
ANITA’S SUPER AWESOME

RECITATION SLIDES

15/18-213: Introduction to Computer Systems

Processes and Signals, 21 October 2013

Anita Zhang

…AND WE’RE BACK

 Cache Lab grades are out

 Autolab Cachelab Handin History

 Look for the latest submission

 Click “View Source” to see our comments

 Midterms went well

 Check email for the link to view your exam

 Email us with grading concerns

 Shell lab is due next Tuesday, October 29 2013

AN “HOUR” OF FUN AHEAD OF US

 Basics of everything

 Processes

 Birth, Life, Death, After

 Signals

 Sigsuspend

 So much sigsuspend!

 I/O

 Shell Lab

 All the hints!

MY (NEIGHBOR’S) RABBIT (NAME IS FORK())

EXCEPTIONAL CONTROL FLOW

 A way to react to changes in system state

 As opposed to program state

 Types

 Exceptions

 Process Context Switch

 Signals

 Nonlocal jumps

FLAVORS OF EXCEPTIONS

 Asynchronous

 I/O interrupts

 Reset interrupts

 Synchronous

 Traps

 Faults

 Aborts

PROGRAMS? WHAT ARE THOSE?

 Specification

 Written according to this to tell users what it does

 Data and instructions stored in an executable

binary file

 Tells a computer what to do

 Binary file is static

 No state, just instructions

AND THEN THERE WERE PROCESSES!

 An instance of a program in execution

 Ubiquitous on multitasking systems

 A fundamental abstraction provided by the OS

 Process IDs, Group IDs

 Single thread of execution (linear control flow)

 Until you have more threads (more fun ahead..)

 Full, private memory space and registers

 Various other states

 Open files, private address spaces, etc.

 Running, Zombie, etc.

BASICS OF PROCESS CONTROL

 Four basic process control functions

 fork()

 exec()

 Variations exist

 exit()

 wait()

 Variations exist

 Standard on all Unix-based systems

 CS:APP provides Fork(), Execve(), Wait(), etc.

 Error-handling wrappers provided for your use

BIRTH: FORK()

 Creates demon spawn

 OS creates an exact duplicate of parent’s state

 Virtual address space (including heap and stack)

 Registers, except the return value (%eax)

 File descriptors (files are shared)

 Exact clone of the program!

 Result: equal but separate state

 Returns: 0 to child process, child’s PID to parent

 Returns -1 on failure

 Can return execution in an arbitrary order

 Either child/parent may run first after fork()

LIFE:

EXECVE (CHAR* FILENAME, CHAR** ARGV, CHAR** ENVIRON)

 Replaces the current process’s state and context

 This is how you run programs

 Replace current memory image with new program

 Sets up stack

 Start execution at the entry point

 Newly loaded program’s perspective: as if the

previous program has not been run before

 On success, it does not return to the old program

LIFE:

EXECVE (CHAR* FILENAME, CHAR** ARGV, CHAR** ENVIRON)

 Arguments

 filename

 Absolute path of the file to run

 argv

 Command line arguments to the new program

 environ

 Environment variable

 Information that affects the various ways a process works

 Declaring extern char** environ sets it up to default

 #include <unistd.h>

DEATH: EXIT (INT STATUS)

 Terminates a process

 OS frees resources used by exited process

 Heap, open file descriptors, etc.

 But not exit status!

 The process becomes a zombie

 Technical terminology

 Remains in process table to await its reaping

 Zombies are reaped when their parents read

their exit status

 Done by init process if the parent has died

 Then the PID can be reused~ :D

REAP:

WAITPID (PID_T PID, INT* STATUS, INT OPTIONS)

 Waits for a child process to change state

 If a child has terminated, this allows the parent

to “reap” the child

 Frees all resources

 Collects the exit status

 Child is “fully” gone D:

 Only reaps direct children

 Not grandchildren or great-grandchildren, etc

 Status pointer must be in valid memory

 wait() uses it to fill in the status of the reaped child

REAP:

WAITPID (PID_T PID, INT* STATUS, INT OPTIONS)

 Arguments

 pid

 Process ID of the child to wait for

 -1 to wait on ANY child

 status

 Pointer to space to fill in the status information

 Can be read with built-in macros

 WIFEXITED

 WEXITSTATUS

 WIFSIGNALED

 And more!

 options

 Things that make wait() behave differently

 WUNTRACED

 WNOHANG

 And more!

ADDITIONAL USEFULNESS:

SETPGID (PID_T PID, PIT_T PGID)

 Sets the process group ID of process with process

ID pid

 By default children inherit parent’s group ID

 Arguments:

 pid

 Apply to process with ID pid

 If 0, setpgid() is applied to the calling process

 pgid

 Set group ID to pgid

 If 0, setpgid() uses pgid = pid of the calling process

WHICH RUNS FIRST?

pid_t child_pid = fork();

if (child_pid == 0) {

/* only child prints this */
printf(“Child!\n”);
exit(0);

} else {
printf(“Parent!\n”);

}

 What are the possible

outcomes?

 Child!

Parent!

 Parent!

Child!

 How can we get the

child to always print

first?

WHICH RUNS FIRST?

int status;

pid_t child_pid = fork();

if (child_pid == 0) {

/* only child prints this */
printf(“Child!\n”);
exit(0);

} else {
waitpid(child_pid, &status, 0);

printf(“Parent!\n”);

}

 Use waitpid() to wait

until a child has

terminated

 Exit status can be

inspected using the

status variable here

 Only one outcome

 Child!

Parent!

USING EXECVE()

int status;

pid_t child_pid = fork();

char* argv[] = {“ls”, “-l”, NULL};

extern char **environ;

if (child_pid == 0){

/* only child comes here */

execve(“/bin/ls”, argv, environ);

/* will child reach here? */

} else {

waitpid(child_pid, &status, 0);

}

 argv

 Argument list

 Convention: argv[0] is
the name of the
executable

 execve

 const char *filename

 char *argv[]

 char const envp[]
 environ provided by

unistd.h

 Can also specify your
own

PROCESS STATES

 Running

 Executing instructions on the CPU

 Number bounded by number of CPU cores

 Runnable

 Waiting to run

 Blocked

 Waiting for an event

 Not runnable

 Zombie

 Terminated, not yet reaped

WHAT ARE THESE “SIGNAL” THINGS?

 Primitive form of inter-process communication

 Notifies a process of an event

 Asynchronous with normal execution

 Comes in several flavors

 man 7 signal

 Sent in various ways

 ctrl +c, ctrl+z

 kill()

SIGNALS

 Are non-queuing

 If we block SIGCHLD, and multiple SIGCHLD

arrive, we only receive one SIGCHLD when we

unblock

 Can receive multiple types (ie. SIGCHLD & SIGINT)

 Options for handling signals

 Ignore

 Catch and run signal handler

 Terminate (and optionally dump core)

MORE ON SIGNALS

 Many have default behaviors

 SIGINT, SIGTERM will terminate the process

 SIGSTP will suspend the process until it receives

SIGCONT

 SIGCHLD is sent from a child to its parent when the

child changes state

 Can ignore/catch most signals, but not some

 SIGKILL cannot be caught, blocked, or ignored

 SIGSTOP cannot be caught, blocked, or ignored

USEFUL SIGNAL SYSCALLS

 Setting up handlers
 signal()

 Setting up signal masks
 sigemptyset()

 sigfullset()

 sigaddset()

 sigdelset()

 Blocking signals
 sigprocmask()

 Waiting for signals
 sigsuspend()

 Sending signals
 kill()

SIGNAL HANDLERS

 Can run handler when particular signal received

 void handlername (int signum) { …. }

 Separate flow of control in the same process

 Resumes program upon returning

 Can be called anytime when the signal is fired

 Signal(int signum, sighandler_t handler)

 When a signal is caught, runs the installed handler

(or default)

CONCURRENCY BUGS

void handler(int sig)

{

pid_t pid;

/* Reap a zombie child */

while ((pid = waitpid(-1, NULL, 0)) > 0)

deletejob(pid);

if (errno != ECHILD)

unix_error("waitpid error");

}

 What could happen between

fork() and addjob()?

 SIGCHLD

 How would you handle it?

 Block in the right places

int main(int argc, char **argv)

{

int pid;

Signal(SIGCHLD, handler);

initjobs(); /* Initialize the job list */

while (1) {

/* Child process */

if ((pid = Fork()) == 0) {

Execve("/bin/date", argv, NULL);

}

/* Parent process */

addjob(pid);

}

exit(0);

}

WHY SIGSUSPEND()?

 What is sigsuspend()?

 Used to protect critical regions from signal

interruption.

 It is especially useful for (you guessed it) “pausing” or

“sleeping” while waiting for a signal.

 Much better solution to the “sleep loop”

 Goal: to block all the way up until the instruction

our process is suspended.

ABOUT SIGSUSPEND()

 int sigsuspend(const sigset_t *sigmask);

 Where sigmask contains a mask of signals YOU

DON’T want to be interrupted by

 Can be considered opposite of sigprocmask() which

takes a mask of signals you want to operate on.

 Quick example: if you want to be woken up from

sigsuspend() by SIGCHLD, it better not be in the

mask you pass in!

HOW TO SIGSUSPEND()

int main() {

sigset_t waitmask, newmask, oldmask;

/* set with everything except SIGINT */

sigfillset(&waitmask);

sigdelset(&waitmask, SIGINT);

/* set with only SIGINT */

sigemptyset(&newmask);

sigaddset(&newmask, SIGINT);

/* oldmask contains the mask of signals before the

* block with newmask */

if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)

unix_error("SIG_BLOCK error");

/* “CRITICAL REGION OF CODE” – (SIGINT blocked) */

/* Pause, allowing ONLY SIGINT */

if (sigsuspend(&waitmask) != -1)

unix_error("sigsuspend error");

/* RETURN FROM SIGSUSPEND -- (Returns to signal

* state from before sigsuspend) */

/* Reset signal mask which unblocks SIGINT */

if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)

unix_error("SIG_SETMASK error");

}

 Points of interest

 Sigprocmask() fills

oldmask with the signal

mask from before

SIG_BLOCK

 If sigsuspend()

returns from being

awoken, it returns 1.

 After sigsuspend()
returns, the state of the

signals returns to how

it was before the call

I/O

 Four basic operations (operate on file descriptors)

 open()

 close()

 read()

 write()

 What’s a file descriptor?

 Returned by open()

 Some positive value, or -1 to denote error

 int fd = open(“/path/to/file”, O_RDONLY);

FILE DESCRIPTORS

 Every process starts with these 3 by default

 0 – STDIN

 1 – STDOUT

 2 – STDERR

 You can call close() on them…..

 But you that’s probably not what you want

 Every process gets its own file descriptor table

 All processes share open file tables

PARENT AND CHILD AFTER FORK()

 Shamelessly stolen from lecture:

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table

[one table per process]

Open file table

[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File A (terminal)

File B (disk)

fd 0

fd 1

fd 2

fd 3

fd 4

Parent

Child

WHAT IS DUP2()?

 Copies file descriptor entries

 Causes the entries to point to the same files as

another file descriptor

 Takes the form: dup2(dest_fd, src_fd)

 src_fd will now point to the same place as dest_fd

DUP2() SUPER RELEVANT: BEFORE

 Goal: Redirect stdout

 First, use open() to

open a file to redirect

 For Shell Lab: Done

right before the call to

exec() in the child

process

 This example, fd 4 is

the file descriptor of

the opened file

fd 0

fd 1

fd 2

fd 3

fd 4

File pos

refcnt=1

...

stderr

stdout

stdin

File A (terminal)

File pos

refcnt=1

...

File B (disk)

DUP2() SUPER RELEVANT: AFTER

 To redirect, duplicate

fd 4 into fd 1.

 Call dup2(4, 1)

 Causes fd 1 to refer to

disk file pointed at by

fd 4

 Accessing fd 1 will

now get you File B

fd 0

fd 1

fd 2

fd 3

fd 4

File pos

refcnt=0

...

File pos

refcnt=2

...

stderr

stdout

stdin

File A (terminal)

File B (disk)

RUBBER DUCK DEBUGGING

“To use this process, a

programmer explains

code to an inanimate

object, such as a

rubber duck, with the

expectation that upon

reaching a piece of

incorrect code and

trying to explain it,

the programmer will

notice the error.”

HAS EVERYONE SEEN THE DUCK?

SHELL LAB

 Race conditions

 Creating processes

 Reaping zombies

 Job control synchronization

 I/O redirection

 Managing signals

 And more!

SHELL LAB TOOLS

 ./runtrace

 Runs traces on your chosen shell (defaults to tsh)

 Execute without arguments to see usage

 ./tshref

 Reference shell – experiment, run programs, etc.

 ./sdriver

 Used to run traces multiple times

 Execute without arguments to see usage

PLAN OF ATTACK

 As always, read the handout

 Bundles of hints in there

 If there is one chapter to read from the textbook..

 CS:APP: Chapter 8 – Exceptional Control Flow

 Tons of examples and explanations on how to

synchronize your processes

 They’re pretty much giving you the answers…

 At least read the example code

 Suggested order: Job control/ process creation,

signals and synchronization, I/O redirection

 Unit test by hand

 Don’t jump into the sdriver or runtrace too soon

HINTS

 CS:APP p.735 and p.757

 Basic eval() starter codes

 Great way to start the lab

 Code links in the credits

 Read the starter code, understand what it wants

 We do all the job and parsing work for you!

 Don’t use sleep() to solve synchronization issues

 Definitely don’t use it to make a child/parent run first

 Will lose points for using tight loops to wait
 while(1) { … }  0xBADBEEF!!!!

 sigsuspend()

 We already told you to use it

MORE HINTS

 Shell must forward SIGINT and SIGSTP to the

foreground job (and all its children)

 How could process groups be useful?

 dup2 is a handy function for I/O redirection

 SIGCHILD handler may have to reap multiple

children per call

 Try actually running your shell

 Can be easier to debug this way

 Strangely satisfying to write a working shell!

 Compare output to reference shell

STYLE

 Check return values

 You’re dealing with system calls; they matter a lot

 Provided code is a good example of what we

expect from you

 Relevant comments and explanations of design

 Find your race conditions before we do

 10 points for style. Make it count.

THIS SLIDE INTENTIONALLY FILLED

Questions?

 Fork Photo Credit

 CS:APP Error Handling Wrappers and Header

 Poking with Stick Picture

 CS:APP Code Samples

 Rubber Duck 1

 Rubber Duck Debugging on Wiki

 Florentijn Hofman’s Duck

http://www.georgjensen.com/media/catalog/product/cache/11/image/9df78eab33525d08d6e5fb8d27136e95/3/3/3335022_Bo_Bonfils_Starters_Lunch_Dessert_Fork.png
http://www.georgjensen.com/media/catalog/product/cache/11/image/9df78eab33525d08d6e5fb8d27136e95/3/3/3335022_Bo_Bonfils_Starters_Lunch_Dessert_Fork.png
http://www.georgjensen.com/media/catalog/product/cache/11/image/9df78eab33525d08d6e5fb8d27136e95/3/3/3335022_Bo_Bonfils_Starters_Lunch_Dessert_Fork.png
http://csapp.cs.cmu.edu/public/ics2/code/src/csapp.c
http://csapp.cs.cmu.edu/public/ics2/code/include/csapp.h
https://i.chzbgr.com/maxW500/5375146752/hD01C1A8E/
http://csapp.cs.cmu.edu/public/code.html
http://csapp.cs.cmu.edu/public/code.html
http://jetlinepromo.com/media/catalog/product/r/d/rd206_y.jpg
http://en.wikipedia.org/wiki/Rubber_duck_debugging
http://en.wikipedia.org/wiki/Rubber_duck_debugging
http://www.theatlanticcities.com/arts-and-lifestyle/2013/06/giant-rubber-ducky-migrating-pittsburgh/5879/
http://www.theatlanticcities.com/arts-and-lifestyle/2013/06/giant-rubber-ducky-migrating-pittsburgh/5879/
http://www.theatlanticcities.com/arts-and-lifestyle/2013/06/giant-rubber-ducky-migrating-pittsburgh/5879/
http://www.theatlanticcities.com/arts-and-lifestyle/2013/06/giant-rubber-ducky-migrating-pittsburgh/5879/
http://www.theatlanticcities.com/arts-and-lifestyle/2013/06/giant-rubber-ducky-migrating-pittsburgh/5879/

