ANITA’S SUPER AWESOME

@ RECITATION SLIDES

‘ 15/18-213: Introduction to Computer Systems
@ Processes and Signals, 21 October 2013
@® AnitaZhang

...AND WE'RE BACK

Cache Lab grades are out
Autolab - Cachelab - Handin History
Look for the latest submission
Click “View Source” to see our comments

Midterms went well
Check emalil for the link to view your exam
Email us with grading concerns

Shell lab 1s due next Tuesday, October 29 2013

AN “HOUR” OF FUN AHEAD OF US

o Basics of everything

o Processes
» Birth, Life, Death, After

o Signals
o Sigsuspend

» So much sigsuspend!

o I/0

o Shell Lab
» All the hints!

MY (NEIGHBOR’S) RABBIT (NAME IS FORK())

EXCEPTIONAL CONTROL FLOW

A way to react to changes in system state
As opposed to program state

Types
Exceptions
Process Context Switch
Signals
Nonlocal jumps

FLAVORS OF EXCEPTIONS

Asynchronous
I/0 1interrupts
Reset interrupts

Synchronous
Traps
Faults
Aborts

PROGRAMS? WHAT ARE THOSE?

Specification

Written according to this to tell users what it does
Data and instructions stored 1n an executable
binary file

Tells a computer what to do
Binary file is static

No state, just instructions

AND THEN THERE WERE PROCESSES!

An instance of a program in execution
Ubiquitous on multitasking systems

A fundamental abstraction provided by the OS
Process IDs, Group IDs

Single thread of execution (linear control flow)
Until you have more threads (more fun ahead..)

Full, private memory space and registers
Various other states

Open files, private address spaces, etc.
Running, Zombie, etc.

BASICS OF PROCESS CONTROL

Four basic process control functions
fork()

exec()

Variations exist
exit()
wait()

Variations exist

Standard on all Unix-based systems
CS:APP provides Fork(), Execve(), Wait(), etc.

Error-handling wrappers provided for your use

BIRTH: FORKJ()

Creates demon spawn

OS creates an exact duplicate of parent’s state

Virtual address space (including heap and stack)
Registers, except the return value (%eax)

File descriptors (files are shared)

Exact clone of the program!

Result: equal but separate state
Returns: 0 to child process, child’s PID to parent

Returns -1 on failure

Can return execution in an arbitrary order
Either child/parent may run first after fork()

LIFE:
EXECVE (CHAR* FILENAME, CHAR** ARGV, CHAR** ENVIRON)

Replaces the current process’s state and context

This 1s how you run programs
Replace current memory image with new program
Sets up stack
Start execution at the entry point
Newly loaded program’s perspective: as if the
previous program has not been run before
On success, 1t does not return to the old program

LIFE:
EXECVE (CHAR* FILENAME, CHAR** ARGV, CHAR** ENVIRON)

Arguments

filename
o Absolute path of the file to run
argv
o Command line arguments to the new program
environ
o Environment variable
o Information that affects the various ways a process works
o Declaring extern char** environ sets it up to default
#include <unistd.h>

DEATH: EXIT (INT STATUS)

Terminates a process

OS frees resources used by exited process
Heap, open file descriptors, etc.
But not exit status!
The process becomes a zombie
Technical terminology
Remains in process table to await its reaping
Zombies are reaped when their parents read
their exit status

Done by init process if the parent has died
Then the PID can be reused~ :D

REAP:
WAITPID (PID_T PID, INT* STATUS, INT OPTIONS)

Walits for a child process to change state
If a child has terminated, this allows the parent
to “reap” the child

Frees all resources
Collects the exit status
Child 1s “fully” gone D:
Only reaps direct children
Not grandchildren or great-grandchildren, etc

Status pointer must be 1n valid memory
wait () uses it to fill in the status of the reaped child

REAP:
WAITPID (PID_T PID, INT* STATUS, INT OPTIONS)

Arguments

pid
o Process ID of the child to wait for
o -1 to wait on ANY child

status
o Pointer to space to fill in the status information
o Can be read with built-in macros
WIFEXITED
WEXITSTATUS
WIFSIGNALED
And more!
options
o Things that make wait() behave differently
WUNTRACED
WNOHANG
And more!

ADDITIONAL USEFULNESS:
SETPGID (PID_T PID, PIT T PGID)

Sets the process group ID of process with process
ID pid
By default children inherit parent’s group 1D

Arguments:
pid
o Apply to process with ID pid
oIf 0, setpgid() 1is applied to the calling process
pgid
o Set group ID to pgid
o If 0, setpgid() uses pgid = pid of the calling process

WHICH RUNS FIRST?

pid_t child pid = fork(); What are the possible
(?
if (child_pid == @) { outcomes:
/* only child prints this */ Chald!
printf(“Child!\n”); !
P it(0); Parent!
} else { Parent!
printf(“Parent!\n”); Child!
}

How can we get the
child to always print
first?

WHICH RUNS FIRST?

int status;
pid t child pid = fork();

if (child_pid == @) {

/* only child prints this */
printf(“Child!\n”);
exit(9);
} else {
waitpid(child pid, &status, 0);

printf(“Parent!\n”);

Use waitpid() to wait
until a child has
terminated

Exit status can be
Iinspected using the
status variable here

Only one outcome

Chald!
Parent!

USING EXECVE()

int status;

pid_t child _pid = fork();

char* argv[] = {“1s”, “-1”, NULL};
extern char **environ;

if (child_pid == 0){
/* only child comes here */
execve(“/bin/1s”, argv, environ);
/* will child reach here? */

} else {
waitpid(child pid, &status, 0);

argv
Argument list
Convention: argv[0] 1s
the name of the
executable

execve
const char *filename
char *argv]]

char const envp|]

o environ provided by
unistd.h

o Can also specify your
own

PROCESS STATES

Running
Executing instructions on the CPU
Number bounded by number of CPU cores

Runnable
Waiting to run

Blocked

Waiting for an event
Not runnable

Zombie
Terminated, not yet reaped

WHAT ARE THESE “SIGNAL” THINGS?

Primitive form of inter-process communication
Notifies a process of an event
Asynchronous with normal execution

Comes 1n several flavors
man 7 signal

Sent 1n various ways

ctrl +c, ctrl+z
ki11(0

SIGNALS

Are non-queuing

If we block SIGCHLD, and multiple SIGCHLD
arrive, we only receive one SIGCHLD when we
unblock

Can receive multiple types (ie. SIGCHLD & SIGINT)
Options for handling signals

Ignore

Catch and run signal handler

Terminate (and optionally dump core)

MORE ON SIGNALS

Many have default behaviors
SIGINT, SIGTERM will terminate the process

SIGSTP will suspend the process until it receives
SIGCONT

SIGCHLD is sent from a child to its parent when the
child changes state

Can ignore/catch most signals, but not some
SIGKILL cannot be caught, blocked, or ignored
SIGSTOP cannot be caught, blocked, or ignored

USEFUL SIGNAL SYSCALLS

Setting up handlers
signhal ()

Setting up signal masks
sigemptyset()
sigfullset()
sigaddset()
sigdelset()

Blocking signals
sigprocmask()

Waiting for signals
sigsuspend()

Sending signals
ki1l1(Q

SIGNAL HANDLERS

Can run handler when particular signal received
void handlername (int signum) { ... }

Separate flow of control in the same process
Resumes program upon returning

Can be called anytime when the signal is fired
Signal (int signum, sighandler_t handler)

When a signal is caught, runs the installed handler
(or default)

CONCURRENCY BuUGS

void handler(int sig) int main(int argc, char **argv)
{ {
pid_t pid; int pid;
/* Reap a zombie child */
while ((pid = waitpid(-1, NULL, ©)) > 0) Signal(SIGCHLD, handler);
deletejob(pid); initjobs(); /* Initialize the job list */
if (errno != ECHILD)
unix_error("waitpid error"); while (1) {
} /* Child process */

if ((pid = Fork()) == 0) {
Execve("/bin/date", argv, NULL);

What could happen between

. ¥
‘?
fOI’k() and adeOb() /* Parent process */
SIGCHLD addjob(pid);
How would you handle it? }
exit(0);

Block in the right places

WHY SIGSUSPEND()?

What 1s sigsuspend()?

Used to protect critical regions from signal
Interruption.

It 1s especially useful for (you guessed 1t) “pausing” or
“sleeping” while waiting for a signal.

Much better solution to the “sleep loop”

Goal: to block all the way up until the instruction
our process 1s suspended.

ABOUT SIGSUSPEND()

int sigsuspend(const sigset_t *sigmask);
Where sigmask contains a mask of signals YOU
DON’T want to be interrupted by
Can be considered opposite of sigprocmask () which
takes a mask of signals you want to operate on.

Quick example: if you want to be woken up from
sigsuspend() by SIGCHLD, it better not be in the
mask you pass in!

HOW TO SIGSUSPEND()

int main() {

sigset_t waitmask, newmask, oldmask;

/* set with everything except SIGINT */
sigfillset(&waitmask);
sigdelset(&waitmask, SIGINT);

/* set with only SIGINT */
sigemptyset (&newmask) ;
sigaddset (&newmask, SIGINT);

/* oldmask contains the mask of signals before the
* bTlock with newmask */
if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
unix_error("SIG_BLOCK error");

/* “CRITICAL REGION OF CODE” - (SIGINT blocked) */

/* Pause, allowing ONLY SIGINT */
if (sigsuspend(&waitmask) != -1)
unix_error("sigsuspend error");

/* RETURN FROM SIGSUSPEND -- (Returns to signal
* state from before sigsuspend) */
/* Reset signal mask which unblocks SIGINT */
if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
unix_error("SIG_SETMASK error");

Points of interest

Sigprocmask() fills
oldmask with the signal
mask from before

SIG_BLOCK

If sigsuspend()
returns from being
awoken, 1t returns 1.

After sigsuspend()
returns, the state of the
signals returns to how
1t was before the call

I/0

Four basic operations (operate on file descriptors)

open()
close()

read()
write()

What’s a file descriptor?

Returned by open()
Some positive value, or -1 to denote error
int fd = open(“/path/to/file”, O_RDONLY);

FILE DESCRIPTORS

Every process starts with these 3 by default
0 — STDIN
1-STDOUT
2 — STDERR

You can call close() on them.....
But you that’s probably not what you want

Every process gets its own file descriptor table
All processes share open file tables

PARENT AND CHILD AFTER FORKJ()

Shamelessly stolen from lecture:

Descriptor table Open file table
[one table per process] [shared by all processes]

Parent File A (terminal)

fd 0 —

fd 1 = .

(19 File pos

f43 refecnt=2

fd 4 - .
Child File B (disk)

fd 0 /

fd1| 7 File pos

ig ?) refent=2

fd 4

WHAT IS DUP2()?

Copies file descriptor entries

Causes the entries to point to the same files as
another file descriptor

Takes the form: dup2(dest_fd, src_fd)
src_fd will now point to the same place as dest_fd

DUP2() SUPER RELEVANT: BEFORE

Goal: Redirect stdout

First, use open() to
open a file to redirect

For Shell Lab: Done
right before the call to
exec() 1n the child
process

This example, fd 4 1s
the file descriptor of
the opened file

stdin fd O
stdout fd 1
stderr fd 2

fd 3
fd 4

File A (terminal)

File pos

refent=1

File B (disk)

File pos

refent=1

DUP2() SUPER RELEVANT: AFTER

To redirect, duplicate

fd 4 into fd 1. File A (terminal)
stdin fd O
Call dup2(4, 1) stdont 111 < r—
Causes fd 1 to refer to stderr fd 2 refent=0
disk file pointed at by i -
fd 4
. . File B (disk)
Accessing fd 1 will
now get you File B File pos

refecnt=2

RUBBER DUCK DEBUGGING

“To use this process, a
programmer explains
code to an 1nanimate
object, such as a
rubber duck, with the
expectation that upon
reaching a piece of
incorrect code and
trying to explain it,
the programmer will
notice the error.”

HAS EVERYONE SEEN THE DUCK?

SHELL LLAB

Race conditions

Creating processes
Reaping zombies

Job control synchronization
I/O redirection

Managing signals

And more!

SHELL LAB TOOLS

./runtrace
Runs traces on your chosen shell (defaults to tsh)
Execute without arguments to see usage

./tshref
Reference shell — experiment, run programs, etc.
./sdriver

Used to run traces multiple times
Execute without arguments to see usage

P1LAN OF ATTACK

As always, read the handout

Bundles of hints in there

If there 1s one chapter to read from the textbook..
CS:APP: Chapter 8 — Exceptional Control Flow

Tons of examples and explanations on how to
synchronize your processes
They’re pretty much giving you the answers...
At least read the example code
Suggested order: Job control/ process creation,
signals and synchronization, I/0 redirection

Unit test by hand
Don’t jump into the sdriver or runtrace too soon

HINTS

CS:APP p.735 and p.757
Basic eval () starter codes
Great way to start the lab
Code links in the credits

Read the starter code, understand what 1t wants
We do all the job and parsing work for you!

Don’t use sleep() to solve synchronization issues
Definitely don’t use it to make a child/parent run first

Will lose points for using tight loops to wait
owhile(1) { .. } € OXBADBEEF!!!!
o sigsuspend()

We already told you to use it

MORE HINTS

Shell must forward SIGINT and SIGSTP to the
foreground job (and all its children)

How could process groups be useful?
dup?2 1s a handy function for I/O redirection
SIGCHILD handler may have to reap multiple
children per call
Try actually running your shell

Can be easier to debug this way

Strangely satisfying to write a working shell!
Compare output to reference shell

STYLE

Check return values
You're dealing with system calls; they matter a lot

Provided code 1s a good example of what we
expect from you
Relevant comments and explanations of design

Find your race conditions before we do
10 points for style. Make 1t count.

THIS SLIDE INTENTIONALLY FILLED

Questions?

o Fork Photo Credit

o CS:APP Error Handling Wrappers and Header
o Poking with Stick Picture

o CS:APP Code Samples

o Rubber Duck 1

o Rubber Duck Debugging on Wiki

o Florentijn Hofman’s Duck

http://www.georgjensen.com/media/catalog/product/cache/11/image/9df78eab33525d08d6e5fb8d27136e95/3/3/3335022_Bo_Bonfils_Starters_Lunch_Dessert_Fork.png
http://www.georgjensen.com/media/catalog/product/cache/11/image/9df78eab33525d08d6e5fb8d27136e95/3/3/3335022_Bo_Bonfils_Starters_Lunch_Dessert_Fork.png
http://www.georgjensen.com/media/catalog/product/cache/11/image/9df78eab33525d08d6e5fb8d27136e95/3/3/3335022_Bo_Bonfils_Starters_Lunch_Dessert_Fork.png
http://csapp.cs.cmu.edu/public/ics2/code/src/csapp.c
http://csapp.cs.cmu.edu/public/ics2/code/include/csapp.h
https://i.chzbgr.com/maxW500/5375146752/hD01C1A8E/
http://csapp.cs.cmu.edu/public/code.html
http://csapp.cs.cmu.edu/public/code.html
http://jetlinepromo.com/media/catalog/product/r/d/rd206_y.jpg
http://en.wikipedia.org/wiki/Rubber_duck_debugging
http://en.wikipedia.org/wiki/Rubber_duck_debugging
http://www.theatlanticcities.com/arts-and-lifestyle/2013/06/giant-rubber-ducky-migrating-pittsburgh/5879/
http://www.theatlanticcities.com/arts-and-lifestyle/2013/06/giant-rubber-ducky-migrating-pittsburgh/5879/
http://www.theatlanticcities.com/arts-and-lifestyle/2013/06/giant-rubber-ducky-migrating-pittsburgh/5879/
http://www.theatlanticcities.com/arts-and-lifestyle/2013/06/giant-rubber-ducky-migrating-pittsburgh/5879/
http://www.theatlanticcities.com/arts-and-lifestyle/2013/06/giant-rubber-ducky-migrating-pittsburgh/5879/

