Carnegie Mellon

Exceptional Control Flow:
Exceptions and Processes

15-213/14-513/15-513: Introduction to Computer Systems
17t Lecture, October 28, 2021

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Malloclab bootcamp

m Friday 10/29 @ 7-9pm ET
m Rashid Auditorium (Pittsburgh campus)
m Zoom link on Piazza

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Printers Used to Catch on Fire

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Highly Exceptional Control Flow

static int 1p_check_status(;;= minor)
1
£t error = 0;
msigned int last = lp table[minor].last error;
mnmsigned char status = :7hrt(min~?):
if ((status &« LP PERRORP) && ! (LP F(minor) & LP CAREFUL))

ast = 0;

else if ((status & LP_POUTPA)) |
if (last ! LP POUTPR (
last = LP A
printk (KERN INFO "lp%d it of paper\n", minor):
}
e -ENOSPC;
} status & LP PSELECD))
t 1= LP_PSELECD) |{
last = LP PSELECD;
printk (KERN INFO "lp%d off in=\n", minor):;
}
error = -EI10;
} else if (! (status & LP PERRORP))
if (last != LP PERR P} |
last = LP PERRORP;
ylinfk(HFhH_lHFU "lp%d on fire\n", minor):

rror = =-EIO;
| else

|
lp table[minor].last _error = last;

if (last !'= 0)
lp error(minor);

return error;

'r https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/lp.c?h=v5.0-rc3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Exceptional Control Flow CSAPP 8

m Exceptions CSAPP 8.1

m Processes CSAPP 8.2

m Process Control CSAPP 8.3-8.4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Control Flow

m Processors do only one thing:

" From startup to shutdown, each CPU core simply reads and executes
(interprets) a sequence of instructions, one at a time *

" This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
inst,

Time)
inst;

inst,

* Externally, from an architectural
<shutdown>

viewpoint (internally, the CPU
may use parallel out-of-order
execution)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
= Jumps and branches
= Call and return
React to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
= |nstruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Exceptional Control Flow

m Exists at all levels of a computer system

m Low level mechanisms

= 1. Exceptions

= Change in control flow in response to a system event
(i.e., change in system state)

= Implemented using combination of hardware and OS software

m Higher level mechanisms
= 2. Process context switch
= Implemented by OS software and hardware timer
= 3, Signals
= Implemented by OS software
= 4. Nonlocal jumps: setjmp () and longjmp ()
= Implemented by C runtime library

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

|
|
m Processes
|

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Exceptions

m An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code
Event — | _current ¥, Exception
|_next Exception processing

by exception handler
* Return to |_current

* Return to |_next
* Abort

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Exception Tables

Exception

numbers
Code for m Each type of event has a
exception handler 0 unique exception number k

Exception Code for

VvTable

0 r e exception handler 1 m k =index into exception table

1 o | —"Tcode for (a.k.a. interrupt vector)

2 C exception handler 2

n-1 o~ m Handler k is called each time

exception k occurs

Code for
exception handler n-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

(partial) Taxonomy
ECF

Asynchronous

Synchronous

Interrupts Traps Faults Aborts

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor

" |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:
" Timer interrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs
= |/O interrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= Intentional, set program up to “trip the trap” and do something
= Examples: system calls, gdb breakpoints
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= Unintentional and unrecoverable

= Examples: illegal instruction, parity error, machine check

= Aborts current program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file
57 fork Create process

59 execve Execute a program
60 exit Terminate process

62 kill Send signal to process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

System Call Example: Opening File

m User calls: open (filename, options)
m Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b802000000 mov SOx2,%eax # open is syscall #2
e5d7e: 0f05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp SOxfffffffffffff001,%rax

e5dfa: c3 retq

User code Kernel code m 2rax contains syscall number
m Other arguments in $rdi,
Exception $rsi, $rdx, $r10, 3r8, $r9

syscall

\ 4
cmp : m Returnvaluein $rax
Open file
Returns m Negative value is an error

corresponding to negative
errno

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

System Call | Aimost like a function call

* Transfer of control

 On return, executes next instruction

e Passes arguments using calling convention
00000000000e5d70<_op © G€ts result in $rax

m User calls: open (£

m Calls __open functi

e5d79: b8 02 00 00 00

e5d7e: 0Of 05 sys. One Important exception!
esdfa: c3 etq ° Different set of privileges

* And other differences:
* E.g., “address” of “function” is in $rax
* Uses errno

* Etc.
Except

syscallv : : . ;
cmp . m Returnvaluein $rax
Open file
Returns m Negative value is an error

corresponding to negative
errno

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Fault Example: Page Fault

int a[1000];
m User writes to memory location ‘;‘ain ()
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User code Kernel code

Exception: page fault

movl

Copy page from

disk to memor
Return and ! y

reexecute movl

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Fault Example: Invalid Memory Reference

int a[1000];

main ()
{
a[5000] = 13;
}
80483b7: c7 05 60 e3 04 08 0Ad movl $0xd,0x804e360
User code Kernel code

l Exception: page fault

movl
] Detect invalid address
» Signal process

m Sends SIGSEGV signal to user process

m User process exits with “segmentation fault”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

|
|
m Processes
|

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Processes

m Definition: A process is an instance of a running
program.
" One of the most profound ideas in computer science
" Not the same as “program” or “processor”

m Process provides each program with two key

abstractions: 2 CHe)
» Jogical control flow Stack
= Each program seems to have exclusive use of the CPU Igeai:
= Provided by kernel mechanism called context switching Code
" Private address space
= Each program seems to have exclusive use of main CPU
memory. Registers

= Provided by kernel mechanism called virtual memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data oee Data
Code Code Code
CPU CPU CPU

Registers Registers Registers

m Computer runs many processes simultaneously
= Applications for one or more users
= Web browsers, email clients, editors, ...
= Background tasks
= Monitoring network & I/O devices

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Multiprocessing Example

x| XTErm
Proceszes: 123 total, 5 runhing, 9 ztuck, 109 zleeping, 611 threads 11447 :07
Load Awg: 1,03, 1,13, 1,14 CPU uzage: 3,27 uzer, 5,158 sys, 91.56% idle
SharedLibz: 7Bk resident, OB data, OB linkedit,
MemRegionz: 27358 total, 1127M rezident, 35 private, 494M shared,
PhysMem: 1029M wired, 1974M active, 1062M inactiwve, 407EM uszed, 18M free,
YH: 280G weize, 1091M framework wsize, 230759213(1) pageins, S843367(0) pageouts, |
Metworks: packets: 410462281106 in, BEOSE0SES77L out, |
Dizkszt 17874391/3490G read, 12847373/0040 written, “

FID COMMAMD ACPU TIKE #TH #ll0 #PORT #MREG EPEMT RSHRD RSIZE WPRMT WSIZE
343217- Hicrosoft OF 0,0 02:28,34 4 1 202 418 Z21M 24H 21K BEM FE3H

33051 usbmuzxd 0,0 00:04,10 3 1 47 BE 436k 21EK 480k BOM 2422
93006 iTunesHelper 0,0 003:01,23 2 1 55 g F2ak Al24k 1124k 43M 2429H
B4286 bash 0,0 000,11 1 i) 20 24 224k 732K 484K 1M 378N
84280 xterm 0,0 000,83 1 0 22 73 BoBk 872K B9Zk 9728k 2382
55323 Microsoft Ex 0,3 21:58.97 10 3 260 954 16H B5H 46H 114K 1057H
24751 =leep 0,0 00:00,00 1 0 17 20 32k 212k 3B0K 93B3k ZE70M
54733 launchdadd 0,0 QOz00,00 2 1 33 a0 488k 220K 1736k 48HM 2409H
4737 top .0 o00:02b3 1/ 0 3l 29 141EK 21EK 2124k 17M 2378
24713 automountd 0,0 000002 7 1 53 B4 ob0k 21k 2184k HaM 2413M
54701 ocspd 0,0 000005 4 1 Bl 54 1268k ZB4dk 3132K HOM 2426M
54661 Grab 0,6 00:02,75 B 3 222+ 389+ 1G5M+ Z2BM+ 40M+ FhM+ 2BDEH+
594E53 cookied 0.0 00:00,15 2 1 40 Bl 331EK 224K 4088k 42M 2411H
E2HE ol ce AN ANl B7 oA 1 57 91 TEIAK FA1 1EM A9H 24 ZAH

m Running program “top” on Mac

= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory

Stack : Stack Stack
Heap : Heap Heap
Data : Data cee Data
Code : Code Code

: Saved Saved

reqisters reqisters
CPU
Registers

m Single processor executes multiple processes concurrently
" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system (like last week)
= Register values for nonexecuting processes saved in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack : Stack Stack
Heap : Heap Heap
Data : Data cee Data
Code : Code Code
Saved : Saved Saved
registers | - registers registers
CPU
Registers

m Save current registers in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data cee Data
Code Code Code
Saved Saved
reqisters reqisters
CPU
Registers

m Schedule next process for execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data cee Data
Code Code Code
Saved Saved Saved
reqisters reqisters reqisters
CPU
Registers

m Load saved registers and switch address space (context switch)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Multiprocessing: The (Modern) Reality

Memory

Stack = Stack : Stack
Heap = Heap : Heap
Data = Data © eee Data
Code - Code : Code

= : Saved

registers
CPU |::| CPU |: & Multicore processors
Registers Registers = Multiple CPUs on single chip

.------------...: :----------..--: .Share main memor‘y(and SomecaChES)
® Each can execute a separate process

= Scheduling of processors onto cores
done by kernel

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Concurrent Processes

m Each process is a logical control flow.

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A&B,A&C
= Sequential: B& C

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Context Switching

m Processes are managed by a shared chunk of memory-
resident OS code called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some existing process.

m Control flow passes from one process to another via a

context switch
Process A : Process B
|
: user code
I kernel code } context switch
Time user code

kernel code } context switch

user code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

|
|
m Processes
|

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

System Call Error Handling

m On error, Linux system-level functions typically return -1 and
set global variable errno to indicate cause.

m Hard and fast rule:

" You must check the return status of every system-level function
" Only exception is the handful of functions that return void

m Example:

if ((pid = fork()) < 0) {
fprintf (stderr, "fork error: %s\n", strerror(errno));
exit(-1);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Error-reporting functions

m Can simplify somewhat using an error-reporting function:

void unix error(char *msg) /* Unix-style error */
{
fprintf (stderr, "%s: %$s\n", msg, strerror(errno)) ;
exit(-1);
} \
if ((pid = fork()) < 0) Note: csapp.c exits with 0.

unix error ("fork error");

m But, must think about application. Not alway appropriate
to exit when something goes wrong.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Error-handling Wrappers

m We simplify the code we present to you even further by
using Stevens!-style error-handling wrappers:

pid t Fork(void)
{
pid t pid;
if ((pid = fork()) < 0)
unix error ("Fork error");
return pid;
}

pid = Fork() ;

m NOT what you generally want to do in a real application

le.g., in “UNIX Network Programming: The sockets networking API“ W. Richard Stevens

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Obtaining Process IDs

m pid t getpid(void)

= Returns PID of current process

m pid t getppid(void)

= Returns PID of parent process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

m Running

" Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

m Stopped

" Process execution is suspended and will not be scheduled until
further notice (next lecture when we study signals)

m Terminated
" Process is stopped permanently

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Terminating Processes

m Process becomes terminated for one of three reasons:

= Receiving a signal whose default action is to terminate (next lecture)
= Returning from the main routine
= Calling the exit function

m void exit(int status)
" Terminates with an exit status of status
= Convention: normal return status is 0O, nonzero on error

= Another way to explicitly set the exit status is to return an integer value
from the main routine

m exitis called once but never returns.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Creating Processes

m Parent process creates a new running child process by
calling fork

m int fork (void)
= Returns 0 to the child process, child’s PID to parent process
= Child is almost identical to parent:

= Child get an identical (but separate) copy of the parent’s virtual
address space.

= Child gets identical copies of the parent’s open file descriptors
= Child has a different PID than the parent

m fork s interesting (and often confusing) because
it is called once but returns twice

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Conceptual View of fork

Memory Memory
parent child
Stack Stack Stack
Heap 9 Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU : : CPU
Registers Registers

m Make complete copy of execution state
= Designate one as parent and one as child
= Resume execution of parent or child

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

The £fork Function Revisited

m VM and memory mapping explain how £fork provides private
address space for each process.

m To create virtual address for new process:

" Create exact copies of current mm_struct, vm_area struct, and
page tables.

" Flag each page in both processes as read-only
" Flag each vin_area struct in both processes as private COW

m On return, each process has exact copy of virtual memory.

m Subsequent writes create new pages using COW mechanism.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

fork Example

m Call once, return twice

int main(int argc, char** argv)

{ m Concurrent execution

= Can’t predict execution
order of parent and child

pid t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /* Child */
printf ("child : x=%d\n", ++x);
return O;

}

/* Parent */
printf ("parent: x=%d\n", --x);
return O;

} fork.c

linux> ./fork
parent: x=0
child : x=2

linux> ./fork
child : x=2
parent: x=0

linux> ./fork
parent: x=0
child : x=2

linux> ./fork
parent: x=0
child : x=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

42

Carnegie Mellon

fork Example

int main(int argc, char** argv)
{

pid t pid;

int x = 1;

pid = Fork () ;

if (pid = 0) { /* Child */
printf ("child : x=%d\n", ++x);
return O;

}

/* Parent */
printf ("parent: x=%d\n", --x);
return O;

linux> ./fork
parent: x=0
child : x=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Call once, return twice

m Concurrent execution
= Can’t predict execution
order of parent and child
m Duplicate but separate
address space

" x has a value of 1 when

fork returns in parent and
child

= Subsequent changes to x
are independent

m Shared open files

" stdoutis the samein
both parent and child

43

Carnegie Mellon

Modeling £fork with Process Graphs

m A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
= Each vertex is the execution of a statement
" a->b means a happens before b
= Edges can be labeled with current value of variables
= printf vertices can be labeled with output
= Each graph begins with a vertex with no inedges

m Any topological sort of the graph corresponds to a feasible
total ordering.

" Total ordering of vertices where all edges point from left to right

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Process Graph Example

int main(int argc, char** argv)

{
pid t pid;
int x =1;
child: x=2 _

pid = Fork() ; £?Ltf e:&t Child
if (pid == 0) { /* Child */ P

printf ("child : x=%d\n", ++x); xX== parent: x=0

. ® »® >® >® Parent
return 0; main fork printf exit

}

/* Parent */
printf ("parent: x=%d\n", --x);
return 0O;

} fork.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Interpreting Process Graphs

m Original graph:

child: x=2
>® >®
printf exit
x==1 parent: x=0
@ >@ :..
main for printf exit

k

m Relabled graph:

il

b

ne
) 4
Hhe

ne
v

ne
) 4
o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

fork Example: Two consecutive forks

void fork2 ()
{
printf ("LO\n") ;
fork () ;
printf ("L1\n") ;
fork () ;
printf ("Bye\n") ;
} forks.c

Ll

Bye
®
printf

Bye
>®

»®
printf

LO L1l
@

fgrk printf

Bye
.0
printf

Bye
>®

>@ >®
printf fork printf

Feasible output:
LO

Ll

Bye

Bye

Ll

Bye

Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

f;rk printf

Infeasible output:
LO

Bye

Ll

Bye

Ll

Bye

Bye

47

Carnegie Mellon

fork Example: Nested forks in parent

'=0) {

void fork4 ()
{
printf ("LO\n") ;
if (fork() !'= 0) {
printf ("L1\n") ;
if (fork()
printf ("L2\n") ;
}
}
printf ("Bye\n") ;
}

forks.c

Bye
printf

L0 L1l

printf
L2
> >0

Bye

Bye

@ > >@
printf fork printf

Feasible or Infeasible?
LO

Bye

Ll

Bye

Bye

L2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork printf printf

Feasible or Infeasible?
LO

Ll

Bye

Bye

L2

Bye

48

fork Example: Nested f£orks in children

void fork5 ()

{ 2
printf ("LO\n") ; printf printf
if (fork() == 0) { .g} . E¥e

printf ("Ll\n") 2 printf fork printf
if (fork() == 0) { LO Bye
printf ("L2\n") ; pr:i?ntf f=ork prrzi'.ntf
}
}
printf ("Bye\n") ;
} forks.c Feasible or Infeasible? Feasible or Infeasible?
LO LO
Bye Bye
L1l L1l
Bye L2
Bye Bye

L2 Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Quiz

https://canvas.cmu.edu/courses/24383/quizzes/67223

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

https://canvas.cmu.edu/courses/24383/quizzes/67223

Carnegie Mellon

Reaping Child Processes
m Ildea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead

m Reaping
= Performed by parent on terminated child (using wait orwaitpid)

" Parent is given exit status information
= Kernel then deletes zombie child process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child should be reaped by init process (pid == 1)

= Unless ppid == 1! Then need to reboot...
= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Zombie
Example

linux> ./forks 7 &
[1] 6639

Running Parent, PID

Terminating Child,
linux> ps

PID TTY

6585 ttyp9 00
6639 ttyp9 00:
6640 ttyp9 00:
6641 ttyp9 00
linux> kill 6639
[1] Terminated
linux> ps

PID TTY

6585 ttyp9 00:
6642 ttyp9 00

:00:00

:00:00

:00:00

void fork7() {
if (fork() 0) {
/* Child */

exit (0) ;
} else {

while (1)

}

printf ("Terminating Child, PID =

printf ("Running Parent, PID =

; /* Infinite loop */

$d\n", getpid()):;

%d\n", getpid());

PID

6639
6640

TIME CMD
tcsh

forks

forks <defunct> /

PsS

00:03
00:00

TIME
00:00

CMD
tcsh

PsS

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ps shows child process as
“defunct” (i.e., a zombie)

Killing parent allows child to
be reaped by init

52

Carnegie Mellon

void fork8 ()
Non- {
. . if (fork() == 0) {
terminating J CER e Gy |
printf ("Running Child, PID = %d\n",
° getpld()) ’
Child Example hile ()
; /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n",
getpid());
exit (0) ;
}
linux> ./forks 8 b
Terminating Parent, PID = 6675
Running Child, PID = 6676 m Child process still active even
linux> ps though parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh

6676 ttyp9
6677 ttyp9

linux> ps

00:00:06 fork

|
00:00:00
linux> kill 6676

Must kill child explicitly, or else will
keep running indefinitely

PID TTY TIME CMD
6585 ttyp9 00:00:00 tecsh
6678 ttyp9 00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

53

Carnegie Mellon

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
" |mplemented as syscall

Parent Process Kernel code

Exception .
syscall¥, 5 And, potentially other user

>
w Processes, including a child
Returns

of parent

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
= Return value is the pid of the child process that terminated

" Ifchild status != NULL, then the integer it points to will be set
to a value that indicates reason the child terminated and the exit
status:

= Checked using macros defined inwait.h

- WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

— See textbook for details

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

wait: Synchronizing with Children

void fork9 () {
int child status;
HC exit
> @ >@
if (fork() == 0) { printf
printf ("HC: hello from child\n");
exit (0) ;
CT
} else { B
printf ("HP: hello from parent\n"); o :EF e =ze
wait (&child status); fork printf wait printf
printf ("CT: child has terminated\n") ;
}
printf ("Bye\n") ;
} forks.c
Feasible output(s): Infeasible output:
HC HP HP
HP HC CT
CT CT Bye

Bye Bye HC

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Another wait Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void forklO () {
pid t pid[N];
int i, child status;

for (1 = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {
exit (100+i); /* Child */
}
for (i = 0; i < N; i++) { /* Parent */
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminate abnormally\n", wpid);

} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

waitpid: Waiting for a Specific Process

m pid t waitpid(pid t pid, int *status, int options)
= Suspends current process until specific process terminates
= Various options (see textbook)

void forkll () {
pid t pid[N];
int i;
int child status;

for (1 = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = N-1; 1 >= 0; i--) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf("Child %d terminate abnormally\n", wpid);

} forks.c

Bryant dna U Hdlraron, COmputer SYStems:T A Programimer S PETSPECUVE, TNira eartaon 58

Carnegie Mellon

execve: Loading and Running Programs

m int execve(char *filename, char *argv[], char *envp[])
m Loads and runs in the current process:
= Executable file filename

= Can be object file or script file beginning with # ! interpreter
(e.g., #! /bin/bash)

= ..with argument list argv
= By convention argv[0]==filename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
= getenv, putenv, printenv
m Overwrites code, data, and stack

= Retains PID, open files and signal context

m Called once and never returns

= ..except if thereis an error

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

execve Example

m Execute "/bin/ls -1t /usr/include" in child process
using current environment:

envp[n] = NULL
envp [n-1] —> "PWD=/usr/droh"
, envp [0] —> "USER=droh"
environ >
myargv[argc] = NULL
(argc == 3) myargv([2] —> " /usr/include"
myargv[l] 3 "_]t"
myargv ————> iLyergy |0 —> "/bin/1s"

if ((pid = Fork()) == 0) { /* Child runs program */
if (execve (myargv|[0], myargv, environ) < 0) {
printf ("%$s: Command not found.\n", myargv[0]);
exit (1),

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

60

Carnegie Mellon

Bottom of stack

Null-terminated

Stru ctu re Of environment variable strings e

Null-terminated

the StaCk When .| command-line arg strings
d Neéw program

i envp[n] == NULL
Sta rtS ; cnvp(n=i] environ
| (global var)
| envp[0] P gy
| argv[argc] = NULL 1 envp
argv[argc-1] (in $rdx)
argv. | e argv[0]
(in $rsi)
argc Stack frame for
i ; libc start main
(in $zdi) — — Top of stack

Future stack frame for
main

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

The execwve Function Revisited

User stack } Private, demand-zero ™ To load and run a new
program a.out in the
l current process using

execve.

libc.so T

.data Memory mapped region . m Free vm area struct’s
text for shared libraries } Shared, file-backed and page tables for old areas

t m Createvm_area struct’s

and page tables for new
Runtime heap (via malloc) } Private, demand-zero areas
" Programs and initialized data
Uninitialized data (.bss) } Private, demand-zero backed by object files.

a.out = _bss and stack backed by
data Initialized data (.data) anonymous files.
toxt Private, file-backed
. Program text (.text)

m Set PC to entry point in
0 .text

® Linux will fault in code and
data pages as needed.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

(Carnegie
Mellon
University

Plagiarism

According to a recent New York Times article, at Brown University, more than half of the violations of the
academic code involved cheating in computer science classes. Similarly, at Stanford, 20% of one computer
science class were flagged for cheating.

The “fair use’ doctrine states that brief excerpts of copyright material may, under certain circumstances, be
quoted verbatim for purposes such as criticism, news reporting, teaching, and research, without the need
for permission from or payment to the copyright holder.

The issue of ‘fair use’ versus copyright infringements (or plagiarism) extends from the classroom to the
courtroom, as in Oracle’s lawsuit against Google over Google’s use of copyrighted Java APIs owned by
Oracle, which enabled Java applications to run on Android.

What is the difference between plagiarism and fair use? Is it fair to equate plagiarism with copyright
infringement?

https://www.nytimes.com/2017/05/29/us/computer-science-cheating.html
http://fortune.com/2017/02/13/oracle-google-appeal/

Carnegie Mellon

Summary

m Exceptions
" Events that require nonstandard control flow

= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
" Only one can execute at a time on any single core

= Each process appears to have total control of
processor + private memory space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Summary (cont.)

m Spawning processes
= Call fork

® One call, two returns

m Process completion
" Callexit

® One call, no return

m Reaping and waiting for processes
" Callwait orwaitpid

m Loading and running programs
" Call execve (or variant)

= One call, (normally) no return

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Making £fork More Nondeterministic

m Problem
= Linux scheduler does not create much run-to-run variance
= Hides potential race conditions in nondeterministic programs
= E.g., does fork return to child first, or to parent?

m Solution

" Create custom version of library routine that inserts random delays along
different branches

= E.g., for parent and child in fork

= Use runtime interpositioning to have program use special version of
library code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Variable delay fork

/* fork wrapper function */
pid t fork(void) ({
initialize();
int parent delay = choose_delay() ;
int child delay = choose _delay() ;
pid t parent pid = getpid();
pid t child pid or zero = real fork();
if (child pid or zero > 0) {
/* Parent */
if (verbose) {
printf (

"Fork. Child pid=%d, delay = %dms. Parent pid=%d, delay = %dms\n",
child pid or zero, child delay,
parent pid, parent delay);

fflush (stdout) ;

}

ms_sleep (parent delay);
} else {
/* Child */
ms_sleep(child delay);
}
return child pid or zero;
} myfork.c 67

