Lecture 3: Integer Operations 15-213/15-513/14-513 Fall 2022

1 Introduction

In this activity you will learn about integer operations.

Before you begin, take a minute to assign roles to each member in your group. Try
to switch up the roles as much as possible: please don’t pick a role for yourself that
you have already done more than once. Below is a summary of the four roles; write
the name of the person taking that role next to the summary.

If your group only has three members, combine the roles of Facilitator and Process
Analyst.

For this and all future activities, the Facilitator should also take the role of the reader
and read the questions aloud to the group.

Facilitator Reads question aloud; keeps track of time and makes sure everyone
contributes appropriately.

Quality Control Records all questions and answers, and provides team reflection to
team and instructor.

Spokesperson Talks to the instructor and other teams. Compiles and runs programs
when applicable.

Process Analyst Considers how the team could work and learn more effectively.

Fill in the following table showing which group member is performing each role:

Role Person

Facilitator
Quality Control
Spokesperson
Process Analyst

Solutions 1/10

BBI 2

2 Model 0: Review of Representation

Questions: 6 / Allocated Time: 7 minutes

Problem 1. Add the following two unsigned binary numbers together. Give the result
in both binary and decimal.

1

1
+ 1
1 0

oo O

1
0
1

oo o

=18

Problem 2. How many bits were required to represent the sum in the previous
question?

Five—one more than either of the addends.
Problem 3. If you only have 4 bits to represent this sum, what number(s) might you
provide? Explain.

The usual approach is to “truncate” the answer, throwing away the fifth (leftmost)
bit. In this case the result would be 2.

The bit representation of a number X is a string of bits
<X> = <Xw/ Xw—ll sy XZ/ Xl/ XO>
where each X; is either 1 or 0. w is called the bit width of X.

Problem 4. Supposing (X) is an unsigned bit representation (that is, it can only represent
numbers greater than or equal to 0), give a formula for the value of X in terms of the
X;. (Hint: a summation will be required.)

X:Z;‘ZX

Problem 5. Give a similar formula for when (X) is a two’s complement bit representation
(can represent any integer, as long as w is big enough).

w—1

X = —2V. X, + Z 2. X,
i=0

Solutions 2/10

BBI 2

Problem 6. Bit X, of a bit representation is sometimes called the “sign bit.” What
makes this bit different from all the other bits of a representation? Why do you think
“sign bit” is an appropriate name for this bit?

Bit X, is the only bit whose place-value is different in the signed (two’s complement)
interpretation than in the unsigned interpretation. It’s called the “sign bit” because, in
the two’s complement interpretation, the number X is negative if and only if X, is 1.

3 Model 1: Review of Limits/Negative Conversion

Questions: 7/ Allocated Time: 8 minutes

Problem 7. Complete the following table to indicate the most positive (i.e. largest)
and most negative (i.e. smallest) number that can be represented with a given number
of bits when using two’s complement representation.

Bits Most Positive Most Negative

1 0 -1
2 1 -2
3 3 —4
4 7 -8

Problem 8. Considering the pattern in the table above, give an expression for the most
positive number that can be represented by a N-bit two’s complement number. (The
textbook calls this number Ty, T for two’s complement. Hint: Ty, will be related to
a power of two in some way:.)

Toax(N) = 2871 -1

Problem 9. Considering the pattern in the table above, give an expression for the most
negative number that can be represented by a N-bit two’s complement number. (The
textbook calls this number Tn. It will also be related to a power of two in some way:.)

Tmax(N) = _2‘\/71

Problem 10. Add the following two binary numbers together. If there is a carry out
from the leftmost bit, discard it (that is, give only the lowest eight bits of the sum).

11000000
11111000
+ 00100111

00011111

Solutions 3/10

BBI 2

Problem 11. Convert all three numbers from the previous problem to decimal, treating
the binary numbers as unsigned. Is the sum correct (modulo 256)?

11111000, = 248;0. 00100111, = 39¢5. 00011111, = 314.
248 + 39 = 287 = 31 (mod 256).
The sum is correct.

Problem 12. Convert all three numbers from the previous problem to decimal, treating
the binary numbers as signed. Is the sum still correct?

11111000, = —849. 00100111, = 399. 00011111, = 314o.
-8 + 39 = 31.
The sum is still correct.

Problem 13. Given what you observed in the previous question, does the architecture
need multiple adders in hardware for signed and unsigned addition?

No, signed and unsigned addition are the same operation (as long as two’s comple-
ment representation is used for negative numbers).

4 Model 2: Bitwise Operations

Questions: 7/ Allocated Time: 8 minutes

In 1847, George Boole proposed a way to treat formal logic as a mathematical system,
by treating “true” and “false” as the numbers 1 and 0, respectively, and defining
mathematical operators based on the standard operations of formal logic—AND, OR,
XOR, and NOT. The system he devised is now known as Boolean algebra.

Most programming languages allow you to work with “Boolean quantities” using
the operators devised by Boole. In C, there are two variants of these operators, known
as the bitwise operators and the logical operators. In this model we will study the bitwise
operators, which treat integer values as vectors of bits.

Earlier this week, one of the steps to negating a signed integer was to invert all
of the bits. This operation, complement (~ in C), can be applied to any integer. For
example, ~0xQFOF is OxFOFO.

Problem 14. For each integer X below, compute its complement in hex and binary.

X (hex) X (bin) ~X (bin) ~X (hex)

OxCAFE 1100101011111110 0011010100000001 0x3501
0x3C3C 0011110000111100 1100001111000011 0xC3C3
0x0000 0000000000000000 1111111111111111 OxFFFF

Solutions 4/10

BBI 2

Problem 15. There are three other bitwise operators: AND (& in C), OR (]), and XOR
(*). Unlike ~, these are binary operators. When applied to two bitsaand b: a & bis 1
when (and only when) both operands are 1. a|b is 1 when at least one operand is 1.
And a”bis 1 when only 1 operand is 1. (The X is for eXclusive, i.e. one but not both.)
Complete the table below.

a b a&b alb a”™b
0 0 0 0 0
1 0 0 1 1
01 0 1 1
1 1 1 1 0

Problem 16. When applied to integers, &, |, and * work on each pair of bits indepen-
dently. Fill in the following table:

X (Dec) X (Bin) X &0x1

-2 1110 0000
-1 1111 0001
0 0000 0000
1 0001 0001
2 0010 0000

Problem 17. For which numbers was X & 0x1 not 0000? What is a common property
of these integers?

—1 and 1. Generalizing, X & 0x1 is nonzero for all odd integers.

Problem 18. Many times in systems programming, we use bits as flags. There will be
a set of constants FLAG_X, FLAG_Y, etc. each of which has a numeric value with only
one bit in its unsigned representation equal to 1. Then an unsigned int variable can
hold any combination of these flags.

If F is a variable holding flags, we can test whether a particular one of those flags,
say FLAG_Y, is true with the expression (F & FLAG_Y) == FLAG_Y. Explain what this
expression calculates.

The subexpression F & FLAG_Y will evaluate as zero if flag FLAG_Y is not set, or as the
value of FLAG_Y if it is set. Comparing the result to the value of FLAG_Y canonicalizes
the value produced by the overall expression, making it be 0 if the flag is not set, or 1
if it is.

Problem 19. The second argument to the C library function open (not to be confused
with fopen) provides a concrete example of how flags are typically used in systems

Solutions 5/10

BBI 2

programming. The header file unistd.h declares both open and a set of flag constants
whose names all begin with O_ (O is for open). Here is one common way to call open,
supplying a combination of O_ flags: open a file for writing (O_WRONLY), create it if it
doesn’t exist (0_CREAT), and erase the previous contents if it does exist (O_TRUNC).

int fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC,
DEFFILEMODE) ;

What is the effect of the | operator in this example?

Each bit in A|B will be set if the corresponding bit in A or the corresponding bit in B
is set, so the effect of the | operator is to combine the flags. The number passed as
the second argument to open will have the bits for all three of O_WRONLY, O_CREAT, and
O_TRUNC set.

Problem 20. De Morgan'’s laws of logical duality say that, for all x and y, we have

~(x & y) == ~x | ~y
~(x | y) == ~x & ~y

Fill in the table below to verify the first of these laws for a selection of inputs.

X y x&y ~x | ~y Equal?

OxF 0x1 OxE OxE Yes
0x5 0x7 OxA OxA Yes
0x3 0xC OxF OxF Yes

5 Model 3: Logical Operations

Questions: 4/ Allocated Time: 5 minutes

The other variant of Boolean operators in C is the logical operations. These are
closer to Boole’s original idea; there are only two possibilities for their inputs and
their outputs. Because C did not originally have a genuine Boolean type,' the logical
operators work on integer values, just like the bitwise operators do. The difference
is that the logical operators treat any nonzero value as “true”. Only zero is treated as
“false”. Furthermore, no matter what the inputs to the logical operators are, their
output will be either 0 (false) or 1 (true).

The three logical operators are NOT (!),> AND (&&), and inclusive OR (| |). There is
no logical XOR operator.

1A genuine Boolean type was added in the 1999 revision of the C standard, but we are old-fashioned
in this course and we mostly won’t use it.
Trivia: when reading code out loud, ! is often pronounced “bang.”

Solutions 6/10

BBI 2

Problem 21. Of the 16 possible 4-bit values, how many are considered as false by the
logical operators, and how many are considered as true?

One value is false: 0000. All of the other 15 values are nonzero and therefore
considered true.

Problem 22. Evaluate the following expression: (0x3 && 0xC) == (0x3 & 0xC). Show
your work.

(0x3 && 0xC) == 1because both 0x3 and 0xC are nonzero.

(0x3 & 0xC) == 0x0 because each individual bit is only set in one of the two input
values.

So the two sides of the original expression are not equal.

Note that in most cases (a & b) != (a & b) even if both sides evaluate to nonzero
values.

Side note: the parentheses in all these expressions are necessary, because the precedence
of both & and && is lower than that of ==. This is because people use the logical operators
to combine the results of comparisons (e.g. x >= 2 & x < 10) much more often than
they compare the results of logical operations to anything.

Problem 23. Fill in the following table to determine whether ! 1X == X is true for all
values of X.

X X 1x 11X =X

-1 0 1 No
0 1 0 Yes
1 0 1 Yes
2 0 1 No

No, it isn’t.

Problem 24. Now let’s do the same calculation for ~ instead of !. Will we find the
same thing?

X ~X ~~X ~~X ==
-1 0 -1 Yes
0 -1 0 Yes
1 -2 1 Yes
2 -3 2 Yes

Unlike logical negation, bitwise complement is its own inverse.

Solutions 7/10

BBI 2

6 Model 4: Multiplication, Division, and Bit Shifts

Questions: 11 / Allocated Time: 30 minutes

We observed yesterday that when you append a 0 bit to the right of a binary number,
is value is doubled. This operation is called left shift because all of the bits in the
original number move left one place. C provides an operator for shifting numbers left,
possibly by several places: x << n produces the number x shifted left by n places. (n
must be nonnegative and strictly less than the number of bits in the value x.)

Problem 25. Assuming that each of the following x-values is a 32-bit number, and bits
shifted out of the lowest 32 bits are discarded, fill in the table with the result of each
left-shift operation.

X n X << n
0x30 1 0x060
Ox5A 4 0x5A0

0xI11D 31 0x80000000

Problem 26. Given the expression X = (0x1 << 2) | (0x1 << 1), what is the value of
X in decimal and binary?

X - 610 - 01102

Problem 27. The compiler can often detect simple multiplication and replace it with
shifts and addition. What is an equivalent expression to x * 67

Two possible answers are (x << 2) + (x << 1) and (x + x + x) << L

Problem 28. Given the largest 3-bit unsigned integer, what is its value squared? How
many bits does this value require?

The largest 3-bit unsigned integer is 111, = 7;. Its value squared is 4919 = 110001,,
which requires 6 bits.

Problem 29. What is the result from the previous question if it must be stored in 3
bits?

Assuming excess bits are discarded, 001, = 1.

The inverse operation of left shift is called logical right shift. To logical right shift a
number by 71 places, you delete the n least significant bits, move all of the surviving
bits to the right until the lowest surviving bit is in the ones place, and fill in on the left
with zeroes. C provides this operation as the >> operator. (Note: >> is only guaranteed
to perform this operation when its left operand is unsigned. See below.)

Solutions 8/10

BBI 2

Problem 30. Compute the following right shifts.

X n x>>n
0x30 1 0x18
Ox5A 4 0x05
0x11 3 0x02

Problem 31. Convert the values of x and x >> n in the previous question to decimal.
To what common operation is right shift equivalent?

X n X >n

48 1 24
90 4 5
17 3 2

A single right shift is equivalent to dividing by 2, so right shifting by N is equivalent
to dividing by 2V with truncation (not rounding) to the nearest integer.

Problem 32. Suppose we right shift the negative number -2 by one place. What value
should this produce to preserve the equivalence discussed above?

To preserve equivalence with division by 2V, we should have -2>>1 = —1.

Problem 33. With 4-bit integers, what is the binary for —2? After logical right shifting
by 1, what (decimal) value to you get?

—210 = 1110, in two’s complement. After right shifting by 1, we get 0111, = 74.

Problem 34. (Advanced) How might you change the right shift operation to make it
correctly handle signed integers?

We need to fill in the vacated places on the left with copies of the sign bit, instead
of always filling in with zeroes. Thus, for instance, 1110, >>1 = 1111, = —14¢. This
adjusted operation is called arithmetic right shift. Notice that when shifting unsigned
numbers, you want the original version: (1110, = 14;9) >> 1 should produce 0111, = 7,
not 1111, = 15;¢. Inconveniently, C does not guarantee that >> with a signed left
operand will perform arithmetic right shift.

Solutions 9/10

BBI 2

Problem 35. (Advanced) One way to visualize a decimal number in binary is to
repeatedly divide by 2 and compute the remainder. Fill in the blanks in this loop
to make it compute this visualization. Assume saveNextBit (b) is a helper function
that takes in a bit (either O or 1), then records the given bit to the right of all currently
recorded bits.

while (x > 0) {
saveNextBit(x & 0x1);
X = x >> 1;

Solutions 10/10

	Introduction
	Model 0: Review of Representation
	Model 1: Review of Limits/Negative Conversion
	Model 2: Bitwise Operations
	Model 3: Logical Operations
	Model 4: Multiplication, Division, and Bit Shifts

