
ANITA’S SUPER AWESOME

RECITATION SLIDES

15/18-213: Introduction to Computer Systems

Bit Logic and Floating Point, 9 September 2013

Anita Zhang, Section M

WELCOME TO THE FALL EDITION

 Data Lab due Thursday, 12 Sept 2013, 11:59 PM

 2 grace days per lab, 5 per semester

 Don‟t waste your late days

 Bomb Lab out Thursday, 13 Sept 2013, 12:00 AM

 After the relevant lecture(s)

 FAQ on the main site

 O‟Hallaron put love and care into updating it

 10/10 must read

ADDITIONAL PROBING

 Quick questions?

 Progress?

 Autolab?

 Shark?

 > ssh shark.ics.cs.cmu.edu

BECAUSE EVERYONE NEEDS A GUIDE..

 Getting Help

 Literature

 Bits and Bytes and Good Stuff

 IEEE Floating Point

 Data Lab Hints

 General Lab Information

 Question Time

I NEED HELP):

 Email us: 15-213-staff@cs.cmu.edu

 Please attach C files if you have a specific question

 Goes to TAs and Professors

 Autolab: autolab.cs.cmu.edu

 No Blackboard (woohoo?)

 Office Hours: Wean 5207, Sun-Thur, 5:30-8:30PM

 The only Linux cluster in Wean

 At least 2 (!!!) TAs at your service

 Depending on the day there may be a ton of students in line

 Tutoring: Mudge Reading Room, Tues 8:30-11PM

 Hosted by a smart cookie who is not a TA

mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
autolab.cs.cmu.edu

BOOKS I LIKE

 Randal E. Bryant and David R. O'Hallaron,
Computer Systems: A Programmer's Perspective,
Second Edition, Prentice Hall, 2011

 Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Second Edition,
Prentice Hall, 1988

 Koenig, Andrew. C Traps and Pitfalls. Reading, MA:
Addison-Wesley, 1988

 Kernighan, Brian W., and Rob Pike. The Practice of
Programming. Reading, MA: Addison-Wesley, 1999

RANDOM MOTIVATIONAL STUFF

REPRESENTATION NUTSHELL

 Signed

 The most significant bit represents the sign

 0 for non-negative, 1 for negative

 On x86, the 31st bit (counting from 0)

 Focus on two‟s complement

 Unsigned

 Range from 0 to 2k – 1

 Where k is the number of bits used to represent this value

 Non-negative values

 Byte = 8 bits

 Only here because new people forget

WHAT ARE “INTS”?

 int ≠ integer

 Minimum and maximum values are capped by

the number of bits

CASTING MAGIC

 What happens when casting between signed and

unsigned?

 Signed ↔ Unsigned

 Values are “reinterpreted”

 Bits remain the same

 Mixing signed and unsigned values

 Values are casted to unsigned first (mostly)

WHAT IS THE SIZE OF….

C Data Type Typical 32-bit IA32 (x86) x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 4 8

long long 8 8 8

float 4 4 4

double 8 8 8

long double 8 10 or 12 10 or 16

pointer 4 4 8

OPERATIONS

 Bitwise

 AND  &

 OR  |

 NOT  ~

 XOR  ^

 Logical

 AND  &&

 OR  ||

 NOT  !

 Values

 False  0

 True  nonzero

PRO-TIP

 Do not get bitwise and/or logical mixed up!!

 If you are getting weird results, look for this error

SPECIFIC OPERATION STUFF

 Shifting

 Arithmetic

 Preserves the sign bit (sometimes sign-extended)

 Logical

 Fills with zeros (on these machines)

 Other bits “fall off” (discarded)

 Both will result in the same left shift

 Undefined if negative shift amount (to be discussed)

SHIFTING MATH

 Multiplication/ division by 2k

 Multiply: left shift by k

 Division: right shift by k

 Shifting rounds towards negative infinity

 Math-performing humans round towards 0

 How do we round negative values toward 0?

DIVISION BY SHIFTING (NEGATIVES)

 Division of a negative number by 2k

 Needs a bias

 Bias will push the number up so it rounds towards 0

 Division looks like this: (x + ((1 << k) – 1)) >> k

 x is the value we are dividing

 (1 << k) – 1 is the value we are adding to bias

 Remember, only applies to negative values of x

FOR THE VISUAL/MATH INCLINED

Divisor:

Dividend:

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k

1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1

If this contains a 1…Notice: dividend is

negative

RANDOM NUMBER STUFF

 Endianness is real

 How bytes are ordered

 Representation in memory

 You‟ll see it in Bomb Lab (next week)

 Random example: 0x59645322

 Big: (lower) 59 64 53 22 (higher)

 Little: (lower) 22 53 64 59 (higher)

Endian
First byte

(lowest address)
Middle bytes

Last byte

(highest address)

big Most significant ... Least significant

little Least significant ... Most significant

FRACTIONAL BINARY

2i

2i-1

4

2

1

1/2

1/4

1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

• • •

(QUICK AND DIRTY) FLOATING POINT

 What is this floating point stuff?

 Another type of data representation

 Enables support for a wide ranges of numbers

 Symmetric on its axis (has ±0)

(QUICK AND DIRTY) FLOATING POINT

 Consists of 3 parts

 Sign bit

 Exponent bits

 Fraction bits (the “mantissa”)

 Getting the floating point

 Value  (-1)s x M x 2E

 S  sign

 M  mantissa

 E  shift amount (exponent bits uses „e‟ or „exp‟)

 Bias  2k-1 – 1

 Used in the math to convert between actual values and

floating point values

(QUICK AND DIRTY) FLOATING POINT

 For single precision (32 bit) floating point:

 Fraction (frac): 23 bits

 Exponent (exp): 8 bits

 Sign (s): 1 bit

 Bias = 127

(QUICK AND DIRTY) FLOATING POINT

 exp ≠ 00…0

 exp ≠ 11…1

 E = exp – bias

 M = 1.xxxxxx

 xxxxxx is the frac

 Implied leading 1

 exp = 00..0

 E = 1 – bias

 M = 0.xxxxxx

 xxxxxx is the frac

 Leading 0

 frac = 0 means ±0

Normalized Denormalized

SPECIAL CASES

 exp = 11….1

 frac = 00…0

 Division by 0, ± ∞

 exp = 11….1

 frac ≠ 00…0

 sqrt(-1), ∞ - ∞, ∞ x 0

Infinity Not a Number

SPECIAL CASES

 BTW, infinity and NaN are not the same

 Infinity is “overflow”

 NaN is not a number

 “Mathematically undefined” in my book

LEGIT FLOATING POINT RULES

 Rounding

 Rounds to even

 Used to avoid statistical bias

 1.1011  1.11 (greater then1/2, up)

 1.1010 1.10 (equal to 1/2, down)

 1.0101 1.01 (less than 1/2, down)

 1.0110  1.10 (equal to 1/2, up)

 Addition and Multiplication…

 Are lies

 Associativity/ distributivity may not hold

 3.14 + (1e20 – 1e20) vs. (3.14 + 1e20) – 1e20

 Don‟t need to do this in this class

INSIGHT INTO ROUNDING

 Round to even

 How does it avoid statistical bias of rounding up or

down on half?

1.01002 truncate 1.012

1.01012 below half; round down 1.012

1.01102 interesting case; round to even 1.102

1.01112 above half; round up 1.102

1.10002 truncate 1.102

1.10012 below half; round down 1.102

1.10102 Interesting case; round to even 1.102

1.10112 above half; round up 1.112

1.11002 truncate 1.112

SAMPLE FLOATING POINT ON EXAMS

 Consider the following 5‐bit floating point representation

based on the IEEE floating point format. This format does

not have a sign bit – it can only represent nonnegative

numbers.

 There are k=3 exponent bits.

 There are n=2 fraction bits.

 What is the…

 Bias?

 Largest denormalized number?

 Smallest normalized number?

 Largest finite number it can represent?

 Smallest non-zero value it can represent?

SAMPLE FLOATING POINT ON EXAMS

 Consider the following 5‐bit floating point

representation based on the IEEE floating point

format. This format does not have a sign bit – it can

only represent nonnegative numbers.

 There are k=3 exponent bits.

 There are n=2 fraction bits.

 What is the…

 Bias? 0112 = 3

 Largest denormalized number? 000 112 = 0.00112 = 3/16

 Smallest normalized number? 001 002 = 0.01002 = 1/4

 Largest finite number? 110 112 = 1110.02 = 14

 Smallest non-zero value? 000 012 = 0.00012 = 1/16

SEMI-LARGE FLOATING POINT EXAM TIP

 When converting from float to int, assume

normalized first

 It will be normalized most of the time

 Easier to convert too

 If it is denormalized, you will be able to tell quickly

when doing the normalized math

 The exponent won‟t make sense, for example

FLOATING POINT ON EXAMS

 Let‟s pretend we have a 5-bit floating point representation

with no sign bit… (sadness)

 k = 3 exponent bits (bias = 3)

 n = 2 fraction bits

Value
Floating Point

Bits

(Rounded)

Value

9/32 001 00 1/4

3

9

3/16

15/2

FLOATING POINT ON EXAMS

 Let‟s pretend we have a 5-bit floating point representation

with no sign bit… (sadness)

 k = 3 exponent bits (bias = 3)

 n = 2 fraction bits

Floating Point Bits (Rounded) Value

001 00 1/4

100 10 3

110 00 8

000 11 3/16

111 11 NaN

Value
Floating Point

Bits

(Rounded)

Value

9/32 001 00 1/4

3 100 10 3

9 110 00 8

3/16 000 11 3/16

15/2 110 00 8

FLOATING POINT ON EXAMS

 Consider two 7 bit floating point representations based on the IEEE

format. Neither has a sign bit.

 Format A

 k = 3 exponent bits (bias = 3)

 n = 4 fraction bits

 Format B

 k = 4 exponent bits (bias = 7)

 n = 3 fraction bits

Format A Format B

011 0000 0111 000

101 1110

010 1001

110 1111

000 0001

FLOATING POINT ON EXAMS

 Consider two 7 bit floating point representations based on the IEEE

format. Neither has a sign bit.

 Format A

 k = 3 exponent bits (bias = 3)

 n = 4 fraction bits

 Format B

 k = 4 exponent bits (bias = 7)

 n = 3 fraction bits

Format A Format B

011 0000 0111 000

101 1110 1001 111

010 1001 0110 100

110 1111 1011 000

000 0001 0001 000

DATA LAB OTHER STUFF

 Use the tools

 ./driver.pl

 Exhaustive autograder (uses provided tools)

 ./bddcheck/check.pl

 Exhaustive

 ./btest

 Not exhaustive

 ./dlc

 This one will hate you if you‟re not writing C like it‟s 1989

 Declare all your variables at the beginning of the function

 Don‟t have whitespace before a closing curly brace

DATA LAB TOOLS

 Extra tools

 ./fshow value

 Where value is a hex or decimal number for a floating point

 Shows the hex for value and breaks it down into the floating

point parts (sign, exponent, fraction)

 Single precision floating point

 ./ishow value

 Where value is a hex or decimal number

 Outputs value in hex, signed, and unsigned

 32-bits

STARTING DATA LAB (NEWB EDITION)

 Untar the lab handout

 > tar xvf labhandout.tar

 Solve puzzles provided in bits.c

 Only file to get turned in

 Test using provided tools

 You should not be using Autolab to check your work!

 Everything should be tested by the time you submit

 driver.pl assigns your final grade, NOT btest

DATALAB OTHER STUFF

 Operator precedence

 There are charts. Google them.

 Alternatively use parenthesis and never worry again.

 Hint: !, 0, and Tmin are cool and useful

 No bonus points for having smallest op count

 Other hints in no particular order or reference:

 Divide and conquer

 Round to even with floating points

 Undefined behavior

 Shifting by 32 and why you get strange results

 My small rant to follow

RANT ON UNDEFINED BEHAVIOR

“These instructions shift the bits in the first operand

(destination operand) to the left or right by the number of

bits specified in the second operand (count operand). Bits

shifted beyond the destination operand boundary are first

shifted into the CF flag, then discarded. At the end of the

shift operation, the CF flag contains the last bit shifted out

of the destination operand.

The destination operand can be a register or a memory

location. The count operand can be an immediate value or

register CL. The count is masked to five bits, which limits

the count range to 0 to 31. A special opcode encoding is

provided for a count of 1.”

LABS, IN GENERAL

 Aim to do all your work on our Shark machines

 Obtain a terminal/ SSH client of sorts

 Use the following command

 ssh andrewID@shark.ics.cs.cmu.edu

 andrewID is your Andrew ID

 shark can be replaced with a specific shark hostname

 If left as shark, you will be assigned a random shark

 tar xvf labhandout.tar

 Untarring on the Unix machines may prevent headaches

 Work out of your private directory

 Use a text editor straight from the Shark machine

 Vim, emacs, gedit, nano, pico…

LABS, WARNINGS

 Permission denied

 Are you working on a Shark machine?

 Did you untar on a Linux machine?

 Learning basic commands can fix this

 > chmod +x executable

 Sets executable bits for executable

QUESTIONS & CREDITS PAGE

 http://www.superiorsilkscreen.com

 http://www.wikipedia.org/

 http://www.cs.cmu.edu/~213/

 http://jasss.soc.surrey.ac.uk/9/4/4/fig1.jpg

 Intel x86 Instruction Set Reference

http://www.superiorsilkscreen.com/
http://www.superiorsilkscreen.com/
http://www.wikipedia.org/
http://www.wikipedia.org/
http://www.cs.cmu.edu/~213/
http://www.cs.cmu.edu/~213/
http://jasss.soc.surrey.ac.uk/9/4/4/fig1.jpg

