Carnegie Mellon

Processes, Signals, 1/0, Shell Lab

m 15-213: Introduction to Computer Systems
m Recitation 9: Monday, Oct. 21, 2013
m Marjorie Carlson

m Section A

Carnegie Mellon

Agenda

m News
m Shell Lab Overview
m Processes

= Qverview
" |mportant functions
"= Concurrency
m Signals
= QOverview

" |mportant functions
= Race conditions

m 1/O Intro

Carnegie Mellon

News

m Midterm grades were good! Go you!
" The exams will be viewable soon if they’re. not already.
= E-mail us with concerns.

m Cachelab grades are out. I’'ve annotated your code while
grading for style.
= Autolab = Cache Lab - View handin history
Click on your most recent submission, then View Source
View as Syntax Highlighted Source
= Style matters! http://www.cs.cmu.edu/~213/codeStyle.html|

m Shell lab out, due Tuesday Oct. 29 11:59 p.m.

Carnegie Mellon

Agenda

m News
m Shell Lab Overview
m Processes

= Qverview
" |mportant functions
"= Concurrency
m Signals
= QOverview

" |mportant functions
= Race conditions

m 1/O Intro

Carnegie Mellon

Processes

m An instance of an executing program
m An abstraction provided by the operating system

m Properties:
= Private memory. No two processes share memory, registers, etc.
= Some shared state, such as the open file table
= A process ID (pid) and a process group ID (pgid)
= Become zombies when finished running

Carnegie Mellon

Birth of a Process: fork

m pid_t fork()
= Clones the current process.

" The new process is an exact duplicate of the parent’s state. It has
its own stack, own registers, etc.

" |t has its own file descriptors (but the files themselves are shared).
= Called once, returns twice (once in the parent, once in the child).

= Return value in child is O, child’s pid in parent. (This is how the
parent can keep track of who its child is.)

" Returns -1 in case of failure.

= After the fork, we do not know which process will run first, the
parent or the child.

Carnegie Mellon

Birth of a Process: a digression

m int setpgid(pid _t pid, pit_t pgid)
= Sets the process group ID of the process specified by pid. (Returns
0 on success, -1 on failure.)
= |fpid =0, setpgid is applied to the calling process.

= |f pgid=0, setpgid sets the pgid of the specified process to the pid
of the calling process.

= By default, children inherit the pgid of their parents.

= (When won’t you want children to inherit the parent’s pgid?
Hmm...)

Carnegie Mellon

Birth of a Process: a digression

Process 5 can reap processes
20 and 213, but not 500.
Only process 213 can reap process 500.

Carnegie Mellon

Life of a Process: exec

m int execve(const char *filename, char** argv,
char** envp)

= Replaces the current process with a new one. This is how we run a
new program.

= (Called once; does not return (or returns -1 on failure).

= argc, argyv are like the command-line arguments to main for the
new process

= envp is the environment variable
= Contains information that affects how various processes work

= On Shark machines, can get its value by declaring
extern char** environ;

Carnegie Mellon

Death of a Process: exit

m void exit(int status)
" |Immediately terminates the process that called it.

" status is normally the return value of main().

= The OS frees the resources it used (heap, file descriptors, etc.) but
not its exit status. It remains in the process table to await its
reaping.

= Zombies are reaped when their parents read their exit status. (If
the parent is dead, this is done by init.) Then its pid can be
reused.

10

Carnegie Mellon

Reaping of a Process: wait

m pid t waitpid(pid t pid, int* status, int
options)
" The wait family of functions allows a parent to know when a child
has changed state (e.g., terminated).

= waitpid returns when the process specified by pid terminates.
= pid must be a direct child of the invoking process.
= |[f pid =-1, it will wait for any child of the current process.

= Return value: the pid of the child it reaped.

= Writes to status: information about the child’s status.

= options variable: used to modify waitpid’s behavior.
= WNOHANG: keep executing caller until a child terminates.
= WUNTRACED: report stopped children too.
= WCONTINUED: report continued children too.

1"

Carnegie Mellon

Yay Concurrency!

int status;

pid t child pid = fork(); pid t child pid = fork();
if (child_pid == 0) { if (child pid == @) {
printf("Child!\n"); printf("Child!\n");
exit(9); exit(9);
} }
else { else {
printf("Parent!\n"); waitpid(child_pid, &status, 0);
} printf("Parent!\n");
}
m Outcomes: m Outcome:
= Child! = Child!
Parent! Parent!
= Parent!

Child!

12

Carnegie Mellon

Race Conditions

m Race conditions occur when the sequence or timing of
events is random or unknown.

= When you fork, you don’t know whether the parent or child will
run first.

= Signal handlers will interrupt currently running code. (We’ll get to
this in a sec.)

m If something can go wrong, it will!

" You must reason carefully about the possible sequence of events in
concurrent programs. (A big theme of the second half of this
coursel!)

13

Carnegie Mellon

Agenda

m News
m Shell Lab Overview
m Processes

= Qverview
" |mportant functions
"= Concurrency
m Signals
= QOverview

" |mportant functions
= Race conditions

m 1/O Intro

14

Signals

m Signals are the basic way processes communicate with
each other. They notify a process that an event has
occurred (for example, that its child has terminated).

m They are sent several ways: Ctrl-C, Ctrl-Z, a “kill”
instruction.

m Signals are asynchronous. They aren’t necessary received
immediately; they’re received right after a context switch.

m They are non-queuing. If 100 child processes die and send
a SIGCHLD, the parent may still only receive one SIGCHLD.

15

Signals

m Many signals have default behaviors
= SIGINT, SIGTERM will terminate the process.

= SIGSTP will suspend the process until it receives SIGCONT.

= S|IGCHLD is sent from a child to its parent when the child dies or is
suspended.

m But we can avoid the default behavior by catching the
signal and running our own signal handler.
= SIGKILL and SIGSTOP can’t be modified.

m We can block signals with sigprocmask().
m We can wait for signals with sigsuspend().

16

Sending a Signal

m int kill(pid_t pid, int sig)
= Despite the name, this is used to send all signhals
between processes — not just SIGKILL.
= |f pid is positive, this sends signal sig to the process
with pid = id.
= |f pid is negative, this sends signal sig to all processes
with with pgid = -id.

17

Kill: Process

kill () with a positive ID will send the
signal only to the process with that pid.

Carnegie Mellon

kill(213, SIGINT);

18

Carnegie Mellon

Kill: Process Group

kill(-8, SIGINT);

kill() with a negative ID will send the
signal to all the process with that pgid.

19

Carnegie Mellon

Handling a Signal

m signal(int signum, sighandler_t handler)

= signal installs a signal handler that will run whenever a
particular signal (the signum) is received.

= The handler is just a function you write that takes one int (the
signum) and is void (returns nothing).

" Now, whenever you receive that signal, the handler will interrupt
the process and execute —even if it or another signal handler is
currently running.

= Control flow of the main program is restored once the handler has
finished.

= This creates a separate flow of control in the same process,
because you don’t know when the handler will get called!

20

Carnegie Mellon

Handling a Signal

void handlerl(int sig) {

pid t pid; .
while ((pid = waitpid(-1,NULL,WNOHANG)) > @) Do not use this code! It has a
deletejob(pid); concurrency bug!

if (errno != ECHILD)
unix_error("waitpid error");

}

int main() {
int pid;
Signal(SIGCHLD, handler); // initialize the handler
initjobs(); // initialize a jobs list
while(1l) {

/* child process */
if (pid = Fork()) == 0) {
Execve("/bin/date",argv,NULL);
¥
/* parent process */
addjob(pid);
¥
exit(0);

21

Carnegie Mellon

Blocking Signals

m Processes can choose to block signals using a signal mask.

m While a signal is blocked, a process will still receive the
signal but keep it pending. No action will be taken until
the signal is unblocked.

m Still nonqueuing: the process will only track that it has
received a blocked signal, but not the number of times it
was received.

m This allows you to ensure that a particular part of your
code is never interrupted by a particular signal.

22

Carnegie Mellon

Blocking Signals: Relevance to You

m When you fork a new process in shell lab:
" CHILD:
= exec; run, then terminate (thus sending a SIGCHLD to parent).
" PARENT:
= Add the process to the job queue.
= When you receive SIGCHLD, go to the SIGCHLD handler, which
removes the child from the job queue.
m Common race condition:

" The child could terminate before the parent has added it to the job
gueue. Then the SIGCHLD handler tries to remove something from
the job queue that isn’t there, and worse, it’s then added to the job
gueue and never removed.

= Solution: block SIGCHLDs during the critical section.

23

Carnegie Mellon

Back to This Code...

void handlerl(int sig) {

pid t pid; .
while ((pid = waitpid(-1,NULL,WNOHANG)) > @) Do not use this code! It has a
deletejob(pid); concurrency bug!

if (errno != ECHILD)
unix_error("waitpid error");

}

int main() {
int pid;
Signal(SIGCHLD, handler); // initialize the handler
initjobs(); // initialize a jobs list
while(1l) {

/* child process */
if (pid = Fork()) == 0) {
Execve("/bin/date",argv,NULL);
¥
/* parent process */
addjob(pid);
¥
exit(0);

24

Carnegie Mellon

Blocking Signals: Important Functions

m sigsetops

= A family of functions used to create and modify sets of signals. E.g.,
= int sigemptyset(sigset t *set);
= int sigfillset(sigset t *set)
= int sigaddset(sigset t *set, int signum);
= int sigdelset(sigset t *set, int signum);

" These sets can then be used in other functions.

" http://linux.die.net/man/3/sigsetops

= Remember to pass in the address of the sets, not the sets
themselves

25

Carnegie Mellon

Blocking Signals: Important Functions

m int sigprocmask(int option, const sigset t
set, sighandler_t *oldSet)

= sigprocmask updates your mask of blocked/unblocked signals,
using the sigset set.

= option: SIG_SETMASK, SIG BLOCK, SIG_UNBLOCK
" The signal mask’s old value is written into oldSet.

= Blocked signals are ignored until unblocked.

= Remember: a process only tracks whether it has received a
blocked signal, not how many times.

= |If you block SIGCHLD and then 20 children terminate, when you
unblock you will only receive one SIGCHLD and run the
appropriate handler once.

26

Carnegie Mellon

Blocking Signals: Important Functions

m int sigsuspend(const sigset t *mask)

= sigsuspend suspends your process until it receives a particular
signal. It’s good way to wait for something to happen. This is the
right way to ensure your processes do their thing in the right order.

= |t temporarily replaces the process’s signal mask with mask, which
should be the signals you don’t want to be interrupted by. (This is
the opposite of sigprocmask.) So if your goal is to be “woken up’
by a SIGCHLD, your mask should not contain SIGCHLD.

= sigsuspend will return after an unblocked signal is received and
its handler run.

)

= Once sigsuspend returns, it automatically reverts the process
signal mask to its old value.

27

Carnegie Mellon

Race Conditions

int counter = 1;
void handler(int signum) {
counter--;

}

int main() {
signal (SIGALRM, handler);
kill(®, SIGALRM);
counter++;
printf("%d\n",counter);

m Possible outputs?

m What if we wanted to guarantee that the handler
executed after the print statement?

28

Carnegie Mellon

Race Conditions

int counter = 1;
void handler(int signum) {
counter--;

}

int main() {
signal (SIGALRM, handler);
sigset t alarmset, oldset;
sigemptyset(&alarmset);
sigaddset(&alarmset, SIGALRM);

//Block SIGALRM from triggering the handler
sigprocmask(SIG_BLOCK,&alarmset,&oldset);

kill(©,SIGALRM);
counter++;

printf("%d\n",counter);

//Let the pending or incoming SIGALRM trigger the handler
sigprocmask(SIG_UNBLOCK,&alarmset,NULL);

29

Carnegie Mellon

Agenda

m News
m Shell Lab Overview
m Processes

= Qverview
" |mportant functions
"= Concurrency
m Signals
= QOverview

" |mportant functions
= Race conditions

m 1/O Intro

30

Unix 1/0

m All Unix I/0, from network sockets to text files, are based
on one interface.

m A file descriptor is what’s returned by open().
int fd = open("/path/to/file”, O_RDONLY);
m It's just an int, but you can think of it as a pointer into the
file descriptor table.

m Every process starts with three file descriptors by default:
= 0: STDIN
= 1:STDOUT
= 2:STDERR.

m Every process gets its own file descriptor table, but all
processes share the open file table and v-node table.

31

Carnegie Mellon

Unix 1/0: A Handy Function

m dup2(dest_fd, src_fd)
= src_fd will now point to the same place as dest_fd.

" You can use this to redirect output from STDOUT to a location of
your own choosing.

" This is handy for implementing redirection in your shell.
= Use open() to open the file you want to redirect to.

= Call dup2(what-you-just-opened, 1) to cause fd to refer to your
file instead of STDOUT.

32

Carnegie Mellon

Shell Lab Tips

m There's a lot of starter code in the book; look it over.
m Read the handout well, especially the “Hints” section.
m Use tshref to figure out the required behavior.

" For instance, the format of the output when a job is stopped.
m Be careful of the add/remove job race condition!

m Use sigsuspend, not waitpid, to wait for foreground
jobs
= waitpid should only occur once in your code.

= You will lose points for using tight loops (while(1) {})orsleep
to wait for a signal.

33

Carnegie Mellon

Shell Lab Tips

m Shell requires SIGINT and SIGSTP to be forwarded to the
foreground job of the shell (and all its descendants).
= How could process groups be useful?

m Remember the SIGCHILD handler may have to reap
multiple children per call!

m We provide drivers:
= /runtrace
= /sdriver

m BUT start by actually using your shell and seeing if/where
it fails.

" The last page of the handout is a guide to what functionality we
test.

34

