Carnegie Mellon

Introduction to Computer Systems

15-213/18-243, fall 2009
16t Lecture, Oct. 22th

Instructors:
Gregory Kesden and Markus Puschel



Carnegie Mellon

Today

m Dynamic memory allocation



Carnegie Mellon

Process Memory Image

1 memory protected

kernel virtual memory from user code

stack

Yesp— ‘

Allocators request
additional heap memory
from the kernel using the

sbrk() function: t
— the “brk” ptr

error = sbrk(amt_more) run-time heap (via mal 1oc)

uninitialized data (.bss)

initialized data (.data)

program text (.text)




Carnegie Mellon

Why Dynamic Memory Allocation?

m Sizes of needed data structures may only be known at
runtime



Dynamic Memory Allocation

m Memory allocator?

Application
" VM hardware and kernel allocate pages PP

= Application objects are typically smaller Dynamic Memory Allocator

= Allocator manages objects within pages Heap Memory

m Explicit vs. Implicit Memory Allocator

= Explicit: application allocates and frees space
= InC: malloc() and free()

= Implicit: application allocates, but does not free space
= |nJava, ML, Lisp: garbage collection
m Allocation
= A memory allocator doles out memory blocks to application
= A “block” is a contiguous range of bytes

= of any size, in this context

m Today: simple explicit memory allocation



Malloc Package

m #include <stdlib.h>

m void *malloc(size_t size)
" Successful:

= Returns a pointer to a memory block of at least S1ze bytes
(typically) aligned to 8-byte boundary

» [fsize == O, returns NULL
® Unsuccessful: returns NULL (0) and sets errno

m void free(void *p)
= Returns the block pointed at by p to pool of available memory
= p must come from a previous call tomalloc() orrealloc()

m void *realloc(void *p, size_ t size)
= Changes size of block p and returns pointer to new block

= Contents of new block unchanged up to min of old and new size
= Old block has been free()'d (logically, if new !=old)



Malloc Example

void foo(int n, int m) {
int 1, *p;

/* allocate a block of n iInts */
p = (int *)malloc(n * sizeof(int));
iIT (p == NULL) {
perror("'malloc');
exi1t(0);
+
for (1=0; i<n; 1++) p[i1] = 1;

/* add m bytes to end of p block */

1T ((p = (int ®)realloc(p, (h+m) * sizeof(int))) == NULL) {
perror(*“'realloc™);
exi1t(0);

+

for (i=n; 1 < n+m; i++) p[i] = i;

/* print new array */

for (i=0; i<n+m; i++)
printf(C'%d\n", p[i]):

free(p); /* return p to available memory pool */

}




Assumptions Made in This Lecture

m Memory is word addressed (each word can hold a pointer)

\ Y J Q ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word




Carnegie Mellon

Allocation Example

pl = malloc(4)

p2 = malloc(5)
p3 = malloc(6)
free(p2)

p4 = malloc(2)




Carnegie Mellon

Constraints

m Applications

Can issue arbitrary sequence of malloc() and free() requests

" free() requests must be to a malloc()’d block

m Allocators

Can’t control number or size of allocated blocks
Must respond immediately to malloc() requests
= j.e., can’t reorder or buffer requests
Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
Must align blocks so they satisfy all alignment requirements
= 8 byte alighment for GNU malloc (I 1bc malloc) on Linux boxes
Can manipulate and modify only free memory
Can’t move the allocated blocks once they are malloc()’d
= j.e., compaction is not allowed



Carnegie Mellon

Performance Goal: Throughput

m Given some sequence of mal loc and free requests:
R,Ry,...Ry ..., R

m Goals: maximize throughput and peak memory utilization

" These goals are often conflicting

m Throughput:
" Number of completed requests per unit time
= Example:
= 5,000 malloc() calls and 5,000 free() calls in 10 seconds
= Throughput is 1,000 operations/second
= How todomalloc() and free() in O(1)? What’s the problem?



Carnegie Mellon

Performance Goal: Peak Memory Utilization

m Given some sequence of mal loc and free requests:
Ry, Ry, ... Ry..., R

m Def: Aggregate payload P,
= malloc(p) results in a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

= allmal loc()’d stuff minus all free()’d stuff

m Def: Current heap size = H,
= Assume H, is monotonically nondecreasing
= reminder: it grows when allocator uses sbrk()

m Def: Peak memory utilization after k requests
" U,=(max4P;) / H,



Carnegie Mellon

Fragmentation

m Poor memory utilization caused by fragmentation
= jnternal fragmentation
= external fragmentation



Carnegie Mellon

Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

block
/\
o N
Internal Internal
. —ﬁ I h_ .
fragmentation PERIEEE fragmentation

m Caused by
= overhead of maintaining heap data structures
= padding for alignment purposes

= explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests
" thus, easy to measure



Carnegie Mellon

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc(4)

©
N
[

malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests
® Thus, difficult to measure



Carnegie Mellon

Implementation Issues

m How to know how much memory is being free()’d when
it is given only a pointer (and no length)?

m How to keep track of the free blocks?

m What to do with extra space when allocating a block that is
smaller than the free block it is placed in?

m How to pick a block to use for allocation—many might fit?

m How to reinsert a freed block into the heap?



Carnegie Mellon

Knowing How Much to Free

m Standard method
= Keep the length of a block in the word preceding the block
= This word is often called the header field or header
= Requires an extra word for every allocated block

pO = malloc(4) 5

I\

block size data

free(p0O)




Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

m Method 2: Explicit list among the free blocks using pointers

/\

5| 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key



Method 1: Implicit List

m For each block we need: length, is-allocated?
® Could store this information in two words: wasteful!

m Standard trick
" |f blocks are aligned, some low-order address bits are always 0
" |nstead of storing an always-0 bit, use it as a allocated/free flag

= When reading size word, must mask out this bit

1 word
A
~ ™~
size a a = 1: allocated block
a = 0: free block
Format of
allocated and payload size: block size
free blocks o
payload: application data
(allocated blocks only)
optional
padding




Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits: (Cost?)

p = start;
while ((p < end) && \\ not passed end
(Cp & D |1 \\ already allocated

(p <= len))) \\ too small
p=p+ (Cp & -2); \\ goto next block (word addressed)

= Can take linear time in total number of blocks (allocated and free)
" |n practice it can cause “splinters” at beginning of list

m Next fit:
= Like first-fit, but search list starting where previous search finished
= Should often be faster than first-fit: avoids re-scanning unhelpful blocks

= Some research suggests that fragmentation is worse

m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually helps fragmentation
= Will typically run slower than first-fit



Carnegie Mellon

Bit Fields

m How to represent the Header: Masks and bitwise operators

#define SIZEMASK (~0x7)

#define PACK(size, alloc) ((size) | (alloc))

#define GET_SIZE(p) ((p)->size & SIZEMASK)
m Bit Fields

struct {

unsigned allocated:1;
unsigned size:31;
} Header;

Check your K&R: structures are not necessarily packed



Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

o~ N/

4 4 6 2
1
p

addblock(p, 4)

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even

int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
iIT (hewsize < oldsize)
*(p+tnewsize) = oldsize - newsize; // set length 1In remaining
} // part of block




Carnegie Mellon

Implicit List: Freeing a Block

m Simplest implementation:

= Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }

® But can lead to “false fragmentation”

= H

free(p)

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it



Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free

= Coalescing with next block

4 4 4 2 2 _
1 logically
e /\/\.p/_>/ gone
4 4 6 2 2
void free_block(ptr p) {
*P = *p & -2; // clear allocated flag
next = p + *p; // find next block
IT (Cnext & 1) == 0)
*p = *p + *next; // add to this block if
} // not allocated

= But how do we coalesce with previous block?



Carnegie Mellon

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
" |mportant and general technique!

Header > size a

a = 1: allocated block
Format of a = 0: free block
allocated and payload and . .

padding size: total block size

free blocks

payload: application data

Boundary tag —— size 3 (allocated blocks only)

(footer)



Carnegie Mellon

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

allocated allocated free free

block being
freed

allocated free allocated free




Carnegie Mellon

Constant Time Coalescing (Case 1)

ml 1 ml 1

ml 1 ml 1

n 1 n 0
—

n 1 n 0

m2 1 m2 1

m2 1 m2 1




Carnegie Mellon

Constant Time Coalescing (Case 2)

ml 1 ml 1
ml 1 ml 1
n 1 n+m2 0
—
n 1
m2 0
m2 0 n+m?2 0




Carnegie Mellon

Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0
n 1
—)
n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1




Carnegie Mellon

Constant Time Coalescing (Case 4)

ml 0 n+ml+m2 0
ml 0
n 1
—)
n 1
m2 0
m2 0 n+ml+m2 0




Carnegie Mellon

Disadvantages of Boundary Tags

m Internal fragmentation

m Can it be optimized?
= Which blocks need the footer tag?
" What does that mean?



Carnegie Mellon

Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
" Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

m Splitting policy:
" When do we go ahead and split free blocks?
" How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" |mmediate coalescing: coalesce each time Free() is called

" Deferred coalescing: try to improve performance of free() by
deferring coalescing until needed. Examples:

= Coalesce as you scan the free list for mal loc()

= Coalesce when the amount of external fragmentation reaches
some threshold



Implicit Lists: Summary

Implementation: very simple

m Allocate cost:
" [inear time worst case

m Free cost:
® constant time worst case
= even with coalescing
m Memory usage:
= will depend on placement policy
= First-fit, next-fit or best-fit

m Not used in practice for mal loc()/free() because of
linear-time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators



