer /2.0 AOLserver /2.3.3
Content-Type: text/html Server: expect HTML in the response body
Content-Length: 42092 Server: expect 42,092 bytes in the resp body
 Server: empty line (“\r\n”) terminates hdrs
<html> Server: first HTML line in response body
... Server: 766 lines of HTML not shown.
</html> Server: last HTML line in response body
Connection closed by foreign host. Server: closes connection
unix> Client: closes connection and terminatesM

CS 213 F’01– 11 –class27. ppt

HTTP requests
HTTP request is a request line , followed by zero or

more request headers

request line: <method> < uri> <version>
• <version> is HTTP version of reque st (HTTP/1.0 or HTTP/1.1)
• <uri > is typically URL for prox ies, URL suffix for servers .
• <method> is either GET, POST, OPTI ONS, HEAD, PUT, DEL ETE,

or TRACE.

CS 213 F’01– 12 –class27. ppt

HTTP requests (cont)
HTTP methods:

• GET: retrieve static or dyna mic content
– arguments for dynamic content are in URI
– workhorse method (99% o f requests)

• POST: retrieve dynamic c ontent
– arguments for dynamic content are in the requ est body

• OPTIONS: get server or file a ttributes
• HEAD: like GET but no data in respons e body
• PUT: write a file to the server!
• DELETE: delete a file on the server!
• TRACE: echo request in res ponse body

– useful for debugging.

CS 213 F’01– 13 –class27. ppt

HTTP requests (cont)
Request headers: <header name>: <header data >

• Provide additional info rmation to the server.

Major differences between HTTP/1.1 a nd HTTP/1.0
• HTTP/1.0 uses a ne w connection for each trans action.
• HTTP/1.1 also supports persistent connection s

– multiple transactions over the same con nection
– Connection: Keep- Alive

• HTTP/1.1 requires HOST header

CS 213 F’01– 14 –class27. ppt

HTTP Responses
HTTP response is a response line followed by zero or

more response headers .
Response line:

<version> <status code> <status msg>
• <version> is HTTP ve rsion of the response.
• <status code> is numeric status.
• <status msg> is corresponding English text.

– 200 OK Request was handled without error
– 403 Forbidden Server lacks permiss ion to access file
– 404 Not found Server couldn’t find the fil e.

Response headers: <header name>: <header data>
• provide additional in formation about response
• Content-Type: MIME type of content in respons e body.
• Content-Length: Length of content in response body.

CS 213 F’01– 15 –class27. ppt

GET request to Apache server
from IE browser

GET /test.html HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla /4.0 (compatible; MSIE 4.01; Windo ws 98)
Host: euro.ecom .cmu.edu
Connection: Keep-Alive
CRLF

CS 213 F’01– 16 –class27. ppt

GET response from Apache

HTTP/1.1 200 OK
Date: Thu, 22 Jul 1999 04:02:15 GMT
Server: Apache/1.3.3 Ben-SSL/1.28 (Unix)
Last-Modified: Thu , 22 Jul 1999 03:33:21 GMT
ETag: "48bb2-4f-37969101"
Accept-Ranges: bytes
Content-Length: 79
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
CRLF
<html>
<head><title>Test page</title></he ad>
<body>
<h1>Test page</h1>
</html>

CS 213 F’01– 17 –class27. ppt

Serving dynamic content

client server

Client sends request to
server.

If request URI contains the
string “ /cgi-bin ”, then
the server assumes that
the request is for dynamic
content.

GET / cgi -bin/ env. pl HTTP/1.1

CS 213 F’01– 18 –class27. ppt

Serving dynamic content

client server

The server creates a child
process and runs the
program identified by the
URI in that process

env.pl

fork/exec

CS 213 F’01– 19 –class27. ppt

Serving dynamic content

client server
The child runs and

generates the dynamic
content.

The server captures the
content of the child and
forwards it without
modification to the client

env.pl

content

content

CS 213 F’01– 20 –class27. ppt

CS 213 F’01– 21 –class27. ppt

Issues in serving dynamic content

How does the client pass program
arguments to the server?

How does the server pass these
arguments to the child?

How does the server pass other
info relevant to the request to the
child?

How does the server capture the
content produced by the child?

These issues are addresse d by the
Common Gateway Interface (CGI)
specification.

client server

content

content

request

create

env.pl

CS 213 F’01– 22 –class27. ppt

CGI
Because the children are written a ccording to the CGI

spec, they are often called CGI programs.

Because many CGI programs are wri tten in Perl , they
are often called CGI scripts.

However, CGI really defines a simple standard for
transferring information between the client (browse r),
the server, and the child proce ss.

CS 213 F’01– 23 –class27. ppt

add.com:
THE Internet addition portal!

Ever need to add two numbers together and you just
can’t find your calculator?

Try Dr. Dave’s addition service at add.com: THE
Internet addition portal!
• Takes as input the two numbers you want to add together.
• Returns their sum in a ta steful personalized message.

After the IPO we’ll expand to mul tiplication!

CS 213 F’01– 24 –class27. ppt

The add.com experience
input URL

Output page

host port CGI program args

CS 213 F’01– 25 –class27. ppt

Serving dynamic content with GET

Question: How does the client pass arguments to the
server?

Answer: The arguments are appended to the URI

Can be encoded directly in a URL typed to a browser
or a URL in an HTML link
• http://add.com/ cgi -bin/adder?1&2

• adder is the CGI program on the server that will do the add ition.
• argument list starts with “?”

• arguments separated by “&”

• spaces represente d by “+” or “%20”

Can also be generated by an HTML form

<form method=get action="http://ad d.com/cgi-bin/ postadder ">

CS 213 F’01– 26 –class27. ppt

Serving dynamic content with GET
URL:

• http://add.com/ cgi -bin/adder?1&2

Result displayed on browser:

Welcome to add.com: THE Internet addition portal.

The answer is: 1 + 2 = 3

Thanks for visiting! Tell your friends.

CS 213 F’01– 27 –class27. ppt

Serving dynamic content with GET
Question : How does the server pass these

arguments to the child?
Answer: In environment variable Q UERY_STRING

• a single string conta ining everything after th e “?”
• for add.com: QUERY_STRING = “ 1&2”

 /* child code that accesses the argument list */
 if ((buf = getenv ("QUERY_STRING")) == NULL) {
 exit(1);
 }

 /* extract arg1 and arg2 from buf and convert */
 ...
 n1 = atoi(arg1);
 n2 = atoi(arg2);

CS 213 F’01– 28 –class27. ppt

Serving dynamic content with GET
Question: How does the server pass other i nfo relevant

to the request to the child?
Answer: in a collection of environ ment variables

defined by the CGI spec.

CS 213 F’01– 29 –class27. ppt

Some CGI environment variables
General

• SERVER_SOFTWARE

• SERVER_NAME

• GATEWAY_INTERFACE (CGI version)

Request-specific
• SERVER_PORT

• REQUEST_METHOD (GET, POST, etc)
• QUERY_STRING (contains GET args)
• REMOTE_HOST (domain name of client)
• REMOTE_ADDR (IP address of clie nt)
• CONTENT_TYPE (for POST, type of data in mes sage body, e.g.,

text/html)
• CONTENT_LENGTH (length in bytes)

CS 213 F’01– 30 –class27. ppt

Some CGI environment variables
In addition, the value of eac h header of type type

received from the client is pl aced in environment
variable HTTP_type
• Examples:

– HTTP_ACCEPT

– HTTP_HOST

– HTTP_USER_AGENT (any “-” is ch anged to “_”)

CS 213 F’01– 31 –class27. ppt

Serving dynamic content with GET
Question: How does the server capture the content

produced by the child?
Answer: The child generates its output on stdout . Server

uses dup2 to redirect stdout to its connected socket.
• Notice that only the c hild knows the type and size of the content. Thus

the child (not the se rver) must generate the c orresponding headers.

 /* child generates the result st ring */
 sprintf (content, "Welcome to add.com: THE Internet addition portal\
 <p>The answer is: %d + % d = %d\
 <p>Thanks for visiting!\ r\n",

 n1, n2, n1+n2);

 /* child generates the headers a nd dynamic content */
 printf ("Content-length: %d\r\n", strlen(content));
 printf ("Content-type: text/html\r\n");
 printf ("\r\n");
 printf ("%s", content);

CS 213 F’01– 32 –class27. ppt

Serving dynamic content with GET
bass> tiny 8000
GET / cgi-bin/adder?1&2 HTTP/1.1
Host: bass. cmcl .cs.cmu.edu :8000
<CRLF>

kittyhawk > telnet bass 8000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
GET / cgi-bin/adder?1&2 HTTP/1.1
Host: bass. cmcl .cs.cmu.edu :8000
<CRLF>
HTTP/1.1 200 OK
Server: Tiny Web Server
Content-length: 102
Content-type: text/html
<CRLF>
Welcome to add.com: THE Internet a ddition portal.
<p>The answer is: 1 + 2 = 3
<p>Thanks for visiting!
Connection closed by foreign host.
kittyhawk >

HTTP request received by
Tiny Web server

HTTP request sent by c lient

HTTP response generate d by
the server
HTTP response generate d by
the CGI program

CS 213 F’01– 33 –class27. ppt

For more information
See the Tiny Web server desc ribed in your text

• Tiny is a sequen tial Web server.
• Serves static and d ynamic content to rea l browsers.

– text files, HTML files, GIF a nd JPG images.
• 220 lines of com mented, well structured C co de.
• Also comes with an im plementation of the CGI sc ript for the add.com

addition portal.

