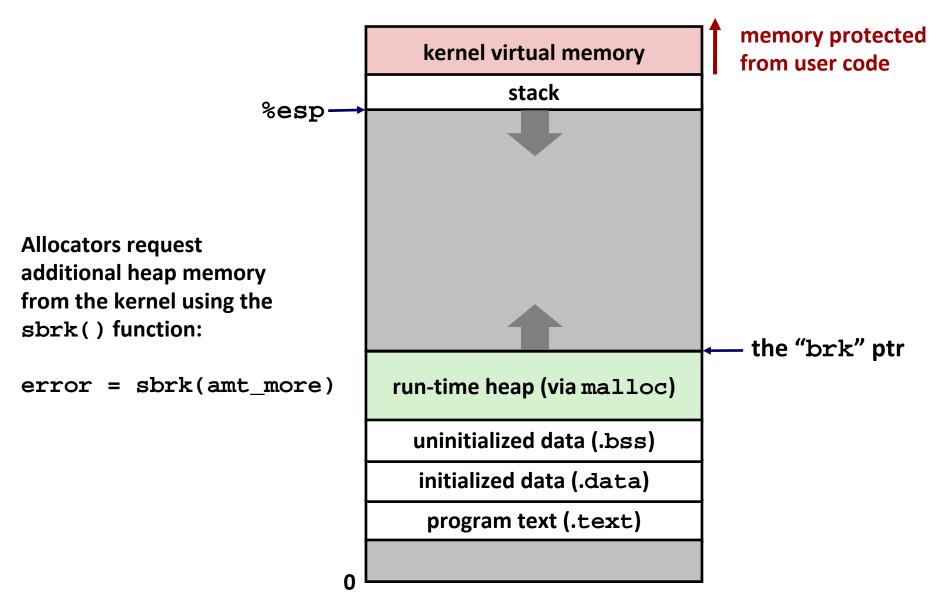
Introduction to Computer Systems

15-213/18-243, fall 2009 16th Lecture, Oct. 22th


Instructors:

Gregory Kesden and Markus Püschel

Today

Dynamic memory allocation

Process Memory Image

Why Dynamic Memory Allocation?

Sizes of needed data structures may only be known at runtime

Dynamic Memory Allocation

Memory allocator?

- VM hardware and kernel allocate pages
- Application objects are typically smaller
- Allocator manages objects within pages

Application
nic Memory Allocator
Heap Memory

Dynam

Explicit vs. Implicit Memory Allocator

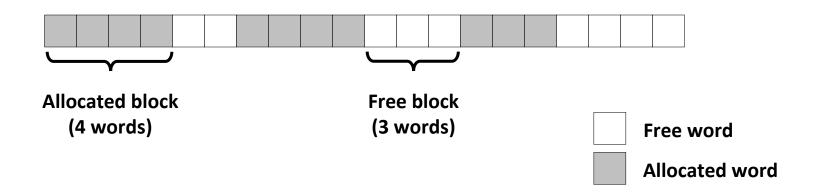
- Explicit: application allocates and frees space
 - In C: malloc() and free()
- Implicit: application allocates, but does not free space
 - In Java, ML, Lisp: garbage collection

Allocation

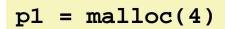
- A memory allocator doles out memory blocks to application
- A "block" is a contiguous range of bytes
 - of any size, in this context

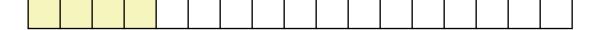
Today: simple explicit memory allocation

Malloc Package


- #include <stdlib.h>
- void *malloc(size_t size)
 - Successful:
 - Returns a pointer to a memory block of at least size bytes (typically) aligned to 8-byte boundary
 - If size == 0, returns NULL
 - Unsuccessful: returns NULL (0) and sets errno
- void free(void *p)
 - Returns the block pointed at by p to pool of available memory
 - p must come from a previous call to malloc() or realloc()
- void *realloc(void *p, size_t size)
 - Changes size of block p and returns pointer to new block
 - Contents of new block unchanged up to min of old and new size
 - Old block has been free()'d (logically, if new != old)

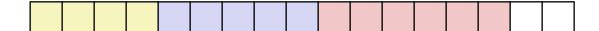
Malloc Example


```
void foo(int n, int m) {
  int i, *p;
 /* allocate a block of n ints */
 p = (int *)malloc(n * sizeof(int));
  if (p == NULL) {
  perror("malloc");
   exit(0);
  for (i=0; i< n; i++) p[i] = i;
  /* add m bytes to end of p block */
  if ((p = (int *)realloc(p, (n+m) * sizeof(int))) == NULL) {
   perror("realloc");
   exit(0);
  for (i=n; i < n+m; i++) p[i] = i;
  /* print new array */
  for (i=0; i<n+m; i++)
   printf("%d\n", p[i]);
  free(p); /* return p to available memory pool */
```


Assumptions Made in This Lecture

Memory is word addressed (each word can hold a pointer)

Allocation Example



$$p2 = malloc(5)$$

$$p3 = malloc(6)$$

free(p2)

$$p4 = malloc(2)$$

Constraints

Applications

- Can issue arbitrary sequence of malloc() and free() requests
- free() requests must be to a malloc()'d block

Allocators

- Can't control number or size of allocated blocks
- Must respond immediately to malloc() requests
 - *i.e.*, can't reorder or buffer requests
- Must allocate blocks from free memory
 - *i.e.*, can only place allocated blocks in free memory
- Must align blocks so they satisfy all alignment requirements
 - 8 byte alignment for GNU malloc (1ibc malloc) on Linux boxes
- Can manipulate and modify only free memory
- Can't move the allocated blocks once they are malloc()'d
 - *i.e.*, compaction is not allowed

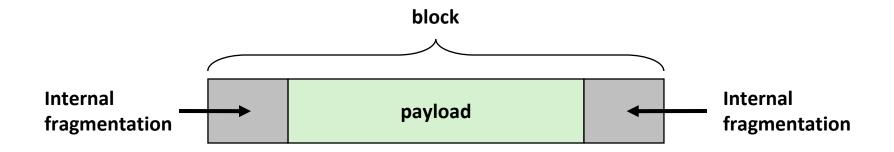
Performance Goal: Throughput

- Given some sequence of malloc and free requests:
 - R_{0} , R_{1} , ..., R_{k} , ..., R_{n-1}
- Goals: maximize throughput and peak memory utilization
 - These goals are often conflicting

Throughput:

- Number of completed requests per unit time
- Example:
 - 5,000 malloc() calls and 5,000 free() calls in 10 seconds
 - Throughput is 1,000 operations/second
- How to do malloc() and free() in O(1)? What's the problem?

Performance Goal: Peak Memory Utilization


- Given some sequence of malloc and free requests:
 - \blacksquare $R_{0}, R_{1}, ..., R_{k}, ..., R_{n-1}$
- *Def*: Aggregate payload P_k
 - malloc(p) results in a block with a payload of p bytes
 - After request R_k has completed, the **aggregate payload** P_k is the sum of currently allocated payloads
 - all malloc()'d stuff minus all free()'d stuff
- **Def**: Current heap size = H_k
 - Assume H_k is monotonically nondecreasing
 - reminder: it grows when allocator uses sbrk()
- Def: Peak memory utilization after k requests
 - $U_k = (\max_{i < k} P_i) / H_k$

Fragmentation

- Poor memory utilization caused by *fragmentation*
 - *internal* fragmentation
 - external fragmentation

Internal Fragmentation

■ For a given block, *internal fragmentation* occurs if payload is smaller than block size

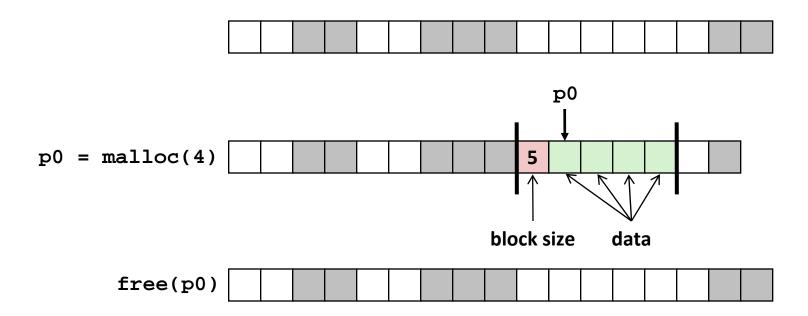
Caused by

- overhead of maintaining heap data structures
- padding for alignment purposes
- explicit policy decisions
 (e.g., to return a big block to satisfy a small request)
- Depends only on the pattern of previous requests
 - thus, easy to measure

External Fragmentation

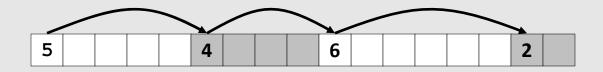
Occurs when there is enough aggregate heap memory,
 but no single free block is large enough

- Depends on the pattern of future requests
 - Thus, difficult to measure


Implementation Issues

- How to know how much memory is being free()'d when it is given only a pointer (and no length)?
- How to keep track of the free blocks?
- What to do with extra space when allocating a block that is smaller than the free block it is placed in?
- How to pick a block to use for allocation—many might fit?
- How to reinsert a freed block into the heap?

Knowing How Much to Free


Standard method

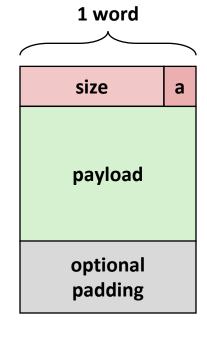
- Keep the length of a block in the word preceding the block
 - This word is often called the *header field* or *header*
- Requires an extra word for every allocated block

Keeping Track of Free Blocks

Method 1: Implicit list using length—links all blocks

■ Method 2: *Explicit list* among the free blocks using pointers

- Method 3: Segregated free list
 - Different free lists for different size classes
- Method 4: *Blocks sorted by size*
 - Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length used as a key


Method 1: Implicit List

- For each block we need: length, is-allocated?
 - Could store this information in two words: wasteful!

Standard trick

- If blocks are aligned, some low-order address bits are always 0
- Instead of storing an always-0 bit, use it as a allocated/free flag
- When reading size word, must mask out this bit

Format of allocated and free blocks

a = 1: allocated block

a = 0: free block

size: block size

payload: application data

(allocated blocks only)

Implicit List: Finding a Free Block

■ First fit:

Search list from beginning, choose first free block that fits: (Cost?)

- Can take linear time in total number of blocks (allocated and free)
- In practice it can cause "splinters" at beginning of list

Next fit:

- Like first-fit, but search list starting where previous search finished
- Should often be faster than first-fit: avoids re-scanning unhelpful blocks
- Some research suggests that fragmentation is worse

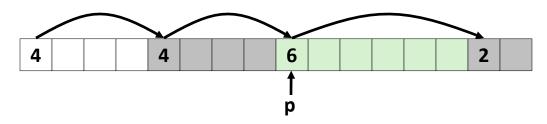
■ Best fit:

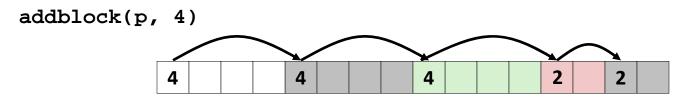
- Search the list, choose the best free block: fits, with fewest bytes left over
- Keeps fragments small—usually helps fragmentation
- Will typically run slower than first-fit

Bit Fields

■ How to represent the Header: Masks and bitwise operators

```
#define SIZEMASK (~0x7)
#define PACK(size, alloc) ((size) | (alloc))
#define GET_SIZE(p) ((p)->size & SIZEMASK)
```

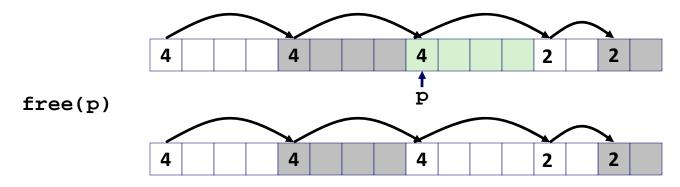

Bit Fields


```
struct {
    unsigned allocated:1;
    unsigned size:31;
} Header;
```

Check your K&R: structures are not necessarily packed

Implicit List: Allocating in Free Block

- Allocating in a free block: splitting
 - Since allocated space might be smaller than free space, we might want to split the block

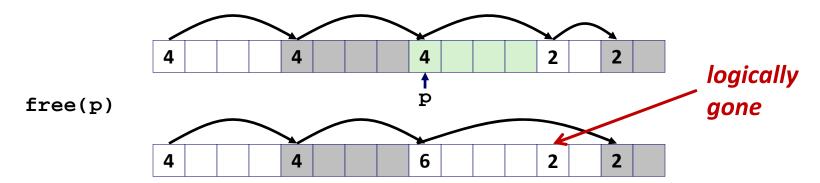


Implicit List: Freeing a Block

Simplest implementation:

Need only clear the "allocated" flag

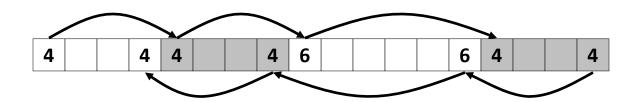
But can lead to "false fragmentation"

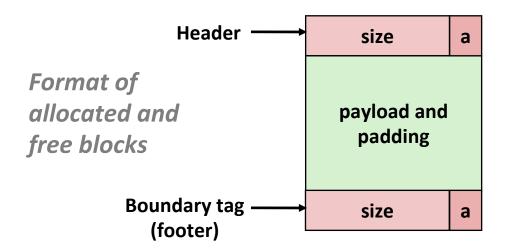


malloc(5) Oops!

There is enough free space, but the allocator won't be able to find it

Implicit List: Coalescing

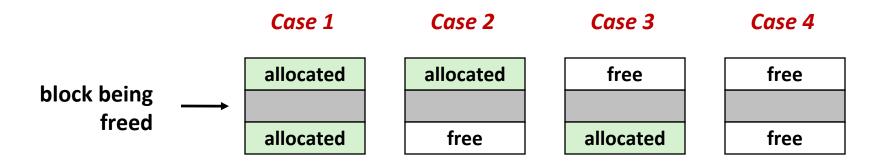

- Join (coalesce) with next/previous blocks, if they are free
 - Coalescing with next block



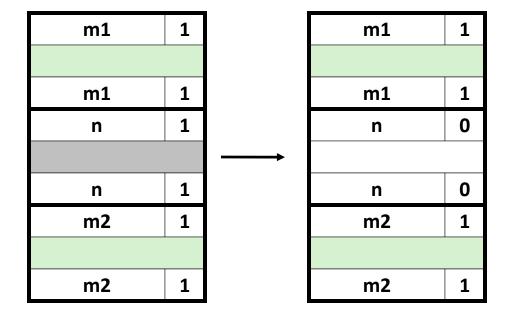
But how do we coalesce with previous block?

Implicit List: Bidirectional Coalescing

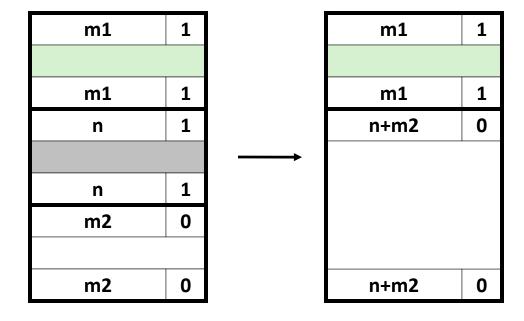
- **Boundary tags** [Knuth73]
 - Replicate size/allocated word at "bottom" (end) of free blocks
 - Allows us to traverse the "list" backwards, but requires extra space
 - Important and general technique!

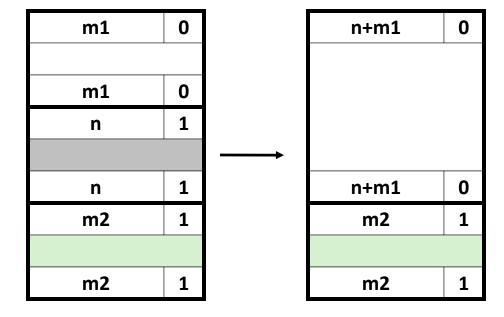

a = 1: allocated block

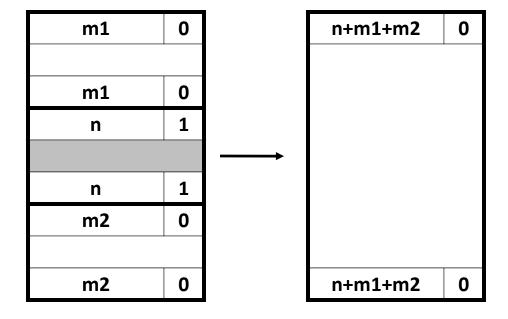
a = 0: free block


size: total block size

payload: application data (allocated blocks only)


Constant Time Coalescing


Constant Time Coalescing (Case 1)


Constant Time Coalescing (Case 2)

Constant Time Coalescing (Case 3)

Constant Time Coalescing (Case 4)

Disadvantages of Boundary Tags

- Internal fragmentation
- Can it be optimized?
 - Which blocks need the footer tag?
 - What does that mean?

Summary of Key Allocator Policies

Placement policy:

- First-fit, next-fit, best-fit, etc.
- Trades off lower throughput for less fragmentation
- Interesting observation: segregated free lists (next lecture)
 approximate a best fit placement policy without having to search
 entire free list

Splitting policy:

- When do we go ahead and split free blocks?
- How much internal fragmentation are we willing to tolerate?

Coalescing policy:

- Immediate coalescing: coalesce each time free() is called
- Deferred coalescing: try to improve performance of free() by deferring coalescing until needed. Examples:
 - Coalesce as you scan the free list for malloc()
 - Coalesce when the amount of external fragmentation reaches some threshold

Implicit Lists: Summary

- Implementation: very simple
- Allocate cost:
 - linear time worst case
- Free cost:
 - constant time worst case
 - even with coalescing
- Memory usage:
 - will depend on placement policy
 - First-fit, next-fit or best-fit
- Not used in practice for malloc()/free() because of linear-time allocation
 - used in many special purpose applications
- However, the concepts of splitting and boundary tag coalescing are general to all allocators