15-213

“The course that gives CMU its Zip!”

Virtual Memory
October 15, 2009

Topics
«Address spaces
= Motivations for virtual memory
= Address translation
= Accelerating translation with TLBs

lecture-14.ppt

Byte-Oriented Memory
Organization

«Programs Refer to Virtual Memory Addresses
= Conceptually very large array of bytes
« Actually implemented with hierarchy of different memory types
= System provides address space private to particular “process”
= Program being executed
= Program can clobber its own data, but not that of others
«Compiler + Run-Time System Control Allocation
= Where different program objects should be stored
= All allocation within single virtual address space

From class02.ppt 15-213, F09

Simple Addressing
Modes

=« Normal (R) Mem[Reg[R]]
« Register R specifies memory address

movl (%ecx) ,%eax
= Displacement D(R) Mem[Reg[R]+D]

= Register R specifies start of memory region
= Constant displacement D specifies offset

movl 8(%ebp) ,%edx

From class04.ppt 15-213 F'09

Lets think on this: physical
memory?

How does everything fit?
= 32-bit addresses: ~4,000,000,000 (4 billion) bytes
= 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) bytes

How to decide which memory to use in your program?
= How about after a fork()?

What if another process stores data into your memory?
=How could you debug your program?

15-213 F09

So, we add a level of indirection

One simple trick solves all three problems

« Each process gets its own private image of memory
= appears to be afull-sized private memory range

= This fixes “how to choose” and “others shouldn’t mess w/yours”
= surprisingly, it also fixes “making everything fit”

= Implementation: translate addresses transparently
= add a mapping function

= to map private addresses to physical addresses

= do the mapping on every load or store

This mapping trick is the heart of virtual memory

15-213, F'09

Address Spaces

A linear address space is an ordered set of contiguous
nonnegative integer addresses:

{0,1,2,3, ..}

A virtual address space is a set of N = 2" virtual addresses:
{0,1,2, ...,N-1}

A physical address space is a set of M = 2™ (for convenience)
physical addresses:

{0,1,2, ..., M-1}

In a system based on virtual addressing, each byte of main
memory has a physical address and a virtual address (or more)

15-213, F09

A System Using Physical Addressing

Main memory

Physical
address
(PA)

4

CPU
_ |

ONOARONEQ

Data word

Used by many embedded microcontrollers in devices
like cars, elevators, and digital picture frames

7 15-213, F'09

A System Using Virtual Addressing

Main memory

CPU chip
0:
Virtual Address Physical 1:
address translation address 2:
A PA; :
CPU) —>() i:
4100 4 5.
6:
7

Data word

One of the great ideas in computer science

=used by all modern desktop and laptop microprocessors

Why Virtual Memory?

(1) VM allows efficient use of limited main memory (RAM)
«Use RAM as a cache for the parts of a virtual address space
= some non-cached parts stored on disk
= some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
=« transfer data back and forth as needed

(2) VM simplifies memory management for programmers
= Each process gets a full, private linear address space

(3) VM isolates address spaces
= One process can’t interfere with another’'s memory
= because they operate in different address spaces
= User process cannot access privileged information
« different sections of address spaces have different permissions

9 15-213, F09

DRAM Cache Organization

DRAM cache organization driven by the enormous
miss penalty
«DRAM is about 10x slower than SRAM

= Disk is about 100,000x slower than a DRAM
= to get first byte, though fast for next byte

DRAM cache properties
= Large page (block) size (typically 4-8 KB)
= Fully associative

= Any virtual page can be placed in any physical page
= Requires a “large” mapping function — different from CPU caches

= Highly sophisticated replacement algorithms
= Too complicated and open-ended to be implemented in hardware

= Write-back rather than write-through

11 15-213, F'09

8 15-213, F'09
(1) VM as a Tool for Caching
Virtual memory is an array of N contiguous bytes
=think of the array as being stored on disk
The contents of the array on disk are cached in
physical memory (DRAM cache)
Virtual memory Physical memory
VP 0 [Unalocad]
VP 1 Empy | PP O
PP1
Empty
» Emply
S e one
VP 291 - i
Virtual pages (VP's) Physical pages (PP's)
stored on disk cached in DRAM
10 15-213, F'09
Reminder: using virtual addressing
CPU chip Main memory
0:
Virtual Address Physical 1:
address translation address 2:
cpU (VA) (PA) ‘31
4100 4 5
6:
7:
Data word
One of the great ideas in computer science
=used by all modern desktop and laptop microprocessors
12 15-213, F'09

How? Page Tables

A page table is an array of page table entries (PTEs)
that maps virtual pages to physical pages
= Per-process kernel data structure in DRAM
Physical memory

Physical page (ORAM)
number or -
Valid _disk address xn 3 PPO
PTEO[O null K
n - VP4 __|PP3
1 —
Q .
1 LS
0 null . Virtual memory
0 Pz N (disk)
previil—eTm]
Memory resident \~\ RN
Poge o
(DRAM) “~
13 VP 7 15-213, F09

Address Translation with a Page Table

VIRTUAL ADDRESS
Page table n-1 pp-1 0
base register Virtual page number (VPN) ‘ Virtual page offset (VPO)
(PTBR)
(Valid _Physical page number (PPN)
Page
The VPN acts table
as index into
the page table
If valid=0
then page
not in memory
(page fault) ml p p-1 9
Physical page number (PPN) |Physical page offset (PPO)
PHYSICAL ADDRESS
14 15-213, F09

Page Hits

A page hit is areference to a VM word that is in
physical (main) memory

Physical memory

Virtual address Physical page (DRAM)
number or =
Valid _disk address Vi PPO
VP 2
PTE 0[O0 il o
1 o VP4
n — PP3
Q .
. G
0 null Virtual memory
0 . Y (disk)
Pre7la =
Memory resident \\\ AN
page table - Tz
(ORAM
15 15-213, F'09

Page Faults

A page fault is caused by a reference to a VM word that is not in
physical (main) memory
« Example: An instruction references a word contained in VP 3, a miss
that triggers a page fault exception
Physical memory

Virtual address Physical page (DRAM)
number or VP T
Valid__disk address 5 PPO
PTEO[O null x:g
1 o~ VP4 PP 3
1 —
0 .
1 L
0 null ~ Virtual memory
0 . So (disk)
pre7L IS ™,
Memory resident \\\ AN
page table e T
(DRAM) N
[vp7]
16 2 .

Handling a Page Fault

The kernel's page fault handler selects VP 4 as the victim and
replaces it with a copy of VP 3 from disk (demand paging)
= When the offending instruction restarts, it executes normally, without

generating an exception
Physical memory

Virtual address Physical page (DRAM)
number or v
Valid_disk address = PPO
PTE 0[0 null o
1 — VP
> — PP 3
1 —
0 -
0 null >y Virtual memory
0 . < (disk)
PTE7lL A S
Merory resident ~
page lable
(DRAM) AU
17 VP 7 15-213, 09

Why does it work? Locality

Virtual memory works because of locality

At any point in time, programs tend to access a set of
active virtual pages called the working set

= Programs with better temporal locality will have smaller
working sets

If (working set size < main memory size)
= Good performance for one process after compulsory misses

If (SUM(working set sizes) > main memory size)

= Thrashing: Performance meltdown where pages are swapped
(copied) in and out continuously

18 15-213, F09

(2) VM as a Tool for Memory Mgmt

Key idea: each process has its own virtual address space
« It can view memory as a simple linear array

= Mapping function scatters addresses through physical memory
= Well chosen mappings simplify memory allocation and management

Virtual 0 Address Translation Physical

Address w1] PP2 Address

Space for VP2 Space

P 1 — (DRAM)
focess Ly]

PP7 (e.g., read-only

Virtual library code)
irtual 0
Address xz ; G
Space for
Process 2: | — M-1
19 N-1 15-213, F09

Simplifying Sh

Memory allocation
= Each virtual page can be

aring and Allocation

mapped to any physical page

= A virtual page can be stored in different physical pages at different
times — the program never knows

Sharing code and data

among processes

= Map virtual pages to the same physical page (PP 7)

IA32 Linux Memory

FF
! «Stack L ayO ut

= Runtime stack (8MB limit)

=Heap
= Dynamically allocated storage
= When call malloc(), calloc(), new()

«Data
= Statically allocated data
= E.g., arrays & strings declared in code

Upper
2 hex aText
digits of = Executable machine instructions
address = Read-only
08
21 00 From class08.ppt 15-213, F09

0
Virtual 0 Address Translation Physical
Address VP1 PP2 Address
Space for 2 (Space)
: DRAM
Process 1: N —
(e.g., read-only
. EEY library code)
Virtual 0
Address ﬁ 21’ PP 10
Space for
Process 2: vl M-1
20 15-213, F'09
Simplifying Linking and Loading
Memory
* invisible to
Kernel virtual memory user code
Linking User stack

= Each program has similar
virtual address space

« Code, stack, and shared
libraries always start at the
same address

(created at runtime)

%esp (stack ptr)

.

Memory mapped region for
shared libraries

Loading
= execve() maps PTEs to the
appropriate location in the
executable binary file
« The _.text and .data
sections are copied, page by
page, on demand by the

virtual memory system. 0x08048000)

22

T « brk
Run-time heap
(created at runtime by malloc)

Read/write segment

(.data, .bss) Loaded from

executable file

Read-only segment
(.init, .text, .rodata)

0 Unused

15-213 F09

(3)VM as a Tool for Memory Protection

Extend PTEs with permission bits

Page fault handler checks these before remapping
« If violated, send process SIGSEGV (segmentation fault)
Page tables with permission bits

SUP READ WRITE Address Physical memory

VP 0:l No Yes No PP6 &
Processi: VP 1{ No | Yes | Yes PP4_ o] PPO
VP 2| Yes | Yes | Yes PP 2 PP 2
: \ .
PP 6
SUP READ WRITE Address /
VP 0: No Yes No PP9 PP9
Process j: VP 1) Yes | Yes | Yes PP6 o |
vP2| No | Yes | Yes PP1l o —— ——IPPI1L

23 15-213, F'09

Reminder: using virtual addressing

Main memory

CPU chip
0:
Virtual Address Physical 1:
address translation address 2:
cpu VA A N b
4100 4 5
6:
7.

Data word

One of the great ideas in computer science
=used by all modern desktop and laptop microprocessors

24

15-213, F09

Address Translation: Page Hit
CPU_chip @

PTEA
PTE
memory
PA
Data

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor
25

15-213, F'09

Speeding up Translation with a TLB

Page table entries (PTEs) are cached in L1 like any other
memory word

=« PTEs may be evicted by other data references
« PTE hit still requires a 1-cycle delay

Solution: Translation Lookaside Buffer (TLB)
= Small hardware cache in MMU
= Maps virtual page numbers to physical page numbers
= Contains complete page table entries for small number of pages

27

15-213, F09

Address Translation: Page Fault

-------------- " Page fault exception handler ‘

CPU_chip @

PTEA
Victim page]
[©) PTE
memory
@ New page|

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction
26 15-213, F'09

TLB Hit

CPU chip

TLB

@ven| |PTEI®

Processor @ Trans- @ Cache/
el RN lation PA

memory
@ Data

A TLB hit eliminates a memory access

28

15-213 F09

TLB Miss

CPU chip

TLB

@ ven PTE

Processor Trans- Cache/

VA lation PA memory

Data ’7

®

A TLB miss incurs an add’l memory access (the PTE)
=Fortunately, TLB misses are rare

29

15-213, F'09

Simple Memory System
Example

Addressing
= 14-bit virtual addresses
= 12-bit physical address
= Page size = 64 bytes
13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO
(Physical Page Number) (Physical Page Offset)

30

15-213, F09

Simple Memory System Page Table

= Only show first 16 entries (out of 256)

VPN | PPN | Valid | VPN | PPN | Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 0C = 0
05 16 1 0D 2D 1
06 - 0 OE 11 1
07 — 0 OF 0D 1
31 15-213, F09

Simple Memory System TLB

TLB
=16 entries
= 4-way associative

TLBT TLBI *~
13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address Translation Example
#1

Virtual Address 0x03D4
TLBT TLBI >
13 12 11

0 9 8 7 6 5 4 3 2 1 0
[oJofoJofaJsfaJsJoJ1Jof1iJofo]

VPN VPO

ven_OXOF qg; 3 a7 0X03 qigHit? Y Page Faulte NO ppn:0X0D

33 15-213, F'09

VPN VPO
Set Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid
0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0
32 15-213, F09

Programmer’s View of Virtual Memory
=« Each process has its own private linear address space
= Cannot be corrupted by other processes

System View of Virtual Memory
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient
interpositioning point to check permissions

34 15-213, F09

Address Translation Example
#2

Virtual Address OxOB8F

TLBT TLBI >
13 12 11 8 7

10 4 3 2 1 0
[ofJofsfofsfafaJoJoJoJafalaf1]

VPN VPO

TBD

ven_OX2E g 2 qiet 9XOB 1 Hito NO page Fauit? YES ppn:

35 15-213, F'09

Address Translation Example
#3

Virtual Address 0x0020
TLBT TLBI >
13 12 11 10 9 4 3

8 7 2 1 o0
[0JoJoJoJoJofoJof1ToJofofofo]

VPN VPO

ven_0x00 7ig O 1ieT _0X00 7B Hit? NO page Faure NO ppfix28

36 15-213, F09

Summary

Programmer’s View of Virtual Memory
= Each process has its own private linear address space
= Cannot be corrupted by other processes

System View of Virtual Memory
= Uses memory efficiently by caching virtual memory pages
« Efficient only because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient
interpositioning point to check permissions

37 15-213, F09

Simple Memory System Cache

Cache
=16 lines
=4-byte line size
= Direct mapped

PPN PPO
Idx Tag | Valid BO B1 B2 B3 ldx Tag | Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 3A 00 51 89
1 15 0 - - - - 9 2D 0 = - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - —
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 0D 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 — — — —
38 15-213, F'09

Address Translation Example
#1

Virtual Address 0x03D4
TLBT TLBI >
13 12 11

0 9 8 7 6 5 4 3 2 1 0
[oJofoJofaJsfaJsJoJ1Jof1iJofo]

VPN VPO

ven_OX0F qig 3 mer %03 righite Y pageFauy NO ppn0X0D
Physical Address

cr cl co —
1 10 9 8 7 6 5 4 3 2 1 0
OJoJiJiJoJiJoJiJoJiJoJ]o]
PPN PPO
offset 0 ci0x5 cTOX0D pitp Y Byte: 0¥36
39 15-213, F'09

Address Translation Example
#2

Virtual Address Ox0OB8F

TLBT TLBI >

13 12 1 10 9 8 7 6 5 4 3 2 1 0
[ofoJsJoJaJsfaJofoJoJafafaf1]

VPN VPO

ven_2E g 2 ret 9X0B g ity NO page Faui? YES ppn: TBD

Physical Address

Offset___ ClI__ CT Hit? __ Byte:

40 15-213, F09

Address Translation Example
#3

Virtual Address 0x0020
TLBT TLBI >
13 12 11 8 7

10 4 3 2 1 0
[ofJoJofofofofoJo[iJoJofoJoJo]

VPN VPO
ven_0x00 7ig1 O a7 _0X00 1B Hit? NO page Fauire NO ppfix28

Physical Address

cT cl co —~

1 10 9 8 7 6 5 4 3 2 1 0

[1[ofiJofoJofrJofJofofJof0]
PPN PPO

Offset 0 cI0x8 ¢cT0x28 Hit? NO pyte: MEM

41 15-213, 09

Allocating Virtual Pages

Example: Allocating new virtual page VP5

«Kernel allocates VP 5 on disk and points PTE 5 to it
Physical memory

Physical page (DRAM)
number or -
Valid _disk address x: : PPO
PTEO[O null BT
n : VPs | PP3
1 —
1 —
o] o
Q ° -~ Virtual memory
0 - S~ (disk)
pre7hil——es 0
Memory resident\\‘x °
page table S VF3
(DRAM)
VP4
VP 5
T]
[ve7]
42 P71 00

Multi-Level Page Tables

Level 2
Tables

Given:
« 4KB (2'?) page size
« 48-bit address space
« 4-byte PTE

Problem:

=« Would need a 256 GB page table!
a 208% 2712 % 22 = 238 hytes

Level 1
Table B

Common solution
= Multi-level page tables
= Example: 2-level page table
= Level 1 table: each PTE points to a page table
(memory resident)
« Level 2 table: Each PTE points to a page (paged
in and out like other data)

= Level 1 table stays in memory
« Level 2 tables paged in and out

43 15-213, F'09

A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
VPO
PTE 0 PTEO
VP 1023 2K allocated VM pages
PTEL VP 1024 for code and data
PTE 2 (null) PTE 1023
PTE 3 (null)
VP 2047
PTE 4 (null) PTE O
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null) Gap 6K unallocated VM pages
PTE8
1023 null
(1K -9) PTEs
null PTEs PTE 1023 1023
1023 pages
pages
VP 9215 } 1 allocated VM page
for the stack
44 15-213, F09

Translating with a k-level Page
Table

VIRTUAL ADDRESS

n1

JWPNL1 [, VN2 [.. [,VPNk | VPO
—
Level 1 Level 2 Level k
page table page table page table
}
| I—
m1]41 0
\ PPN [Pro]
PHYSICAL ADDRESS
45 15-213, F'09

46

Servicing a Page Fault

(1) Processor signals disk

1) Initiate Block Read

controller Processor
= Read block of length P starting (3) Read
at disk address X and store Done
starting at memory address Y
(2) Read occurs ‘
= Direct Memory Access (DMA) ‘ eTTOTY O |
= Under control of I/O controller (2) DMA)
(3) Controller signals Transfer
completion Memory

= Interrupts processor
= OS resumes suspended process

Disk Disk
-

15-213 F09

