
15-213 Recitation: Proxy Lab

Elie Krevat
(with wisdom from past terms)

Outline

 Intro to Proxy Lab
 This week: Sequential Proxy

 HTTP over TCP/IP
 What to parse from HTTP headers
 What headers to suppress
 Handling broken pipes and using RIO
 Testing and Debugging

 Next week: Concurrency and caching

What is a proxy

 Middle-man between browser (client)
and web server
 Acts as client to web server
 Also acts as server to browser

 Useful as firewall, logger, cache

Proxy Lab: What we give you

 Tiny Web Server
 Example of web server code
 Debug: Change code to control behavior

 csapp.c/h
 RIO package, wrapper/helper functions

 port_for_user.pl
 Script to generate port # for your proxy

 proxy.c – Empty!

Proxy Lab: What you’ll do

 Part 1: Sequential Web Proxy
 Accept conn, read req, parse it, forward

req to server, get reply, forward to client

 Part 2: Thread-based Concurrent Proxy
 Spawn threads for each request in parallel

 Part 3: Adding a Cache
 Apply LRU eviction policy
 Make cache efficient and thread-safe!

Start early (please!)

 Proxy Lab is less intricate than Malloc
 BUT you’ll be writing a full proxy, with

code basically from scratch…
 …and you’ll still need to understand

some conceptual hurdles…
 …AND IT TAKES ABOUT AS LONG, IF

NOT LONGER, THAN MALLOC LAB!!
 So please start early!

What Proxy Lab covers

 Software engineering skills
 Writing projects from scratch, in groups
 Reading formal specifications
 Testing and extending functionality

 Unix socket programming
 Internet communication
 Threading and concurrency
 Caching and data structure design

Socket programming (briefly)

 Socket is a file descriptor, special init
 Identifies endpoint of communication

 Imp. functions: connect, bind, accept
 Sockets opened with sockaddr

 For Internet, use sockaddr_in

HTTP over TCP/IP

 Everything is handled in layers
 IP handles addressing, unreliable comm.

 Which computer, basic message passing

 TCP over IP handles multiplexing and
reliable comm.
 Which process, moving bytes in-order through

congestion and packet loss

 HTTP over TCP handles semantics
 Bytes become ordered text and pictures on page

HTTP Request

 HTTP defines protocol between web
servers and clients

 Headers hold meta-data of connection
 Type of request (GET, PUT, POST…)

 Proxy Lab only covers GET requests!

 URL destination (http://www.cmu.edu)

 Body holds actual data

HTTP Request (cont.)

GET http://csapp.cs.cmu.edu/simple.html HTTP/1.1
Host: csapp.cs.cmu.edu
User-Agent: Mozilla/5.0 ...
Accept: text/xml,application/xml ...
Accept-Language: en-us,en;q=0.5 ...
Accept-Encoding: gzip,deflate ...

Request Type Path Host Version

An empty line (“\r\n”) terminates a request.

Parsing the headers

 Complete URL
 Extract the path URI for HTTP request

 Version
 Change to HTTP 1.0 for server request

 Hostname
 Needed for the Host: field in server request

 Port
 Proxy needs dest. port of server (default 80)

GET http://www.cmu.edu:80/index.html HTTP/1.1
<other information>

Forwarding requests

Web

Browser

process

Web

Server

process

Web

proxy

process

GET http://www.cmu.edu:80/index.html HTTP/1.1
<other information>

 - Connects to target web server, sends request:
GET /index.html HTTP/1.0

<other information in the original request>
 - Proxy parses HTTP request
 - Port not always specified (default 80)
 - Proxy suppresses/modifies headers for server req

Headers to suppress

 Connection/Proxy-Connection
 Change the field value to close

 Keep-Alive
 Remove this, don’t want persistent

connections with HTTP/1.0

 Keep the rest!

HTTP Response

HTTP/1.1 200 OK
Date: Mon, 20 Nov 2006 03:34:17 GMT
Server: Apache/1.3.19 (Unix) …
Last-Modified: Mon, 28 Nov 2005 23:31:35 GMT
Content-Length: 129
Connection: Keep-Alive
Content-Type: text/html

Status

 Status indicates success
 Send complete response back to client

Broken pipe errors

 Occurs when writing to socket and connection
closed prematurely at other end
 E.g., click “stop” on browser

 Kernel returns normally on first write
 But on subsequent writes, kernel sends SIGPIPE

 Terminates process by default (can be blocked or caught)
 Returns -1 with errno set to EPIPE

 When reading from socket with closed connection
 Returns -1 with errno set to ECONNRESET

Using Robust I/O (RIO)

 Avoid upper-case wrapper functions (terminate all)
 Instead, close the offending connection

 Optionally, print error message

 Handle client request:
 Use rio_readlineb to read client req

 “\r\n” signals end of the request

 rio_writen to send request to server

 Handle server response:
 Use rio_readnb to read server response

 Binary data, so difference is memcpy vs. strcpy

 rio_writen to send response to client/browser

Debug: Is this my problem?

 Web server issued HTTP redirect to the client!
 DNS lookup for requested hostname failed!
 Hostname ok but rest of URL bogus, server ret. 404!
 Web server crashed while it was replying!
 Server sent me mp3 but firefox won’t play it!
 Client crashed while I was sending server’s reply!
 Webpage contains images that I haven’t requested!
 Server sent me something too big for me to cache!
 Client is sending lots of indecipherable headers!

Debug: Is this my problem?

 Web server issued HTTP redirect to the client!
 DNS lookup for requested hostname failed!
 Hostname ok but rest of URL bogus, server ret. 404!
 Web server crashed while it was replying!
 Server sent me mp3 but firefox won’t play it!
 Client crashed while I was sending server’s reply!
 Webpage contains images that I haven’t requested!
 Server sent me something too big for me to cache!
 Client is sending lots of indecipherable headers!

Many things can go wrong, but most are out of scope!

Testing Your Proxy

 Try a variety of web pages
 Test for both static & dynamic content
 Test binary files (e.g., images)
 See proxylab writeup for more tips

 Next Week: Concurrency

 Shell lab handled asynchronous signals
 Proxy lab enables concurrent threads
 Similar ideas:

 Both handle race conditions when running
code at the same time

 But threads are constantly switching and
allow more memory sharing

Summary

 Proxy Lab covers many concepts with
lots of code to write from scratch

 Proxy parses and forwards HTTP reqs
 Also clean error handling, broken pipes
 Start early!
 Next week: Multi-threaded goodness

