Carnegie Mellon

Cache Lab
Implementation and Blocking

Marjorie Carlson
Section A
October 7th, 2013

Carnegie Mellon

Welcome to the World of Pointers !

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME
A FEW POINTERS?

(0x3A28213A
Ox6339292C,
Ox 7363632E.

| HATE YOU.

Y

Carnegie Mellon

Class Schedule

m Cache Lab

= Due Thursday.
= Start now (if you haven’t already).

m The Midterm Starts in <10 Days!
= Wed Oct 16th — Sat Oct 19
= Start now (if you haven’t already).

= No, really. Start now.

Carnegie Mellon

Outline

m Memory organization

m Caching
= Different types of locality
" Cache organization

m Cachelab

= Part (a) Building Cache Simulator
= Part (b) Efficient Matrix Transpose

Carnegie Mellon

Memory Hierarchy

A
CPU registers hold words retrieved from L1
cache

Smaller, LO:
faster,
costlier Registers
per byte

che lines retrieved from

e holds cache lines retrieved

ain memory

Main memory holds disk blocks
retrieved from local disks
Larger,
slower,
cheaper Local disks hold files
per byte L4: Local secondary retrieved from disks on
storage remote network servers
(local disks)
L5: Remote secondary storage
' (tapes, distributed file systems, Web servers)
v

Carnegie Mellon

SRAM vs. DRAM tradeoff

m SRAM (cache)

= Faster: L1 cache =1 CPU cycle
= Smaller: Kilobytes (L1) or Megabytes (L2)
= More expensive and “energy-hungry”

m DRAM (main memory)
= Relatively slower: hundreds of CPU cycles
= Larger: Gigabytes
" Cheaper

Carnegie Mellon

Locality

m The key concept that makes caching work:

= |f you use a piece of data, you’ll probably use it and/or nearby data
again soon. So it’'s worth taking the time to move that whole chunk
of data to SRAM, so subsequent access to that block will be fast.

m Temporal locality

= Recently referenced items are likely
to be referenced again in the near future

= After accessing address X in memory, save the bytes in cache for
future access

m Spatial locality ﬂ

" |tems with nearby addresses tend
to be referenced close together in time

= After accessing address X, save the block of memory around X in
cache for future access

General Cache Concepts

Cache

Memory

Carnegie Mellon

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
0 1 2 3
4 5 6 Vi
8 9 10 11
12 13 14 15

Carnegie Mellon

Memory Address

memory address

tag set index block offset
m Block offset: b bits ¢ Size of block B = 2P
m Setindex: s bits @m> Number of sets S = 2°

m Tag Bits: t bits = {address size} —b —s
(On shark machines, address size = 64 bits.)

m Key point: if the data at a given address is in the cache, it
has to be in the block offsett" byte of the set indext set —
but it can be in any line in that set.

Carnegie Mellon

Cache Terminology Total cache size =
E lines per set S*E*B
_AL
Ve N\
p

Address of word:

o0 t bits shits | b bits

S =28 W—M—W
< oo tag set block
sets index offset

\/_/
B = 2° bytes per cache block

10

Carnegie Mellon

Cache Terminologv Total cache size =
E lines per set S*E*B
s % N
,

Address of word:

t bits s bits b bits
S = 28 < W—M—W

oo tag set block

sets index offset

\.
\/_/
B = 2° bytes.per cache block
v tag 012 ccceee B-1
— _
valid bit

B = 2° bytes per cache block (the data)

1"

Carnegie Mellon

Cache Terminologv Total cache size =
E lines per set S*E*B
s % N
,

Address of word:

o0 t bits sbits | bbits
t eo0e tag set block
SELS index offset
OO0 0000000000000 00OCOCEOGCEOGEOGEOSOEOSOSOO
o000
\.
v tag 011)2] o B-1
— v
valid bit '

B = 2° bytes per cache block (the data)

12

Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block x is needed
Cache 3 g I 3 Blo.ckx I.S in cache and is
valid: Hit!
Memory isn’t touched (yay!)
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
O 000000000000 OCOCGOCOO

13

Carnegie Mellon

General Cache Concepts: Miss

Request: 8 Data in block y is needed
Cache 2 Bl?ck y is not in cache:
Miss!
Block y is fetched from
8 Request: 8
memory
Mermor Block y is stored in cache
Y 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
8 9 10 11
12 13 14 15
0000000000 0O0OCOGOGOOS

14

Carnegie Mellon

General Cache Concepts: Miss & Evict

Request: 12 Data in block z is needed
Block z is not in cache:
Cache 12 9 14 3 .
Miss!
Block z is fetched from
12 Request: 12
memory
Block z is stored in cache:
Memory 0 1 2 3 .
Evict!
4 5 6 7 * Placement policy:
g 9 10 11 determines wher.e b goes
* Replacement policy:
12 13 14 15 determines which block

XXX gets evicted (victim)

15

Carnegie Mellon

General Caching Concepts: Types of Misses

m Cold (compulsory) miss

= The first access to a block has to be a miss

m Conflict miss

= Conflict misses occur when the cache is large enough, but multiple
data objects all map to the same block

= e.g., referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

m Capacity miss

= QOccurs when the set of active cache blocks (working set) is larger
than the cache

16

Carnegie Mellon

General Cache Concepts: Conflict Misses

Request: 0 Data in block z is needed
Block z is not in cache:
Cache 0 9 14 3 .
Miss!
Block z is fetched from
0 Request: 0
memory
Block z is stored in cache:
Memory 0 1 2 3 .
Evict!
4 5 6 7 * Placement policy:
g 9 10 11 determines wher.e b goes
* Replacement policy:
12 13 14 15 determines which block
XXX gets evicted (victim)

17

Carnegie Mellon

General Cache Concepts: Conflict Misses

Request: 8 Data in block z is needed
Block z is not in cache:
Cache 8 9 14 3 .
Miss!
Block z is fetched from
8 Request: 8
memory
Block z is stored in cache:
Memory 0 1 2 3 .
Evict!
4 5 6 7 * Placement policy:
g 9 10 11 determines wher.e b goes
* Replacement policy:
12 13 14 15 determines which block
XXX gets evicted (victim)

18

Carnegie Mellon

General Cache Concepts: Conflict Misses

Request: 0 Data in block z is needed
Block z is not in cache:
Cache 0 9 14 3 .
Miss!
Block z is fetched from
0 Request: 0
memory
Block z is stored in cache:
Memory 0 1 2 3 .
Evict!
4 5 6 7 * Placement policy:
g 9 10 11 determines wher.e b goes
* Replacement policy:
12 13 14 15 determines which block
XXX gets evicted (victim)

19

Carnegie Mellon

Sets vs. Lines

m Why arrange cache in sets?

= |f a block can be stored anywhere, then you have to search for it
everywhere.

m Why arrange cache in lines?

= |f a block can can only be stored in one place, it’ll be evicted a lot.

m “The rule of thumb is that doubling the associativity, from direct mapped to
two-way, or from two-way to four-way, has about the same effect on hit rate
as doubling the cache size.” —=Wikipedia, CPU Cache

20

Carnegie Mellon

Sets vs. Lines

m An 8-byte cache with 2-byte blocks could be arranged as:

= one set of four lines (“fully associative”):

—

= four sets of one line (“direct-mapped”):

L >

= two sets of two lines (2-way associative):

—

21

Carnegie Mellon

Sets vs. Lines

Address 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011

m For each possible configuration of an 8-byte cache with 2-
bytes blocks:

" How many how many hits/misses/evictions will there
be for the following sequence of operations?

= What will be in the cache at the end?
1. LO101 5. L1000
2. L0100 6. L0000
3. L0000 7. L0101
4. L0010 8. L1011

22

Carnegie Mellon

Outline

m Memory organization

m Caching
= Different types of locality
" Cache organization

m Cachelab

= Part (a) Building Cache Simulator
= Part (b) Efficient Matrix Transpose

23

Carnegie Mellon

Part (a) Cache simulator

m A cache simulator is NOT a cache!
= Memory contents are not stored.

= Block offsets are not used — the b bits in your address don’t matter.
= Simply count hits, misses, and evictions.

m Your cache simulator needs to work for different values of
s, b, and E — given at run time.

m Use LRU — a Least Recently Used replacement policy

= Evict the least recently used block from the cache to make room
for the next block.

" Queues? Time stamps? Counter?

24

Carnegie Mellon

Part (a) Hints

m Structs are a great way to represent your cache line. Each
cache line has:
= Avalid bit.
" Atag.
= Some sort of LRU counter (if you are not using a queue).

m A cache s just 2D array of cache lines:
= struct cache_line cache[S][E];
= Number of sets: S = 25
®= Number of lines per set: E

"= You know S and E at run time, but not at compile time. What does
that mean you’ll have to do when you declare your cache?

25

Carnegie Mellon

Part (a) malloc/free

m Usemalloc to allocate memory on the heap.

m Always free what you malloc, otherwise you will leak
memory!
my pointer = malloc(sizeof(int));
. use that pointer for a while ..
free(my_pointer);

m Common mistake: freeing your array of pointers, but
forgetting to free the objects those pointers point to.

m Valgrind is your friend!

26

Part (a) getopt

./point -x 1 -y 3 -r
m getopt() automates parsing elements on the Unix
command line.

" |t's typically called in a loop to deal with each flag in
turn. (It returns -1 when it’s out of inputs.)

o .0 L

" |ts return value is the flag it’s currently parsing (“x”, “y”,
“r”). You can then use a switch statement on the local
variable you stored that value to.

= |f a flag has an associated argument, getopt also gives
you optarg, a pointer to that argument (“1”, “3”).
Remember this argument is a string, not an integer.

" Think about how to handle invalid inputs.

27

Carnegie Mellon

Part (a) getopt Example
./point -x 1 -y 3 -r
int main(int argc, char** argv){
int opt, x, y;
int r = 0;
while(-1 != (opt = getopt(argc, argv, "x:y:r"))){
switch(opt) {
case 'x':
X = atoi(optarg);
break;
case 'y':
y = atoi(optarg);
break;
case 'r':
r=1;
break;
default:
printf("Invalid argument.\n");

break;

} 28

Carnegie Mellon

Part (a) fscanf

m fscanf will be useful in reading lines from the trace files.
= L10,4
= M 20,8

m fscanf() is just like scanf () except it can specify a
stream to read from (i.e., the file you just opened).

m Its parameters are:
1. astream pointer (e.g. your file descriptor).
2. aformat string with information on how to parse the file
3-n. the appropriate number of pointers to the variables in which you
want to store the data from your file.
m You typically want to use it in a loop; it returns -1 if it hits
EOF (or if the data doesn’t match the format string).

29

Carnegie Mellon

Part (a) fscanf Example

FILE *pFile; //pointer to FILE object
pFile = fopen("tracefile.txt", "r"); //open file for reading
char operation;

unsigned address;

int size;

// read a series of lines like " M 20,1" or "L 19,3"

while(fscanf(pFile, " %c %x,%d", &operation, &address, &size)>0){
// do stuff ...

}

fclose(pFile); //remember to close file

30

Part (a) Header files!

m If you use a library function, always remember to
#include the relevant library!

m Useman <function-name> to figure out what header

you need.

" man 3 getopt
= |f you're not using a shark machine, you’ll need <getopt.h> as
well as <unistd.h>. (So why not use a shark machine?)

m If you get a warning about a missing or implicit function
declaration, you probably forgot to include a header file.

31

Carnegie Mellon

Part (a) Relevant tutorials

m getopt:

" http://www.gnu.org/software/libc/manual/html node/
Getopt.html

m fscant:

" http://crasseux.com/books/ctutorial/fscanf.html

m Google is your friend!

32

Part (b) Efficient Matrix Transpose

m Matrix Transpose (A -> B)

Matrix A Matrix B
)

[1 2] 3 4 L I

5 6 7 8 2. 6 10
e’/

9 10 M 12 s 7 M

13 14 15 16 4 8 12

= How do we optimize this operation using the
cache?

13

14

15

16

Carnegie Mellon

33

Carnegie Mellon

Part (b) Efficient Matrix Transpose

m Suppose block size is 8 bytes. Each int is 4 bytes.

Matrix A Matrix B

13 14 15 16

m Access A[0O][0]: cache miss Should we handle 3 & 4
m Access B[0][0]: cache miss nextor5&67

m Access A[O][1]: cache hit

m Access B[1][0]: cache miss

34

Carnegie Mellon

Part (b) Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {

“Sometimes it is faster to do more faster work than less slower work.”
-Greg Kesden

/* B x B mini matrix multiplications */
for (il = 1i; 1l < i+B; i++)
for (J1 = 3; J1 < j+B; J++)
for (kl = k; k1l < k+B; k++)
c[il*n+3j1] += al[il*n + k1]*b[kl*n + j1];

C a b C
= % +
] i1 NN

Block size Bx B

35

Carnegie Mellon

Part (b) Blocking

m Blocking: dividing your matrix into sub-matrices.

m The ideal size of each sub-matrix depends on your cache
block size, cache size, and input matrix size.

m Try different sub-matrix sizes and see what happens!

m http://csapp.cs.cmu.edu/public/waside/waside-
blocking.pdf

36

Carnegie Mellon

Part (b) Specs

m Cache:
" You get 1 KB of cache
" |t's directly mapped (E=1)
= Block size is 32 Bytes (b=5)
" There are 32 sets (s=5)
m Test Matrices:
= 32 by 32
" 64 by 64
= 61 by 67

= Your solution need not work on other size matrices.

37

Carnegie Mellon

General Advice: Warnings are Errors!

m Strict compilation flags:

= -Wall “enables all the warnings about constructions that some
users consider questionable, and that are easy to avoid.”

= _Werror treats warnings as errors.

m Why?
= Avoid potential errors that are hard to debug.
= Learn good habits from the beginning.

#

Student makefile for Cache Lab
#

CC = gcc

CFLAGS = -g -Wall -Werror -std=c99

38

Carnegie Mellon

General Advice: Style!!!

m The rest of the labs in this course will be hand-graded for
Stﬂ@ as well as auto-graded for correctness.

m Read the style guideline.

= “But | already read it!”

" Good, read it again.

m Pay special attention to failure and error checking.
" Functions don’t always work
= What happens when a system call fails?

m Start forming good habits now!

39

